
1

1

CS102

Introduction to
data structures, algorithms,

and object-oriented
programming

March 27, 2017

2

•  Definition: GUI means "Graphical User
Interface"

–  Fact: All GUI components know how to draw

themselves.
–  You can give them additional properties/behaviors
–  We have already used one of the graphics

components of a GUI – the JOptionPane class.

 Intro to GUI Programming

3

For ease of programming and readability, GUI
programs use the following import statements:

 import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

 Imports

4

 JFrame
Fundamental component – a window.
•  Can be opened, closed, and resized.
•  Has "title" displayed in top bar.
•  Doesn't have any content...you create content

as shown in slides that follow.

JFrame window = new JFrame("title");

5

 Some properties must be set before making the
JFrame visible, inside either main, an instance
method, or a constructor:

window.setContentPane(content);
window.setSize(250,100);
window.setLocation(100,100);
window.setDefaultCloseOperation
 (JFrame.EXIT_ON_CLOSE);
window.setPreferredSize(new Dimension(250,100));
window.pack();
window.setVisible(true);

The content variable in the 1st line is usually a
JPanel that must have been instantiated before
the 1st line executes.

6

 JPanel
Uses for JPanel:

1.  Draw something.
2.  Hold other components.

 To make the entire class a JPanel, extend JPanel in
the class signature or use an inner class that extends
JPanel.
 If you are using a JPanel as a drawing window, you
should override the paintComponent method:
public void paintComponent(Graphics g) {
 super.paintComponent(g);
 (drawing operations with g) }

2

7

 If the JPanel is to be used for drawing:
1.  Write drawing method paintComponent that is

passed a Graphics object by the system when
execution starts.

2.  Pass the Graphics object to another method if

any substantial coding need be done (e.g.,
drawing multiple shapes, using decisions, loops).

3.  Re-call paintComponent by adding a call to

repaint(). The repaint method is not written in the
class you write...it is a call to make the system
call the paintComponent method.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/**
 * HelloWorldGUI - This class draws a greeting using Graphics
 */
public class HelloWorldGUI1 extends JPanel {
 JPanel content; // JPanel to hold this drawing surface

 public static void main(String[] args) {

 HelloWorldGUI1 displayPanel = new HelloWorldGUI1();
 } // end main

 public void paintComponent(Graphics g) {
 super.paintComponent(g); // overrides parent's method
 g.drawString("Hello World!", 20, 30);
 } // end paintComponent

8

 Simple "drawing" GUI

 /**
 * Physical layout of GUI is set up in constructor
 * or an instance method.
 */
 public HelloWorldGUI1() {
 content = new JPanel();
 content.setSize(250,100);
 content.setLayout(new BorderLayout());
 // 'this' is a HelloWorldGUI object added to middle
 content.add(this, BorderLayout.CENTER);

 JFrame window = new JFrame("GUI Test");
 window.setBackground(Color.PINK);
 window.setContentPane(content);
 window.setLocation(100,100);
 window.setPreferredSize(new Dimension(250,100));
 window.pack();
 window.setVisible(true);
 } // end of constructor
} // end of class

9

A BorderLayout positions items in a container, arranging
and resizing its components to fit in five regions: NORTH,
SOUTH, EAST, WEST and CENTER.
 JPanel p = new JPanel();
 p.setLayout(new BorderLayout());
 p.add(new JButton("Okay"), BorderLayout.SOUTH);

The GridLayout class is a layout manager that positions a
container's components in a rectangular grid. The container is
divided into equal-sized rectangles, and one component is
placed in each rectangle. Good for completely filling an area
with a set of components. Arguments to constructor are at
least the number of rows and number of columns

10

 Layout Managers

11

 JPanel
Uses for JPanel:

1.  Draw something.
2.  Hold other components that create events.

12

 JPanel (cont.)
Components must be added to a container before they are
visible. In the code sample below (from the method where
the GUI is set up), a JButton is created and added to the
JPanel.
(quitButton and content are instance variables)

quitButton = new JButton("Quit");
quitButton.addActionListener(this);
content = new JPanel();
content.setLayout(new BorderLayout());
content.add(quitButton,BorderLayout.SOUTH);

3

13

 JPanel (cont.)
General technique for setting up the components
of a GUI:

1.  Create a JFrame as a window to hold everything.
2.  Instantiate a JPanel as a container in the window.
3.  Assign a layout manager to container.
4.  Instantiate components and add them to the

container.
5.  Set the container as the content pane of the

window.

