
1

ACM Student Package���

•  Library of Java classes that simplify

input, output and interaction with users.

•  Intended for use by students learning
Java programming.

•  Available on class wiki.

EasyInteraction.java
import acm.program.*;  

public class EasyInteraction extends ConsoleProgram {
 /* Displays a pop-up frame for program execution */
 public void run() {
 println(" Welcome to CMPU102: Data Structures and Java\n");
 String firstName = readLine(" Please enter your first name: ");
 String lastName = readLine(" Please enter your last name: \n");
 println(" Hello, " + firstName + " " + lastName + ".");
 println(" It's a pleasure to have you with us!");
 }

 /* Standard Java entry point */
 public static void main(String[] args) {
 /* Calling the start method of a ConsoleProgram (e.g., EasyInteraction)
 * invokes the system to call the run method. */
 EasyInteraction EI = new EasyInteraction();
 EI.setFont(new Font("sansserif", 0, 18));
 EI.start();
 }
}

The main method creates a new instance of EasyInteraction and invokes its start
method. The start method calls the run method, which carries on with the program.

EasyInteraction.java

The Stack Class
•  The Stack class is exported by the java.util package. It

is a generic class that enforces LIFO (last-in, first-out) access
to data. All operations are performed on the “top” element of
the stack. The operations allowed on a Stack include:

 push: insert and return item on top of stack
 pop: remove and return item on top of stack
 peek: return item on top of stack
 isEmpty (or empty)

Stacks are used in many applications and they are a central
part of a programmer’s toolkit.

Exercise: Write a program that uses a Stack to match
parentheses ���

The Queue ADT
•  A queue is a data structure that enforces a FIFO (first-in, first-

out) access to data. Elements are added at one end (usually
called the “rear”) and are removed from the other (usually
called the “front”). Java has a Queue interface, but no Queue
class.

Queues are used in enough applications that they should be a
familiar structure for all programmers. Operations that are
allowed on a queue include:

 enqueue: add element at rear of queue
 dequeue: remove an element from front of queue
 isEmpty (or empty)

���

The PriorityQueue Class
•  A priority queue is a data structure that isn’t really a queue at

all. It is implemented using a special type of binary tree
known as a heap. Heaps are either min-heaps or max-heaps
and are generally implemented using arrays.

A min-heap is a binary tree that
•  is full at every level, but may be only left-filled at the

bottom-most level such that
•  every child node contains a key that is >= the key at its

parent node.
•  A max-heap is similarly defined, except that every child node

contains a key that is <= the key at its parent node
•  Guarantees O(logN) operations on the tree. Used to

implement the HashSort algorithm.

���

2

•  Both Stacks and Queues can be implemented with an
ArrayList, using the ArrayList functions in controlled ways to
enforce the requirements of these ADTs.

•  For example, you could define a queue to store Strings by
extending ArrayList<String>, then implement an enqueue
method that adds elements to the end of the list, and a
dequeue method that removes the item at position 0.

Implementing ADTs The HashMap Class

•  The HashMap class is a generic class exported by the
java.util package and is an implementation of the
Dictionary ADT.

•  The HashMap class implements the abstract idea of a map (or
dictionary), an associative relationship between keys and
values. A key is an object that never appears more than once
in a map and can therefore be used to identify a value, which
is the object associated with a particular key.

The HashMap Class

map.put(key, value)
map.get(key)

Sets the association for key in the map to value.
Returns the value associated with key, or null if none.

•  Although the HashMap class exports other methods as well,
the essential operations on a HashMap are the ones listed in
the following table:

Generic Types for Keys and Values
•  A HashMap requires two type parameters in angle brackets:

one for the key and one for the value.

E.g., the type designation HashMap<String,Integer>
indicates a HashMap that uses strings as keys to obtain integer
values.

A Simple HashMap Application
•  Suppose that you want to write a program that displays the

name of a state given its two-letter postal abbreviation.

•  This program is an ideal application for the HashMap class
because what you need is a map between two-letter codes and
state names. Each two-letter code uniquely identifies a
particular state and therefore serves as a key for the HashMap;
the state names are the corresponding values.

A Simple HashMap Application

•  To implement this program in Java, you need to perform the
following steps, which are illustrated on the following slide:

Create a HashMap containing all 50 key/value pairs. 1.
Read in the two-letter abbreviation to translate. 2.
Call get on the HashMap to find the state name. 3.
Print out the name of the state. 4.

