
1

1

CS102

Introduction to
data structures, algorithms,

and object-oriented
programming

February 27, 2016

2

 Singly-Linked Lists w/out Interface

3

The common pattern is to start at the head of the list (usually called
'head'), then move, via a pointer, from each node to the next by
following the pointer in the node, stopping when null is reached (i.e.,
when pointer == null, marking the end of the list).

 Traversing Singly-Linked Lists

Node runner;
// A pointer that will be used to traverse the list.
runner = head;
// Start with runner pointing to the head of the list.
while (runner != null) {
// Continue until null is encountered.
 System.out.println(runner.item);
 // Do something with the item in the current node.
 runner = runner.next;
 // Move on to the next node in the list.
}

4

 Singly-Linked Lists

Node runner;
// A pointer that will be used to traverse the list.
runner = head;
// Start with runner pointing to the head of the list.
// Uses the name runner as the loop counter.
for (Node runner = head;
 runner != null; runner = runner.next) {
 System.out.println(runner.item);
}

A version of the code on the last slide with a for loop that
has different syntax than usual.

5

 A Node in a SinglyLinkedList
// Imagine this code is inside a class called
// SinglyLinkedList.
private class IntNode {
 int item; // One of the integers in list.
 IntNode next; // Pointer to the next node in list.
}

public void sumInts() {
 int sum = 0;
 IntNode runner = head;
 while (runner != null) {
 sum = sum + runner.item;
 // Add current item to the sum.
 runner = runner.next;
 }
 System.out.println("The sum of the list is " + sum);}

Traversing a list without using
recursion to get the sum of all
integers in the list

Java Exceptions

•  Exception
– Handles an error during execution

•  Throw an exception
– To indicate an error during a method execution

•  Catch an exception
– To deal with the error condition

2

Catching Exceptions
•  Java provides try-catch blocks

–  To handle an exception���

•  Place statement that might throw an exception
within the try block
–  Must be followed by one or more catch blocks
–  When an exception occurs, control is passed to catch

block���

•  Catch block indicates type of exception you
want to handle

Catching Exceptions
•  try-catch blocks syntax

try {
 statement(s);
}
catch (exceptionClass identifier) {
 statement(s);
}

•  Some exceptions from the Java API cannot be
totally ignored
–  You must provide a handler for that exception

Catching Exceptions

Figure 1-9
Flow of control in a simple Java application

Catching Exceptions
•  Types of exception

–  Checked exceptions
•  Instances of classes that are subclasses of
java.lang.Exception

•  Must be handled locally or thrown by the method
•  Used when method encounters a serious problem

–  Runtime exceptions
•  Occur when the error cannot be handled without exiting

program
•  Instances of classes that are subclasses of
java.lang.RuntimeException

11

Catching Exceptions

•  The finally block
– Executed whether or not an exception is thrown
– Can be used even if no catch block is used
– Syntax

finally {
 statement(s);

}

3

Throwing Exceptions
•  throws clause

–  Written in a method signature, indicates a method may
throw an exception...

•  ...if an error occurs during its execution
–  Syntax

public methodName throws ExceptionClassName

•  throw statement
–  Used to throw an exception at any time
–  Syntax

throw new exceptionClass(stringArgument);

•  You can define your own exception class

Creating Exception Classes
public class ParseException extends Exception {
 public ParseException(String message) {
 // Create a ParseException object containing
 // the given message as its error message.
 super(message);
 }
}