14

 Events and Listeners
The structure of containers and components make up the
physical appearance of the GUI, but do not set up the
behavior.

GUIs are event-driven—the program responds to events
with event-handling methods:

public void actionPerformed(ActionEvent e) {
 System.exit(0);
}

... from within method setting up components as listeners:
quitButton.addActionListener(listener);

15

 Programming behavior of GUI
General technique for setting up behavior of GUI:

1.  Write event-handling methods. For ActionEvents,
the class signature includes "implements
ActionListener" and the event-handling method is
actionPerformed.

2.  Create objects and register them as listeners on
components that generate ActionEvents.

3.  When events occur, the appropriate listener is
notified and its actionPerformed method is
executed.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/**
 * ComponentGUI
 * This class shows one JButton that closes the window
 */
class ComponentGUI extends JPanel implements ActionListener {
 JPanel content; // JPanel to hold components inside JPanel
 JButton quitButton; // component: a push button

 public static void main(String[] args) {
 ComponentGUI cGUI = new ComponentGUI();
 } // end main  

 public void actionPerformed(ActionEvent evt) {
 System.exit(0);
 }

16

 Simple "Component" GUI

 public ComponentGUI() {
 // instantiate JButton component and add ActionListener
 quitButton = new JButton("Quit");
 quitButton.addActionListener(this);

 // instantiate JPanel component, set layout, and add JButton
 content = new JPanel();
 content.setLayout(new BorderLayout());
 content.add(quitButton, BorderLayout.CENTER);

 // instantiate window and add JPanel and its contents
 JFrame window = new JFrame("GUI with JButton");
 window.setContentPane(content);
 window.setSize(250,100);
 window.setLocation(100,100);
 window.setVisible(true);

 }
}

17 18

 More Complex GUI
The GUI we'll look at next has a main JPanel with 4
nested JPanels.

 JTextField

JTextField

JTextField

JButtons

JLabel

JLabel

JPanel1

JPanel2

JPanel3

JPanel4

4

19

 Putting a GUI class together
Writing a GUI can be done in many different ways. I will
cover the setup for the simple calculator on the last slide:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/**
 * This class uses nested JPanels to create a simple calculator.
 */
public class SimpleCalculator extends JPanel implements ActionListener {

The SimpleCalculator class is-a JPanel and is-of
ActionListener type.

20

 After the class signature, declare all the class instance variables (you
will often add these as you discover they are needed in the code).

 JPanel calcPanel, panelX, panelY, buttonPanel, resultPanel;

 JButton plus, minus, mult, div;
 JLabel xEqual, yEqual;
 JTextField enterX, enterY, answer;

 public static void main(String[] args) {
 SimpleCalculator sgs = new SimpleCalculator();
 } // end main

 public SimpleCalculator() {
 JFrame bigPane = new JFrame("Simple Calculator");
 bigPane.setLayout(null);
 bigPane.setBackground(Color.BLACK);
 bigPane.setLocation(100,50);

 calcPanel = new JPanel(); // panel to hold all others
 calcPanel.setLayout(new GridLayout(4,1,3,3));
 bigPane.setContentPane(calcPanel);

21

 Each JPanel is instantiated in the constructor, the layout manager is set up for
each one, and other properties are set. Here, panelX and panelY are
instantiated.

 panelX = new JPanel();
 panelX.setBackground(Color.GRAY);
 panelX.setLayout(new FlowLayout());
 enterX = new JTextField("0", 10);
 Font bigText = new Font("SansSerif",Font.BOLD,20);
 enterX.setFont(bigText);

 panelY = new JPanel();
 panelY.setBackground(Color.GRAY);
 panelY.setLayout(new FlowLayout());
 enterY = new JTextField("0", 10);
 enterY.setFont(bigText);

22

 panelX and panelY each contain a JLabel and a JTextField that are
instantiated and added to each panel. Then each panel is added to calcPanel.