3

The PostalLookup Application

skip simulation

public void run() {
 HashMap<String,String> stateMap = new HashMap<String,String>();
 initStateMap(stateMap);
 while (true) {
 String code = readLine("Enter two-letter state abbreviation: ");
 if (code.length() == 0) break;
 String state = stateMap.get(code);
 if (state == null) {
 println(code + " is not a known state abbreviation");
 } else {
 println(code + " is " + state);
 }
 }
}

code state stateMap

Enter two-letter state abbreviation:
PostalLookup

 HI
HI is Hawaii
Enter two-letter state abbreviation: WI
WI is Wisconsin
Enter two-letter state abbreviation: VE
VE is not a known state abbreviation
Enter two-letter state abbreviation:

AL=Alabama
AK=Alaska
AZ=Arizona

FL=Florida
GA=Georgia
HI=Hawaii

WI=Wisconsin
WY=Wyoming

. . .

. . .

HI WI VE Hawaii Wisconsin null

private void initStateMap(HashMap<String,String> map) {
 map.put("AL", "Alabama");
 map.put("AK", "Alaska");
 map.put("AZ", "Arizona");

 map.put("FL", "Florida");
 map.put("GA", "Georgia");
 map.put("HI", "Hawaii");

 map.put("WI", "Wisconsin");
 map.put("WY", "Wyoming");
}

map

. . .

. . .

public void run() {
 HashMap<String,String> stateMap = new HashMap<String,String>();
 initStateMap(stateMap);
 while (true) {
 String code = readLine("Enter two-letter state abbreviation: ");
 if (code.length() == 0) break;
 String state = stateMap.get(code);
 if (state == null) {
 println(code + " is not a known state abbreviation");
 } else {
 println(code + " is " + state);
 }
 }
}

stateMap

The Idea of Hashing
•  The goal of hashing is to do a search in O(1) time. To see how

it works, it helps to think about how you find a word in a
dictionary. You certainly don’t start at the beginning and
look at every word, but you probably don’t use binary search
either. Most dictionaries have thumb tabs that indicate where
each letter first appears. Words starting with A are in the A
section, and so on.

•  The HashMap class uses a strategy called hashing, which is
conceptually similar to the thumb tabs in a dictionary. The
critical idea is that you can improve performance enormously
if you use the key to figure out where to look.

Hash Codes
•  To make it possible for the HashMap class to know where to

look for a particular key, every object defines a method called
hashCode that returns an integer (positive or negative)
associated with that object. As you will see in a subsequent
slide, this hash code value tells the HashMap implementation
where it should look for a particular key.

•  In general, clients of the HashMap class have no reason to
know the actual value of the integer returned as a hash code
for some key. The important things to remember are:

Every object has a hash code, even if you don’t know what it
is.

1.

The hash code for any particular object is always the same. 2.

If two objects have equal values, they have the same hash code. 3.

Hash Codes and Collisions
•  For any Java object, the hashCode method returns an int

that can be any one of the 4,294,967,296 (232) possible values
for that type.

•  While 4,294,967,296 seems huge, it is insignificant compared
to the total number of objects that can be represented inside a
machine, which would be infinite if there were no limits on
the size of memory.

•  The fact that there are more possible objects than hash codes
means that there must be some distinct objects that have the
same hash codes. For example, the strings "hierarch" and
"crinolines" have the same hash code, which happens to
be -1732884796.

•  Because different keys can generate the same hash codes, any
strategy for implementing a map using hash codes must take
that possibility into account, even though it happens rarely.

The Bucket Hashing Strategy
•  One common strategy for implementing a map is to use the

hash code for an object to select an index into an array that
will contain all the keys with that hash code. Each element of
that array is conventionally called a bucket.

•  In practice, the array of buckets is smaller than the number of
hash codes, making it necessary to convert the hash code into
a bucket index, typically by executing a statement like

int bucket = Math.abs(key.hashCode()) % N_BUCKETS;

•  The value in each element of the bucket array cannot be a
single key/value pair given the chance that different keys fall
into the same bucket. Such situations are called collisions.

•  To take account of the possibility of collisions, each element
of the bucket array is usually a linked list of the keys that fall
into that bucket, as shown in the simulation on the next slide.

