
1

1

CS102

Introduction to
data structures, algorithms,

and object-oriented
programming

April 10th, 2017

File Input & Output (File I/O)
•  File I/O in Java can be accomplished by using one of many

built-in Java classes imported from java.io.*
–  Reading input from a file:

•  BufferedReader inFile = new BufferedReader(new
 FileReader("input.dat"));

Function: Reads text as a stream of characters from input.dat.

– Writing output to a file:
•  PrintWriter outFile = new PrintWriter(new
 FileWriter("output.dat"));

Function: Prints formatted representations of objects to text
output stream, output.dat.

File I/O Exceptions
•  Doing any file operations requires the programmer to

either���

1.  use a try/catch block around every opening of a file
and every read from the file���

2.  write a throws clause on every method in the call
stack up to and including the main method.���

3.  Exception is very high level, so it can be used for
IOExceptions and FileNotFoundExceptions.

String.split method
•  The StringTokenizer class allows an application to break a string

into tokens and, at one time, was the favored way to parse a string
into whitespace-delimited words.

•  But, StringTokenizer has been deprecated in favor of using the split
method of the String class.

•  StringTokenizer still works for the sake of "backwards
compatibity", but you should learn to use the String.split method to
stay current.

String.split("")
•  The split method of the String class allows you to get the same result

as the StringTokenizer (with a little more work).���

•  The "\\s" says to split the string by whitespace. Split returns an array
of Strings.���

•  The array of Strings called result (shown below) will contain an array
of Strings after this code is run, with result[0]="this", result[1]="is",
result[2]="a", and result[3]="test".

 String[] result = "this is a test".split("\\s");
 for (int x=0; x < result.length; x++) {
 System.out.println(result[x]);
 }

 1. import java.io.*;
 2. public class TestReadWriteSplit {
 3. public static void main (String[] args) throws Exception{
 4. BufferedReader fileIn = new BufferedReader
 (new FileReader("in.txt"));
 5. PrintWriter outFile = new PrintWriter
 (new FileWriter ("out.txt"));
 6. String line;
 7. String[] token;
 8. while ((line = fileIn.readLine()) != null) {
 9. token = line.replaceAll("[^a-zA-Z]","")
 .toLowerCase().split("\\s+");
10. String lcString = "";
11. for(int i = 0; i < token.length; i++) {
12. lcString += token[i];
13. }
14. outFile.println(lcString);
15. }
16. fileIn.close();
17. outFile.close();
18. }
19. }

Using "hard-coded" strings for file names

Hard coding is considered very poor style.

2

Reading Command-Line Arguments
•  Command-line arguments are read through the main method's

array of Strings parameter, usually called args (or whatever
you call this parameter to main).���

IMPORTANT: You must have a non-empty file in the
same directory as the TestReadWriteSplit.class file called
"in.txt" when you run this program!! Also, any file called
"out.txt" in the current directory will be overwritten.

 All I/O files should be closed when you are done with them.

Reading Command-Line Arguments
•  In the version of the TestReadWriteSplit program on the next

slide, suppose args[0] = "input.txt" and args[1] = "output.txt"
during execution of the program.���

•  You can run this file in the Interactions window of DrJava
(after it compiles with no syntax errors) by typing:

���
 java TestReadWriteSplit input.txt output.txt

•  Before this will work, you need to create a non-empty file in
the same directory as your Java program called "input.txt". If
you have any file in the directory that is already called
"output.txt", its contents will be overwritten.

 1. import java.io.*;
 2. public class TestReadWriteSplit {
 3. public static void main (String[] args) throws Exception{
 4. BufferedReader fileIn = new BufferedReader
 (new FileReader(args[0]));
 5. PrintWriter outFile = new PrintWriter
 (new FileWriter (args[1]));
 6. String line;
 7. String[] token;
 8. while ((line = fileIn.readLine()) != null) {
 9. token = line.replaceAll("[^a-zA-Z]","")
 .toLowerCase().split("\\s+");
10. String lcString = "";
11. for(int i = 0; i < token.length; i++) {
12. lcString += token[i];
13. }
14. outFile.println(lcString);
15. }
16. fileIn.close();
17. outFile.close();
18. }
19. }

Reading Command-Line Arguments

10

Review of Swing Components
•  JButton:

Constructor takes String parameter which is text on button
Generates ActionEvent when button clicked
Registration of Listener – addActionListener in constructor
Events: can call getActionCommand or getSource() on event
Changes: can setText to be different, can disable button

•  JLabel:
Constructor takes String which is text written
No events generated
Changes: can setText to be different
Can hold images instead of just text.

