
1

1

CS102
Introduction to

data structures, algorithms, and
object-oriented programming

DAY 6

2

Summary of 2/13/17
Objects encapsulate data (instance variables) and
behaviors (instance methods).

The non-static portion of classes describe objects.

Object classes are used to create objects; they are
a blue-print for objects; they have few or no static
members.

The User class below would set the same data in all
objects created from it.

class User {
 public static String name;
 public static int age;
}

3

Object class example
class PlayerData {
 static int playerCount = 0;
 String name;
 int age;

 PlayerData(String name, int age) {
 this.name = name;
 this.age = age;
 playerCount++;
 }

 public static void main(String[] args) {
 PlayerData p1 = new PlayerData("Mac", 24);
 PlayerData p2 = new PlayerData("Cam", 25);
 }
}

p1 and p2 access same copy of playerCount. They each have their
own name and age fields.

4

1.  Declaring a variable of object type does not create an
object.  

2.  In Java, no variable can ever hold an object. A variable
can contain only a reference (pointer or memory address)
to that object.  

3.  Java arguments are "pass by value".  
 
For primitive type variables, the value is just passed as an
argument to the method, the value is not changed in the
calling program.  
 
For object type variables passed into methods, the
address of the object in memory is passed, so the
object's internal state can be permanently changed
within a method (arrays are included as objects).

Very Important Points

5

String ethel = "Ethel";
String fred = "Fred";

To compare these String object, you can't do the following:
 if (ethel == fred) {...}
Objects must be compared using the .equals method (defined for
most built-in classes):
 if (ethel.equals(fred)) {...}

Methods that every new object class should contain:

 public boolean equals(Student other) {
 if (this.name.equals(other.name) &&
 this.age == other.age) {...}}

 public String toString() {
 return "Name is "+this.name+", age is "+this.age;
 }

.equals and .toString methods

6

.equals returns true if the argument pass to it is not equal to
null and is of the same type and has same field values.

 Integer x = 5, y = 10, z = 5;
 Short a = 5;

 System.out.println(x.equals(y)); //?
 System.out.println(x.equals(z)); //?
 System.out.println(x.equals(a)); //?

.equals method

2

7

.toString is used to return the contents of an object's fields
in a String.

It is convenient because if an object does have a toString
method, there is no need to actually call toString inside a
print statement.

.toString method

8

A data structure in which the items are arranged as a 0-
based numeric sequence, so that each individual item can be
referred to by its position number.

All the items in an array must be of the same type, and the
numbering always starts at zero. An array is a list of
variables, each accessible by the array name and position
number of the variable.

An array is, technically, an object, so the process of creating
one requires an instantiation with the keyword new.

arrays § 3.8

9

An array can be of any type and must first be declared:

 String[] name; // declaration of String array
 int[] age; // declaration of int array
 boolean[] leftHanded; // declaration of boolean array

Then the array must be instantiated:

 name = new String[1000]; // each with initial value null
 age = new int[5]; // each with initial value 0
 leftHanded = new boolean[100]; // each is false init

After instantiation, the specified number of boxes will be
created in memory and reserved for that type.

Declaration and instantiation can occur on the same line.

arrays (cont.)

10

String[] name = new String[1000]; // each with initial value null
int[] age = new int[5]; // each with initial value 0
boolean[] leftHanded = new boolean[100]; // each is false init

The new keyword is only used to create new objects and, since it
is used to create an array, it follows that an array is an object.

arrays (cont.)

11

To put values into the array, you use the array name and
position number to store a value of the declared type at that
position:
 name[5] = “Penny”;

The length of a array is stored with the array as a field name
accessible as, for example name.length // notice these are
 age.length // NOT method calls

Having access to the length of every array allows them to be
easily traversed with a for loop to go through each element:

// this for loop prints out all the elements in array age
for (int i = 0; i < age.length; i++) {
 System.out.println(age[i]);
} // end for

arrays (cont.)

12

Arrays are generally processed using for loops. The loop
knows when all the elements are processed because of the
length field stored with each array object.

Eg, Suppose we have an array of Strings called nameList that
contains 10 String objects in positions 0...9. Then the
following for loops are identical in action:

for(int i = 0; i < nameList.length; i++) { // for loop
 System.out.println(nameList[i]);
}

for (String name : nameList) { // for-each loop
 System.out.println(name);
}

arrays (cont.)