Simulating Bucket Hashing
stateMap.put("AL", "Alabama")

"AL".hashCode() → 2091

Math.abs(2091) % 7 → 5

The key "AL" therefore goes in bucket 5.

stateMap.put("AK", "Alaska")

"AK".hashCode() → 2090

Math.abs(2090) % 7 → 4

The key "AK" therefore goes in bucket 4.

stateMap.put("AZ", "Arizona")

"AZ".hashCode() → 2105

Math.abs(2105) % 7 → 5

The key "AZ" therefore goes in bucket 5.

Because bucket 5 already contains "AL",
the "AZ" must be added to the chain.

The rest of the keys are added similarly. CA
California

null

CA
California

null

CO
Colorado

DE
Delaware

CA
California

null

CO
Colorado

ID
Idaho

CA
California

null

CO
Colorado

DE
Delaware

ID
Idaho

CA
California

null

CO
Colorado

DE
Delaware

KS
Kansas

ID
Idaho

CA
California

null

CO
Colorado

DE
Delaware

KS
Kansas

MT
Montana

ID
Idaho

CA
California

null

CO
Colorado

DE
Delaware

KS
Kansas

MT
Montana

NJ
New

Jersey

ID
Idaho

CA
California

null

CO
Colorado

DE
Delaware

KS
Kansas

MT
Montana

NJ
New

Jersey

NC
North

Carolina

ID
Idaho

CA
California

null

CO
Colorado

DE
Delaware

KS
Kansas

MT
Montana

NJ
New

Jersey

NC
North

Carolina

WY
Wyoming

IL
Illinois

null

IL
Illinois

null

MN
Minnesota

IL
Illinois

null

MN
Minnesota

NY
New York

IL
Illinois

null

MN
Minnesota

NY
New York

ND
North

Dakota

IL
Illinois

null

MN
Minnesota

NY
New York

ND
North

Dakota

OH
Ohio

IL
Illinois

null

MN
Minnesota

NY
New York

ND
North

Dakota

OH
Ohio

SC
South

Carolina

IL
Illinois

null

MN
Minnesota

NY
New York

ND
North

Dakota

OH
Ohio

SC
South

Carolina

TN
Tennessee

IL
Illinois

null

MN
Minnesota

NY
New York

ND
North

Dakota

OH
Ohio

SC
South

Carolina

TN
Tennessee

VA
Virginia

HI
Hawaii

null

HI
Hawaii

null

MA
Massachusetts

HI
Hawaii

null

MA
Massachusetts

MO
Missouri

HI
Hawaii

null

MA
Massachusetts

MO
Missouri

NE
Nebraska

HI
Hawaii

null

MA
Massachusetts

MO
Missouri

NE
Nebraska

SD
South

Dakota

IN
Indiana

null

IN
Indiana

null

MI
Michigan

IN
Indiana

null

MI
Michigan

NM
New

Mexico

IN
Indiana

null

MI
Michigan

NM
New

Mexico

UT
Utah

AK
Alaska

null

AK
Alaska

null

AR
Arkansas

AK
Alaska

null

AR
Arkansas

IA
Iowa

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OR
Oregon

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OR
Oregon

PA
Pennsylvania

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OR
Oregon

PA
Pennsylvania

RI
Rhode
Island

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OR
Oregon

PA
Pennsylvania

RI
Rhode
Island

TX
Texas

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OR
Oregon

PA
Pennsylvania

RI
Rhode
Island

TX
Texas

WA
Washington

WV
West

Virginia

OK
Oklahoma

AK
Alaska

null

AR
Arkansas

IA
Iowa

OR
Oregon

PA
Pennsylvania

RI
Rhode
Island

TX
Texas

WA
Washington

AL
Alabama

null

AL
Alabama

null

AZ
Arizona

CT
Connecticut

AL
Alabama

null

AZ
Arizona

GA
Georgia

AL
Alabama

null

AZ
Arizona

CT
Connecticut

GA
Georgia

AL
Alabama

null

AZ
Arizona

CT
Connecticut

MD
Maryland

GA
Georgia

AL
Alabama

null

AZ
Arizona

CT
Connecticut

MD
Maryland

NV
Nevada

GA
Georgia

AL
Alabama

null

AZ
Arizona

CT
Connecticut

MD
Maryland

NV
Nevada

NH
New

Hampshire

GA
Georgia

AL
Alabama

null

AZ
Arizona

CT
Connecticut

MD
Maryland

NV
Nevada

NH
New

Hampshire

WI
Wisconsin

FL
Florida

null

FL
Florida

null

KY
Kentucky

FL
Florida

null

KY
Kentucky

LA
Louisiana

FL
Florida

null

KY
Kentucky

LA
Louisiana

ME
Maine

FL
Florida

null

KY
Kentucky

LA
Louisiana

ME
Maine

MS
Mississippi

FL
Florida

null

KY
Kentucky

LA
Louisiana

ME
Maine

MS
Mississippi

VT
Vermont

0
1
2
3
4
5
6

Suppose you call stateMap.get("HI")
"HI".hashCode() → 2305
Math.abs(2305) % 7 → 2

