
1

1

CS102

Introduction to
data structures, algorithms,

and object-oriented
programming

April 17th, 2017

Preview of Lab 9
•  Using 2-D arrays to represent matrixes. Write methods to

do matrix operations.

•  The operations will be explained...there is no need for you
to know linear algebra.���
���

You will also need to write your own Exception classes for
the lab.

public class MatrixUndefinedException extends Exception {
 public MatrixUndefinedException(String message) {
 super(message);
 }
}

Parameterized types
•  We've already seen the ArrayList and Stack types, in which

the object to be held in the collection are given in "diamond
braces" when the type is declared.���

•  One of the reasons wrapper classes were created is so
primitive types could be stored in object containers by using
their object-wrapper types.���

•  An ArrayList<JComponent> can hold objects of type JButton,
JPanel, JTextField or any other subclass of JComponent.���

•  If you look up a parameterized type in the java api, they
appear like ArrayList<T>. When T is specified, the compiler
ensures that only objects of type T are added.

Methods of the ArrayList class
An ArrayList is also known as a "dynamic array" because it
allows constant time random access while at the same time it
requires no initial size when instantiated.���
���
Methods:
size(), add(obj), get(N), set(N, obj), remove(N), remove(obj),
indexOf(obj), contains(obj).

You can also use the ArrayList as a non-parameterized type, but
that is assumed to be ArrayList<Object>, so what does that mean
for elements removed from this ArrayList?

Java Collections Framework
List<T> interface:
 implemented by classes ArrayList<T>, LinkedList<T>

Vector<T> class:
 extended by the Stack<T> class

Queue<T> interface:
 implemented by class PriorityQueue<T>

Interfaces are also provided for Double-Ended Queue<>, Set<>,
and Map<T>

Auto-boxing and unboxing

Using a parameterized type such as <Integer> or <Double>, you
can insert values of type int or double into the collection. This is
known as "auto-boxing", because the int is automatically
converted to an Integer (same with double to Double and char to
Character).

When removing or getting a wrapper type out of a parameterized
type, the actual primitive type is returned, a process known as
"auto-unboxing".

2

Vectors
Also a parameterized type like ArrayList, but methods are not all
the same as ArrayList. This type was around before any of the
other parameterized types were developed (I think).

When removing or getting a wrapper type out of a parameterized
type, the actual primitive type is returned, a process known as
"auto-unboxing".

Methods:
elementAt(N), setElementAt(obj,N), addElement(obj), setSize()

Searching and Sorting

Simplest form of searching algorithm?

Binary search for an element J works on an already sorted list,
looking first at the middle element of J and then concentrates on
the first part and the last part of J recursively.

Sorting Algorithms

Insertion sort: Maintains the invariant that on iteration i, the i
smallest elements are in positions 0...i, they are the elements that
were originally in position 0...i, and they are in ascending sorted
order.

Keeps first i positions of array sorted and inserts element i+1 into
its sorted place in that order.

This is an in-place algorithm because it uses only a constant time
extra space besides that needed to store the array.

Sorting Algorithms

Selection sort: Starts at the first element of the array, moves
toward the end of the array, and move the biggest element to the
end of the array.

Maintains the invariant that, in iteration i, the i largest elements
are in their final sorted position at the right end of the array.

This is an in-place algorithm because it uses only a constant time
extra space besides that needed to store the array.

However, the running time of selection sort for an input set is
size n is always quadratic in n (O(n2))

Unsorting

Start by swapping the rightmost element with a randomly chosen
element from the left end of the array.

Decrement the swapped position and continue.

Since every time the element chosen is at random, the list will
become unsorted.

Like shuffling a deck of cards.

12

Two-Dimensional Arrays
•  Declared as:

 int[][] multTable = new int[rows][cols];

•  Like all arrays, the size is fixed and must be set when the
array is instantiated:���
���
 multTable = new int[9][9];

 for (int i = 1; i < int.length; i++) {
 for (int j = 1; j < int[i].length; j++) {
 multTable[i][j] = i * j;
 }
 }

3

13

Initializers for Two-Dimensional Arrays
•  Declared as:

 int[][] A = { { 1, 0,12,-1},

 { 7,-4,11,6},
 {-5,-2, 2,-3}
 };

•  Separates the elements in each row by commas, and separates the

rows by commas. Each row is in a pair of braces and the entire 2-D
array is within a pair of enclosing braces.

•  When processing a 2-D array, you should never assume that all the
rows are of the same length. If you use the notation arr[i].length on
the inside for loop you will be sure not to make an exception arise.

14

Two-Dimensional Arrays

•  Not to be confused with parallel arrays.���
���
parallel arrays are arrays of the same size that are processed
together.

"Ragged arrays" occur when each row of the array may have a
unequal number of columns

triangularArray = new double[4][];
 for (int i=0; i < 4; i++) {
 triangularArray = new double[i + 1];
 }

15

Representation of Graphs
A graph G = (V, E) is a data structure composed of vertexes and
edges. Each element of the vertex set V holds some unique key
that distinguishes it from all others. The edges of the edge set E
are specified by pairs, indicating the start and end vertex of each
edge.

Graphs are used for many applications such as:
•  Modeling computer networks, airplane routes, roads, neural

pathways in the brain, etc.

But how can a computer recognize a graph?