•  JTextField:
Constructor takes int which is preferred number of characters,
 String, String and int, or nothing
Generates an ActionEvent when return is pressed
Changes: can setText to be different

11

Swing Components
•  JPanel: fundamental class in Swing. ���
���
The basic JPanel is just a blank rectangle. There are at least two
different ways to make use of a JPanel:
1.  add other components to the panel
2.  draw something in the panel. ���

JPanels can be used as drawing surfaces:
1) define a class that is a subclass of JPanel and
2) write a paintComponent method in that class to draw the desired
 content in the panel. Defining this method is overriding the
 method of the same name in the superclass, so the first line must
 call super.paintComponent();

12

Class Exercise
•  Create a GUI that has a single square JButton in the exact

center of the window. When clicked by user, the
background color of this JPanel turns red.���
���
After class, see CenterButton.java ���

•  Go over lab 8 – writing the program of assignment 5.

3

Mouse Events

•  Mouse events require 2 different interface
implementations, depending on what you want to do

•  The simplest mouse events are defined in the MouseListener interface:
public void mousePressed(MouseEvent evt);
public void mouseReleased(MouseEvent evt);
public void mouseClicked(MouseEvent evt);
public void mouseEntered(MouseEvent evt);
public void mouseExited(MouseEvent evt);

•  The second type of mouse listener is the
MouseMotionListener interface:
public void mouseDragged(MouseEvent evt);
public void mouseMoved(MouseEvent evt);

4 Steps of Event Handling

Four Steps of Mouse Event Handling
1.  import java.awt.event.*
2.  "implements MouseListener"
3.  define the event-handling methods
4.  addMouseListener to appropriate

components

Four Steps of ActionEvent Handling
1.  import java.awt.event.*
2.  have "implements ActionListener"
3.  define the event-handling methods
4.  addActionListener to appropriate

components

Rule of Drawing

In real-life programming of drawing applications, many
people (including the author of our book) violate this rule by
obtaining the Graphics content (if class extends JPanel) like
so:
Graphics g = getGraphics(); // Graphics context for drawing directly
out of any method in the class, not just the paintComponent method.

If you do use the above command to access a Graphics component,
you need to use g.dispose() in the method before it ends.

Drawing rule: (often violated) all drawing shall
henceforth and forever be done in a paintComponent()
method.

private static class RepaintOnClick implements MouseListener {

 public void mousePressed(MouseEvent evt) {
 Component source = (Component)evt.getSource();
 source.repaint();
 }

 public void mouseClicked(MouseEvent evt) { }
 public void mouseReleased(MouseEvent evt) { }
 public void mouseEntered(MouseEvent evt) { }
 public void mouseExited(MouseEvent evt) { }

 }

What if I don’t want to use ALL the
MouseListener methods?

You either need to put in empty method bodies for each event
or…

private static class RepaintOnClick extends MouseAdapter
 implements MouseListener
{

 public void mousePressed(MouseEvent evt) {
 Component source = (Component)evt.getSource();
 source.repaint();
 }

 }

What if I don’t want to use ALL the
MouseListener methods?

Use the MouseAdapter class, which fills the mouse methods
in for you behind the scenes. Note: MouseAdapter is a class,
not an interface. Also note: anonymous inner classes don’t
have to be of interface type. They can also be a class type.

18

Drawing in GUIs (cont)

•  The paintComponent method is only called once by the
system. If you want to re-call it, use the “repaint()” method.���

•  To set the color of text, use name.setForeground(Color). This
can be called on any component.���

•  The shapes you can draw are listed in our on-line textbook, in
section 6.2.4.

•  In a Graphics context, you need to do
 g.setColor(Color.BLUE); // or some other color
 before you draw the object. It can only be set to one color at
 a time.

4

19

Limitations of JPanels

•  A JPanel is not a component that can be displayed on its own.
That’s why I created the main method in SimpleDraw…to call
the zero-parameter constructor of SimpleDraw and create a
JFrame to hold the components, including the JPanel.

•  Notice that the JFrame and the constructor have no connection
to the JPanel where the drawing takes place, but they can
occupy the same space.

20

Adding KeyListeners

•  public void keyPressed(KeyEvent evt);
•  public void keyReleased(KeyEvent evt);
•  public void keyTyped(KeyEvent evt);