The key "HI" must therefore be in bucket 2
and can be located by searching the chain.

SD
South

Dakota

NE
Nebraska

MO
Missouri

MA
Massachusetts

HI
Hawaii

null

skip simulation

4

Achieving O(1) Performance
•  The simulation on the previous side uses only seven buckets

to emphasize what happens when collisions occur: the smaller
the number of buckets, the more likely collisions become.

•  In practice, the real implementation of HashMap uses a much
larger value for N_BUCKETS to minimize the opportunity for
collisions. If the number of buckets is considerably larger
than the number of keys, most of the bucket chains will either
be empty or contain exactly one key/value pair.

•  The ratio of the number of keys to the number of buckets is
called the load factor of the HashMap. Because a HashMap
achieves O(1) performance only if the load factor is small, the
library implementation of HashMap automatically increases
the number of buckets when the table becomes too full.

The Collection Hierarchy

«interface»
Collection

ArrayList

«interface»
List

«interface»
Set AbstractCollection

AbstractList

LinkedList HashSet

AbstractSet

TreeSet

«interface»
SortedSet

The following diagram shows the portion of the Java Collections
Framework that implements the Collection interface. The
dashed lines specify that a class implements a particular interface.

ArrayList vs. LinkedList
•  If you look at the left side of the collections hierarchy on the

preceding slide, you will discover that there are two classes in
the Java Collections Framework that implement the List
interface: ArrayList and LinkedList.

•  Because these classes implement the same interface, it is
generally possible to substitute one for the other.

•  The fact that these classes have the same effect, however,
does not imply that they have the same performance
characteristics.
–  The ArrayList class is more efficient if you are selecting a

particular element or searching for an element in a sorted array.
–  The LinkedList class is more efficient if you are adding or

removing elements from a large list.

•  Choosing which list implementation to use is therefore a
matter of evaluating the performance tradeoffs.

Iteration in Collections
•  One of the most useful operations for any collection is the

ability to run through each of the elements in a loop. This
process is called iteration.

•  The java.util package includes a generic interface called
Iterator that supports iteration over the elements of a
collection. You can use a while loop to go through all the
elements in a collection, or you can use the “for-each” loop.

Iterator<String> iterator = collection.iterator();
while (iterator.hasNext()) {
 String element = iterator.next();
 . . . statements that process this particular element . . .
}

for (type element : collection) {
 . . . statements that process this particular element . . .
}

Using the Shape Classes
•  The shape classes are the GObject subclasses that appear in yellow at the

bottom of the hierarchy diagram.

GObject

GRoundRect G3DRect

•  Each of the shape classes corresponds precisely to a method in the Graphics
class in the java.awt package. Once you have learned to use the shape
classes, you will easily be able to transfer that knowledge to Java’s standard
graphics tools.

GLabel GRect GOval GLine GArc GImage GPolygon

The GLabel Class
You’ve been using the GLabel class ever since Chapter 2 and
already know how to change the font and color, as shown in the
most recent version of the “Hello World” program:

HelloProgram

hello, world

public class HelloProgram extends GraphicsProgram {
 public void run() {
 GLabel label = new GLabel("hello, world", 100, 75);
 label.setFont("SansSerif-36");
 label.setColor(Color.RED);
 add(label);
 }
}

5

Centering Labels
The following update to the “Hello World” program centers the
label in the window:

HelloProgram

hello, world

public class HelloProgram extends GraphicsProgram {
 public void run() {
 GLabel label = new GLabel("hello, world");
 label.setFont("SansSerif-36");
 label.setColor(Color.RED);
 double x = (getWidth() - label.getWidth()) / 2;
 double y = (getHeight() - label.getAscent()) / 2;
 add(label, x, y);
 }
}

The GRect Class
•  The GRect class implements the GFillable, GResizable, and

GScalable interfaces but does not otherwise extend the facilities of
GObject.

