
1

1

CS102

Introduction to
data structures, algorithms,

and object-oriented
programming

April 3rd , 2017

 Homework 4
1.  In homework 4, you will add a paddle to the bouncing

ball scene.
2.  In a sequence of steps, you draw the paddle, make it

move, and then make sure the ball bounces off the
paddle.

3.  This is the first time you have used a Listener for a
mouse event. The listener I ask you to use is a
MouseMotionListener, which requires the
implementing class to contain a mouseMoved and a
mouseDragged method (but for the assignment, you
only need a mouseMoved method). Like Action-
Listener, the MouseMotionListener can either be an
instance method or an anonymous inner class.

2

4.  When a mouse event occurs, we get information in
the event generated. In this case, the data we need
is the mouse event getX(), which returns the x
coordinate of the mouse on the scene.

5.  We need an actionListener on the Timer to generate
events that keep the ball moving.

3

 Homework 4 Lab today
For lab 7, I will have you implement a simple
TemperatureConverterGUI that converts degrees
Fahrenheit to degrees Celsius.

4

 Lab preview
In lab 7, you will use GUI component JTextField to get
input from the user. The starter file extends JFrame
instead of JPanel. If the class type is-a JFrame, you
can get a drawing surface out of the JFrame by using
the getContentPane method

Hopefully the instructions will allow you to complete this
lab with little trouble.

The input should be a number. However, a try block
should be started before every attempt to convert a
String into a number (-------------------Exception)???

5 6

 Reading JTextField Text

1.  When an enter is generated by a JTextField
(JTF), an ActionEvent is generated.

2.  After source is known, use getText()
String name = "";
if (e.getSource().equals(getFahrInput)){
 try {

 name = getFahrInput.getText();
 fTemp = Double.parseDouble(name);
 }catch(NumberFormatException nfe) {
 intro.setText("Please enter #s in boxes.");
 getFahrInput.setText("");
 return;
 }  

2

 Reading from the CL
Sometimes, you may want to enter the file inputs
from the command line (CL):

 public static void main(String[] args) throws FileNotFoundException {
 String textFile = args[0];
 Scanner scan = new Scanner(new FileReader(textFile));
 int vertices = Integer.parseInt(scan.nextLine());
 int edges = Integer.parseInt(scan.nextLine());
 String graph[] = new String[edges];
 for (int i = 0; i < edges; i++) {
 graph[i] = scan.next() + ", " + scan.next();
 }

 BFS(graph, source, vertices);
 printPaths();
 }

7

 Working from the CL
Suppose you are working from the terminal and you
have a java file that reads from the CL and an input file
in the same directory.

To compile the file, type

 $ javac FileName.java

To run the file, type

 $ java FileName data.txt

($ is the command line prompt)

 8

 Exception Review
Exceptions fall into 2 different hierarchies:

 1. Unchecked Exceptions (subclasses of RunTimeException): You usually
 don't catch unchecked exceptions. Instead, you fix your program so it
 can't produce one of these. Example: ArrayIndexOutOfBoundsException,
 NullPointerException.

 2. Checked Exceptions (subclasses of Exception): These are usually errors
 in the input data or pertaining to the input or output file. The
 programmer has no control over the input the user gives you for
 file names. If the user gives you a bad value, it may cause an

 exception at run time.

9

 Exception Review
Checked exceptions are subject to the "Catch or Throw Requirement". This
means that code that might throw checked exceptions must be enclosed by
either of the following:

 * A try statement that catches the exception. The try must provide a
 handler for the exception, as described below in Catching
 Exceptions.

 * A method that specifies that it throws the exception. The method
 must provide a throws clause in the header line that lists the
 exception, as described below in Specifying the Exceptions Thrown
 by a Method.

10

 File I/O with text

 1. Use any text editor (DrJava will work too, just don't save
 file with .java extension).

 2. Type in text.

 3. Save the file as <name>.txt

11

 Reading from text files
Using the Reader class BufferedReader:

 1. Import java.io.* for I/O exceptions and readers.

 2. Declare a BufferedReader to be either a local or instance
 variable.

 3. Instantiate the BufferedReader inside a while loop to
 keep trying in case an exception is thrown:

12

3

13

 More Complex GUI
The GUI we'll look at next has a main JPanel with 4
nested JPanels.

 JTextField

JTextField

JTextField

JButtons

JLabel

JLabel

JPanel1

JPanel2

JPanel3

JPanel4

14

 Putting a GUI class together
Writing a GUI can be done in many different ways. I will
cover the setup for the simple calculator on the last slide:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/**
 * This class uses nested JPanels to create a simple calculator.
 */
public class SimpleCalculator extends JPanel implements ActionListener {

The SimpleCalculator class is-a JPanel and is-of
ActionListener type.