3

13

Another way to declare and instantiate an array, if you know
what the values in the array will be, is to enumerate the list
of values in the same statement as the declaration:

 int[] squares = {1, 4, 9, 16, 25, 36, 49};

This enumeration of values can occur only on the same line
as a declaration statement.

arrays (cont.)

14

2-dimensional arrays
Declaration and instantiation example:

 int[][] matrix = new matrix[10][5];

This line would create a matrix with 10 rows and 5 columns,
initially all 0. You would need to add values
for each of the 50 ints in the array

Often printed in nested for loops:

int row, col; // loop-control-variables
for (row = 0; row < 10; row++) {
 for (col = 0; col < 5; col++) {
 System.out.printf("%7d", matrix[row][col]);
 } // end inner for
 System.out.println();
} // end outer for

15

You can also create an enumerated 2D array:

 int[][] squares = {{1, 4, 9},
 {16, 25, 36},
 {49, 64, 81}};

Here, the references
 squares[0][0] is 1

We can print all the elements of a doubly-nested for loop as
shown below:
 for (int i = 0; i < squares.length; i++) {
 for (int j = 0; j < squares[i].length; j++) {
 System.out.print(squares[i][j]);
 }
 }

arrays (cont.)

16

Static Methods
In the Eck book, a function is a method whose job
is to compute and return some value. The return-
type is used to specify the type of value that is
returned by the function.

Static vs non-static methods:

In a running program, a static method is a member
of the class that contains it. A static method is
called on the class name.

A non-static method can be called only on objects
of the class type and the methods are members of
the object

17

Static Methods

A program can contain many methods, but only one
main method.

All methods are contained with a class block and
no method can be written inside another method
(although methods can call each other). Methods
can contain any kind of statement (except package
and import statements.)
General form of method headers:

modifiers return-type methodName (ParType parName) {
{
 statements
}

18

Parameter lists

Parameters are part of the interface of a method. They
contain information that is used inside when the method
is called.

Parameters are not given values until the method
is called and arguments are passed into the
method.

Unlike variables created outside a method, the
variables contained within the parameter list must
each have its type specified and each TypeName
varName must be separated by commas.

4

19

Calling Methods
The syntax for calling any method that exists
inside the same class as the method that is calling
it from a non-static context is as follows:

 methodName(argument(s));

The syntax for calling a static method in the same
or another class is:

 ClassName.methodName(argument(s));

If the method returns a value, you should declare a
variable to hold that value, use it as an argument
to a method, or use it as part of an expression.

20

General Rule of Java Program Structure

Methods are never written inside methods (unlike
the local special form in Racket). But methods can
call other methods.

Methods can have any number of parameters,
including 0.

The first line of a method the method header or
signature, e.g.

modifiers return-type subroutine-name (parameter-list)

21

General Rule of Java Program Structure

The method and the parameter list is called the
method signature. As we discussed in the last
class, we can OVERLOAD methods by writing many
methods with the same name in a class, but each
must have a unique parameter list.

subroutine-name (parameter-list)

22

Variable types
Local variables are those declared inside a method.

Global variables are declared inside a class and are
called member variables or fields.

Global variables can be static, meaning they are
used in expressions following the class name.

Global variables are assigned a default value.

Local variables are not assigned a default value and
must be initialized before being used in an
expression.

23

Returning values from a Method
The author of our text calls methods that return a value
functions. These methods must have a return type that is
not void.

You need to explicitly return a value of the type given in the
method header line.
 return expression;

Only one value can be returned in a return statement.
Executing a return statement breaks out of the method and
returns control to the statement that called the method.

You can include more than one return statement inside a
method, but there must be a return statement on each
branch of execution.

The return type must match the type given in the method
header.

24

Method Contracts

Prior to writing each method, you should write a
comment, or contract, to explain what the method
does and any assumptions about parameters.

Parameters can be of any type, including arrays.
String[] names ={Gerry, Roger, Helen, Ann};
countLetters(names);

static int countLetters(String[] noms) {
 int count = 0;
 for (int i = 0; i < noms.length; i++) {
 <add code here to count letters>
 <add statement here to return count>
 }
}

5

25

Write a method to return the
reverse of a String

Since Strings are numbered like arrays, and
because the String class has a function length(), it
is easy to use a for loop to build and return the
String in reverse.

(in class exercise)

Convert the method to a palindrome checker.