•  Like every other shape class, the GRect constructor comes in two forms. The
first includes both the location and the size:

new GRect(x, y, width, height)

 This form makes sense when you know in advance where the rectangle belongs.

•  The second constructor defers setting the location:

new GRect(width, height)

 This form is more convenient when you want to create a rectangle and then decide
where to put it later.

The GOval Class
•  The GOval class represents an elliptical shape defined by the boundaries of its

enclosing rectangle.

•  As an example, the following run method creates the largest oval that fits within
the canvas:

public void run() {
 GOval oval = new GOval(getWidth(), getHeight());
 oval.setFilled(true);
 oval.setColor(Color.GREEN);
 add(oval, 0, 0);
}

LargestOval

The GLine Class
•  The GLine class represents a line segment that connects two points. The

constructor call looks like this:

new GLine(x0, y0, x1, y1)

•  Given a GLine object, you can get the coordinates of the two points by calling
getStartPoint and getEndPoint. Both of these methods return a
GPoint object.

•  The GLine class does not support filling or resizing but does implement the
GScalable interface. When you scale a line, its start point remains fixed.

 The points (x0, y0) and (x1, y1) are called the start point and the end point,
respectively.

•  The GLine class also exports the methods setStartPoint and
setEndPoint, which are illustrated on the next slide.

Setting Points in a GLine

public void run() {
 GLine line = new GLine(0, 0, 100, 100);
 add(line);
 line.setLocation(200, 50);
 line.setStartPoint(200, 150);
 line.setEndPoint(300, 50);
}

LineGeometryExample

The following run method illustrates the difference between the
setLocation method (which moves both points together) and
setStartPoint/setEndPoint (which move only one):

public void run() {
 GLine line = new GLine(0, 0, 100, 100);
 add(line);
 line.setLocation(200, 50);
 line.setStartPoint(200, 150);
 line.setEndPoint(300, 50);
}

The GImage Class
•  The GImage class is used to display an image from a file. The constructor has

the form

new GImage(image file, x, y)

•  When Java executes the constructor, it looks for the file in the current directory
and then in a subdirectory named images.

•  To make sure that your programs will run on a wide variety of platforms, it is best
to use one of the two most common image formats: the Graphical Interchange
Format (GIF) and the Joint Photographic Experts Group (JPEG) format. Typically,
your image file name will end with the suffix .gif for GIF files and
either .jpg or .jpeg for JPEG files.

 where image file is the name of a file containing a stored image and x and y are the
coordinates of the upper left corner of the image.

6

Creating Compound Objects
•  The GCompound class in the acm.graphics package makes it possible

to combine several graphical objects so that the resulting structure behaves as a
single GObject.

•  The easiest way to think about the GCompound class is as a combination of a
GCanvas and a GObject. A GCompound is like a GCanvas in that
you can add objects to it, but it is also like a GObject in that you can add it to
a canvas.

•  As was true in the case of the GPolygon class, a GCompound object has
its own coordinate system that is expressed relative to a reference point. When
you add new objects to the GCompound, you use the local coordinate system
based on the reference point. When you add the GCompound to the canvas as
a whole, all you have to do is set the location of the reference point; the individual
components will automatically appear in the right locations relative to that point.

Creating a Face Object
•  The first example of the GCompound class is the DrawFace program,

which is illustrated at the bottom of this slide.

DrawFace

•  The figure consists of a GOval for the face and each of the eyes, a
GPolygon for the nose, and a GRect for the mouth. These objects, however,
are not added directly to the canvas but to a GCompound that represents the
face as a whole.

•  This primary advantage of using the GCompound strategy is that doing so
allows you to manipulate the face as a unit.

import acm.graphics.*;

/** Defines a compound GFace class */
public class GFace extends GCompound {

/** Creates a new GFace object with the specified dimensions */
 public GFace(double width, double height) {
 head = new GOval(width, height);
 leftEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
 rightEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
 nose = createNose(NOSE_WIDTH * width, NOSE_HEIGHT * height);
 mouth = new GRect(MOUTH_WIDTH * width, MOUTH_HEIGHT * height);
 add(head, 0, 0);
 add(leftEye, 0.25 * width - EYE_WIDTH * width / 2,
 0.25 * height - EYE_HEIGHT * height / 2);
 add(rightEye, 0.75 * width - EYE_WIDTH * width / 2,
 0.25 * height - EYE_HEIGHT * height / 2);
 add(nose, 0.50 * width, 0.50 * height);
 add(mouth, 0.50 * width - MOUTH_WIDTH * width / 2,
 0.75 * height - MOUTH_HEIGHT * height / 2);
 }