15

 After the class signature, declare all the class instance variables (you
will often add these as you discover they are needed in the code).

 JPanel calcPanel, panelX, panelY, buttonPanel, resultPanel;

 JButton plus, minus, mult, div;
 JLabel xEqual, yEqual;
 JTextField enterX, enterY, answer;

 public static void main(String[] args) {
 SimpleCalculator sgs = new SimpleCalculator();
 } // end main

 public SimpleCalculator() {
 JFrame bigPane = new JFrame("Simple Calculator");
 bigPane.setLayout(null);
 bigPane.setBackground(Color.BLACK);
 bigPane.setLocation(100,50);

 calcPanel = new JPanel(); // panel to hold all others
 calcPanel.setLayout(new GridLayout(4,1,3,3));
 bigPane.setContentPane(calcPanel);

16

 Each JPanel is instantiated in the constructor, the layout manager is set up for
each one, and other properties are set. Here, panelX and panelY are
instantiated.

 panelX = new JPanel();
 panelX.setBackground(Color.GRAY);
 panelX.setLayout(new FlowLayout());
 enterX = new JTextField("0", 10);
 Font bigText = new Font("SansSerif",Font.BOLD,20);
 enterX.setFont(bigText);

 panelY = new JPanel();
 panelY.setBackground(Color.GRAY);
 panelY.setLayout(new FlowLayout());
 enterY = new JTextField("0", 10);
 enterY.setFont(bigText);

17

 panelX and panelY each contain a JLabel and a JTextField that are
instantiated and added to each panel. Then each panel is added to calcPanel.

 xEqual = new JLabel("x = ");
 xEqual.setFont(bigText);
 yEqual = new JLabel("y = ");
 yEqual.setFont(bigText);
 panelX.add(xEqual);
 panelX.add(enterX);
 panelY.add(yEqual);
 panelY.add(enterY);

 calcPanel.add(panelX);
 calcPanel.add(panelY);

18

 Instantiate each JButton and add "this" as the action listener

 Font biggerText = new Font("SansSerif",Font.BOLD,36);
 plus = new JButton("+");
 plus.setFont(biggerText);
 plus.addActionListener(this);
 minus = new JButton("-");
 minus.setFont(biggerText);
 minus.addActionListener(this);
 mult = new JButton("*");
 mult.setFont(biggerText);
 mult.addActionListener(this);
 div = new JButton("/");
 div.setFont(biggerText);
 div.addActionListener(this);));

4

19

Finish the constructor by adding buttons to buttonPanel (after the layout
manager is specified. Add all JPanels to calcPanel and finish setting up JFrame.

 buttonPanel = new JPanel();
 buttonPanel.setLayout(new GridLayout(1,1));
 buttonPanel.add(plus);
 buttonPanel.add(minus);
 buttonPanel.add(mult);
 buttonPanel.add(div);

 bigPane.setPreferredSize(new Dimension(300,300));
 calcPanel.add(panelX);
 calcPanel.add(panelY);
 calcPanel.add(buttonPanel);
 calcPanel.add(resultPanel);

 bigPane.pack();
 bigPane.setLocation(100,50);
 bigPane.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 bigPane.setResizable(false);
 bigPane.setVisible(true);
 } // end constructor

 20

 public void actionPerformed(ActionEvent evt){
 double x, y;
 String xStr, yStr;
 // first, get the text from the JTextFields
 try {
 xStr = enterX.getText();
 x = Double.parseDouble(xStr);
 }catch(NumberFormatException nfe) {
 answer.setText("Illegal data for x.");
 enterX.requestFocusInWindow();
 return;
 }
 try {
 yStr = enterY.getText();
 y = Double.parseDouble(yStr);
 }catch(NumberFormatException nfe) {
 answer.setText("Illegal data for y.");
 enterY.requestFocusInWindow();
 return;
 }

21

 String op = evt.getActionCommand();
 if (op.equals("+"))
 answer.setText("x + y = " + (x+y));
 else if (op.equals("-"))
 answer.setText("x - y = " + (x-y));
 else if (op.equals("*"))
 answer.setText("x * y = " + (x*y));
 else if (op.equals("/")) {
 if (y == 0)
 answer.setText("Can't divide by zero.");
 else
 answer.setText("x / y = " + (x/y));
 } // end if
 } // end actionPerformed
} // end class