 xEqual = new JLabel("x = ");
 xEqual.setFont(bigText);
 yEqual = new JLabel("y = ");
 yEqual.setFont(bigText);
 panelX.add(xEqual);
 panelX.add(enterX);
 panelY.add(yEqual);
 panelY.add(enterY);

 calcPanel.add(panelX);
 calcPanel.add(panelY);

23

 Instantiate each JButton and add "this" as the action listener

 Font biggerText = new Font("SansSerif",Font.BOLD,36);
 plus = new JButton("+");
 plus.setFont(biggerText);
 plus.addActionListener(this);
 minus = new JButton("-");
 minus.setFont(biggerText);
 minus.addActionListener(this);
 mult = new JButton("*");
 mult.setFont(biggerText);
 mult.addActionListener(this);
 div = new JButton("/");
 div.setFont(biggerText);
 div.addActionListener(this);));

24

Finish the constructor by adding buttons to buttonPanel (after the layout
manager is specified. Add all JPanels to calcPanel and finish setting up JFrame.

 buttonPanel = new JPanel();
 buttonPanel.setLayout(new GridLayout(1,1));
 buttonPanel.add(plus);
 buttonPanel.add(minus);
 buttonPanel.add(mult);
 buttonPanel.add(div);

 bigPane.setPreferredSize(new Dimension(300,300));
 calcPanel.add(panelX);
 calcPanel.add(panelY);
 calcPanel.add(buttonPanel);
 calcPanel.add(resultPanel);

 bigPane.pack();
 bigPane.setLocation(100,50);
 bigPane.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 bigPane.setResizable(false);
 bigPane.setVisible(true);
 } // end constructor

5

25

 public void actionPerformed(ActionEvent evt){
 double x, y;
 String xStr, yStr;
 // first, get the text from the JTextFields
 try {
 xStr = enterX.getText();
 x = Double.parseDouble(xStr);
 }catch(NumberFormatException nfe) {
 answer.setText("Illegal data for x.");
 enterX.requestFocusInWindow();
 return;
 }
 try {
 yStr = enterY.getText();
 y = Double.parseDouble(yStr);
 }catch(NumberFormatException nfe) {
 answer.setText("Illegal data for y.");
 enterY.requestFocusInWindow();
 return;
 }

 26

 String op = evt.getActionCommand();
 if (op.equals("+"))
 answer.setText("x + y = " + (x+y));
 else if (op.equals("-"))
 answer.setText("x - y = " + (x-y));
 else if (op.equals("*"))
 answer.setText("x * y = " + (x*y));
 else if (op.equals("/")) {
 if (y == 0)
 answer.setText("Can't divide by zero.");
 else
 answer.setText("x / y = " + (x/y));
 } // end if
 } // end actionPerformed
} // end class

27

 Main points in General GUI
1.  Write class that implements all Listener interfaces

needed.
2.  Decide which JComponents you need and declare

them as instance variables.
3.  Write a main method that creates an object of its

own type, calling a zero-parameter constructor.
4.  Inside the constructor, create a JFrame to hold all

JComponents. Instantiate all JComponents in
constructor. Add a Listener to any JComponent that
will generate an Event. Add all JComponents to
their appropriate containers.

28

 Main points (cont.)
5.  Write an actionPerformed method to respond to any

Events generated (in this case, only the JButtons
generate ActionEvents).

29

 Writing JPanels to do both
Uses for JPanel:

1.  Can add other components.
2.  Draw something.

30

 1.  Write class that extends JPanel and implements
ActionListener interface.

2.  Decide which JComponents you need and declare
them as instance variables.

3.  Write a main method that creates an object x of its
own type. Instead of using the constructor to set up
the window, call an instance method and pass x into
the method.

4.  Inside the instance method you created in step 3,
create a JFrame to hold all JComponents.
Instantiate and set up all JComponents in
constructor. Add all JComponents to their
appropriate containers.

6

31

 6.  Add a Timer object to the method that sets up the
window to generate ActionEvents for continuous
motion:
Timer frameTimer = new Timer(20, this);  
frameTimer.start();

7.  override the method:
public void paintComponent(Graphics g) {
 super.paintComponent(g);
 (call drawing method, passing in g)
}

32

 8.  Write an actionPerformed method that will be sent
an ActionEvent for every clock tick.

9.  Write a method that takes a Graphics object as an
argument and uses it to create any shapes you need
on the window.