The GFace Class

skip code page 1 of 2

import acm.graphics.*;

/** Defines a compound GFace class */
public class GFace extends GCompound {

/** Creates a new GFace object with the specified dimensions */
 public GFace(double width, double height) {
 head = new GOval(width, height);
 leftEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
 rightEye = new GOval(EYE_WIDTH * width, EYE_HEIGHT * height);
 nose = createNose(NOSE_WIDTH * width, NOSE_HEIGHT * height);
 mouth = new GRect(MOUTH_WIDTH * width, MOUTH_HEIGHT * height);
 add(head, 0, 0);
 add(leftEye, 0.25 * width - EYE_WIDTH * width / 2,
 0.25 * height - EYE_HEIGHT * height / 2);
 add(rightEye, 0.75 * width - EYE_WIDTH * width / 2,
 0.25 * height - EYE_HEIGHT * height / 2);
 add(nose, 0.50 * width, 0.50 * height);
 add(mouth, 0.50 * width - MOUTH_WIDTH * width / 2,
 0.75 * height - MOUTH_HEIGHT * height / 2);
 }

/* Creates a triangle for the nose */
 private GPolygon createNose(double width, double height) {
 GPolygon poly = new GPolygon();
 poly.addVertex(0, -height / 2);
 poly.addVertex(width / 2, height / 2);
 poly.addVertex(-width / 2, height / 2);
 return poly;
 }

/* Constants specifying feature size as a fraction of the head size */
 private static final double EYE_WIDTH = 0.15;
 private static final double EYE_HEIGHT = 0.15;
 private static final double NOSE_WIDTH = 0.15;
 private static final double NOSE_HEIGHT = 0.10;
 private static final double MOUTH_WIDTH = 0.50;
 private static final double MOUTH_HEIGHT = 0.03;

/* Private instance variables */
 private GOval head;
 private GOval leftEye, rightEye;
 private GPolygon nose;
 private GRect mouth;
}

The GFace Class

skip code page 2 of 2

Specifying Behavior of a GCompound
•  The GCompound class is useful for defining graphical objects that involve

behavior beyond that common to all GObjects.

public void run() {
 GStoplight stoplight = new GStoplight();
 add(stoplight, getWidth() / 2, getHeight() / 2);
 stoplight.setColor("RED");
}

GStoplightExample

•  The GStoplight on the next slide implements a stoplight object that exports
methods to set and get which lamp is on. The following code illustrates its use:

/**
 * Defines a GObject subclass that displays a stoplight. The
 * state of the stoplight must be one of the Color values RED,
 * YELLOW, or GREEN.
 */
public class GStoplight extends GCompound {

/** Creates a new Stoplight object, which is initially GREEN */
 public GStoplight() {
 GRect frame = new GRect(FRAME_WIDTH, FRAME_HEIGHT);
 frame.setFilled(true);
 frame.setFillColor(Color.GRAY);
 add(frame, -FRAME_WIDTH / 2, -FRAME_HEIGHT / 2);
 double dy = FRAME_HEIGHT / 4 + LAMP_RADIUS / 2;
 redLamp = createFilledCircle(0, -dy, LAMP_RADIUS);
 add(redLamp);
 yellowLamp = createFilledCircle(0, 0, LAMP_RADIUS);
 add(yellowLamp);
 greenLamp = createFilledCircle(0, dy, LAMP_RADIUS);
 add(greenLamp);
 setState(Color.GREEN);
 }

The GStoplight Class

skip code page 1 of 3

7

/**
 * Defines a GObject subclass that displays a stoplight. The
 * state of the stoplight must be one of the Color values RED,
 * YELLOW, or GREEN.
 */
public class GStoplight extends GCompound {

/** Creates a new Stoplight object, which is initially GREEN */
 public GStoplight() {
 GRect frame = new GRect(FRAME_WIDTH, FRAME_HEIGHT);
 frame.setFilled(true);
 frame.setFillColor(Color.GRAY);
 add(frame, -FRAME_WIDTH / 2, -FRAME_HEIGHT / 2);
 double dy = FRAME_HEIGHT / 4 + LAMP_RADIUS / 2;
 redLamp = createFilledCircle(0, -dy, LAMP_RADIUS);
 add(redLamp);
 yellowLamp = createFilledCircle(0, 0, LAMP_RADIUS);
 add(yellowLamp);
 greenLamp = createFilledCircle(0, dy, LAMP_RADIUS);
 add(greenLamp);
 setState(Color.GREEN);
 }

