CS102

Introduction to
data structures, algorithms,
and object-oriented
programming

February 27, 2016

Singly-Linked Lists w/out Interface

[‘_}/ﬂ ‘_}/ﬂ M M]
[[[[[null |
When an object contains a reference to an object of the

same type, then several objects can be linked together
into a list. Each object refers to the next object.

For a list to be useful, there must be a variable
that points to the first node in the list. Here,
the variable named "head" serves this purpose.

head:
"fred"‘_l'/ﬂ'jane" | "joe" | "mary"]
[[

| [nul |

©

Traversing Singly-Linked Lists

The common pattern is to start at the head of the list (usually called
‘head'), then move, via a pointer, from each node to the next by
following the pointer in the node, stopping when null is reached (i.e.,
when pointer == null, marking the end of the list).

Node runner;
// A pointer that will be used to traverse the list.
runner = head;
// Start with runner pointing to the head of the list.
while (runner != null) {
// Continue until null is encountered.
System.out.println(runner.item);
// Do something with the item in the current node.
runner = runner.next;
// Move on to the next node in the list.

Singly-Linked Lists

A version of the code on the last slide with a for loop that
has different syntax than usual.

Node runner;
// A pointer that will be used to traverse the list.
runner = head;
// Start with runner pointing to the head of the list.
// Uses the name runner as the loop counter.
for (Node runner = head;
runner != null; runner = runner.next) {
System.out.println(runner.item);

A Node in a SinglyLinkedList

// Imagine this code is inside a class called

// SinglyLinkedList.

private class IntNode {
int item; // One of the integers in list.
IntNode next; // Pointer to the next node in list.

Traversing a list without using
public void sumInts() { recursion to get the sum of all
int sum = 0; integers in the list
IntNode runner = head;
while (runner != null) {
sum = sum + runner.item;
// Add current item to the sum.
runner = runner.next;
}

System.out.println("The sum of the list is " + sum);}

5

Java Exceptions

* Exception

— Handles an error during execution
* Throw an exception

— To indicate an error during a method execution
 Catch an exception

— To deal with the error condition

Catching Exceptions

e Java provides try-catch blocks
— To handle an exception

* Place statement that might throw an exception

within the t ry block
— Must be followed by one or more catch blocks
— When an exception occurs, control is passed to catch

block

» Catch block indicates type of exception you
want to handle

Catching Exceptions

Excopt iontzample ol = new Excopt ioatxample():

ayarzay

(eTeTeeTeTe o o e o]

) 1/ e
) 7/ oad acava
public void

71 281

) 11 ena a

The method mata
Public seatic void main(stringl) args) (-
Ercepticatansie o1 = sow Epioncuampie;) (3)

Sl-adavalus(53, 3); // add 3 to elemsnt 99
in

) 1/

)
mast o oyserted) 199) o) aok avatiante < (9)
29 ATy eSO houndeTxCHpe s 5
dcon Excep LonExAmp1S. Java)
Lo conpiied Code)
ain TeetExceps songxanple. Java)

< tontzanpl
xcopt Lonzxample. o
ost Excopt lonExanp

Figure 1-9

Flow of control in a simple Java application

Catching Exceptions

* try-catch blocks syntax
try {
statement (s) ;
}
catch
statement (s) ;

}
¢ Some exceptions from the Java API cannot be

totally ignored
— You must provide a handler for that exception

(exceptionClass identifier) {

Catching Exceptions

* Types of exception
— Checked exceptions
+ Instances of classes that are subclasses of
java.lang.Exception
¢ Must be handled locally or thrown by the method
* Used when method encounters a serious problem

— Runtime exceptions
* Occur when the error cannot be handled without exiting
program
 Instances of classes that are subclasses of
java.lang.RuntimeException

Throwable

Exception

[RuntimeException| [InterruptedException] [10Exception

EOFException | [SocketException

[ArrayIndexOutOfBoundsException |

TllegalArgumentException
NumberFormatException

The class Throwable and
some of its subclasses.

Catching Exceptions

e The finally block
— Executed whether or not an exception is thrown

— Can be used even if no catch block is used
— Syntax

finally {
statement (s) ;

! Throwing Exceptions

I
* throws clause

— Written in a method signature, indicates a method may
throw an exception...
 ...if an error occurs during its execution
— Syntax
public methodName throws ExceptionClassName
* throw statement
— Used to throw an exception at any time
— Syntax
throw new exceptionClass (stringArgument) ;

* You can define your own exception class

!l Creating Exception Classes

public class ParseException extends Exception {
public ParseException(String message) {
/I Create a ParseException object containing
/I the given message as its error message.
super(message);
}
}