/** Sets the state of the stoplight */
 public void setState(Color color) {
 if (color.equals(Color.RED)) {
 redLamp.setFillColor(Color.RED);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.YELLOW)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.YELLOW);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.GREEN)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GREEN);
 }
 state = color;
 }

/** Returns the current state of the stoplight */
 public Color getState() {
 return state;
 }

The GStoplight Class

skip code page 2 of 3

/** Sets the state of the stoplight */
 public void setState(Color color) {
 if (color.equals(Color.RED)) {
 redLamp.setFillColor(Color.RED);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.YELLOW)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.YELLOW);
 greenLamp.setFillColor(Color.GRAY);
 } else if (color.equals(Color.GREEN)) {
 redLamp.setFillColor(Color.GRAY);
 yellowLamp.setFillColor(Color.GRAY);
 greenLamp.setFillColor(Color.GREEN);
 }
 state = color;
 }

/** Returns the current state of the stoplight */
 public Color getState() {
 return state;
 }

/* Creates a filled circle centered at (x, y) with radius r */
 private GOval createFilledCircle(double x, double y, double r) {
 GOval circle = new GOval(x - r, y - r, 2 * r, 2 * r);
 circle.setFilled(true);
 return circle;
 }

/* Private constants */
 private static final double FRAME_WIDTH = 50;
 private static final double FRAME_HEIGHT = 100;
 private static final double LAMP_RADIUS = 10;

/* Private instance variables */
 private Color state;
 private GOval redLamp;
 private GOval yellowLamp;
 private GOval greenLamp;
}

The GStoplight Class

skip code page 3 of 3

Exercise: Labeled Rectangles
Define a class GLabeledRect that consists of an outlined
rectangle with a label centered inside. Your class should include
constructors that are similar to those for GRect but include an
extra argument for the label. It should also export setLabel,
getLabel, and setFont methods. The following run method
illustrates the use of the class:

public void run() {
 GLabeledRect rect = new GLabeledRect(100, 50, "hello");
 rect.setFont("SansSerif-18");
 add(rect, 150, 50);
}

GLabeledRectExample

hello

/** Defines a graphical object combining a rectangle and a label */
public class GLabeledRect extends GCompound {

/** Creates a new GLabeledRect object */
 public GLabeledRect(int width, int height, String text) {
 frame = new GRect(width, height);
 add(frame);
 label = new GLabel(text);
 add(label);
 recenterLabel();
 }

/** Creates a new GLabeledRect object at a given point */
 public GLabeledRect(int x, int y, int width, int height,
 String text) {
 this(width, height, text);
 setLocation(x, y);
 }

/** Sets the label font */
 public void setFont(String font) {
 label.setFont(font);
 recenterLabel();
 }

Solution: The GLabeledRect Class

skip code page 1 of 2

/** Defines a graphical object combining a rectangle and a label */
public class GLabeledRect extends GCompound {

/** Creates a new GLabeledRect object */
 public GLabeledRect(int width, int height, String text) {
 frame = new GRect(width, height);
 add(frame);
 label = new GLabel(text);
 add(label);
 recenterLabel();
 }

/** Creates a new GLabeledRect object at a given point */
 public GLabeledRect(int x, int y, int width, int height,
 String text) {
 this(width, height, text);
 setLocation(x, y);
 }

/** Sets the label font */
 public void setFont(String font) {
 label.setFont(font);
 recenterLabel();
 }

/** Sets the text of the label */
 public void setLabel(String text) {
 label.setLabel(text);
 recenterLabel();
 }

/** Gets the text of the label */
 public String getLabel() {
 return label.getLabel();
 }

/* Recenters the label in the window */
 private void recenterLabel() {
 double x = (frame.getWidth() - label.getWidth()) / 2;
 double y = (frame.getHeight() + label.getAscent()) / 2;
 label.setLocation(x, y);
 }

/* Private instance variables */
 private GRect frame;
 private GLabel label;
}

Solution: The GLabeledRect Class

skip code page 2 of 2

