
1

Introduction to
data structures, algorithms,

and object-oriented
programming

 CS102 Writing a Java Application

STEP 1:
•  Create a file containing one or more class definitions.

–  main body of program starts “public class ClassName”, where
–  all code is written within class body, delimited by braces.
–  the prefix of the file name must be the same as class name

inside the file.

NOTE:
•  Several classes may combine to form a complete program (called an

application) but at least one class per application must contain the main
method. Execution always starts at the main method of whatever class is
being run.

STEP 2:
•  Compile the program in whatever IDE or operating system you

are using:
–  translates code into Java Byte Code

–  byte code is stored in file with suffix “.class”

STEP 3:
•  Run the code in whatever IDE or operating system you are using.

-  Never need to type “.class” suffix, but that is really what is used.

 Writing a Java Application Java features

Java is:
•  class-based
•  object-oriented
•  platform independent (portable)
•  concurrent via multi-threading
•  both compiled and interpreted

 Scheme features

Scheme is:
•  function-based
•  object-oriented in a limited way
•  optimized for recursion
•  interpreted line by line for speedier execution
•  simple syntax based on algebraic formulas

Input
HelloWorld.class

+ command line data if
needed

Output

Compile the program

Java Compiler

Java Virtual
Machine
Interpreter

Run the program

HelloWorld.java Your code file
completed.

Compiler outputHelloWorld.class

Correct syntax errors

Correct logic errors

 Java coding cycle

2

Compile and run a Java
application file at command line $

$ ls

HelloWorld.java

$ javac HelloWorld.java

$ ls

HelloWorld.class
HelloWorld.java

$ java HelloWorld

Hello World!

$

Command
Line Prompt

Command typed

List files in current directory

Compile HelloWorld.java

List files in current directory

Run HelloWorld.class

Computer
response

 HelloWorld.java

/**

 * The HelloWorld class implements an application that

 * simply displays "Hello World!" to the standard output.

 */

public class HelloWorld

{

 public static void main(String[] args)

 {

 // Print out a greeting message.

 System.out.println("Hello World!");

 }

}

Comment describing class

Comment

Class
Name Method

Name

Class
Name

Class
Variable

Method
Name

Method
Parameter

Class
Definition

 HelloWorld.java
/**

 * HelloWorld with main method that calls static method.

 */

public class HelloWorld

{

 public static void main(String[] args)

 {

 greeting(); // call to greeting method

 }

 public static void greeting() {

 // Print out a greeting message.

 System.out.println("Hello World!");

 }

}

 Scheme/Racket hello-world

// Thee hello-world class displays "Hello
// World!" to the standard output.

(define (hello-world)

 (printf "Hello world!~%")

)

Java Programs
•  Classes are intended to be definitions for data

types, sort of like structs in Racket.

The 3 biggest obstacles to new Java programmers:

1.  Much of basic code uses high-level concepts

2.  Input and output syntax is confusing and verbose

3.  Graphics programs are unintuitive

Java Programs

Like Scheme files, libraries of code can be accessed
for different tasks in Java.

Java uses a class inheritance mechanism to allow
code written in ancestor classes to be used and
refined in descendant classes.

3

 NetBeans IDE

DrRacket or DrScheme were IDEs you used to create and
run your programs in 101.

There are many different IDEs for Java. We will use the
NetBeans and DrJave IDEs. These IDEs are free to
download and come packaged with the necessary Java
Developer’s Kit and the JVM.

If you don’t have a CS account, see Jerry, our system
administrator (SP307) and let your professor know.

A Java program (i.e., class) is either:

1.  a library of static methods (functions) that may return

values or just have side effects (like Scheme); or
2.  a data type definition used for creation of objects; or
3.  both

There is one static method that must be included in every
set of Java programs: the main method.

Each program starts execution at a method with the
following signature:

public static void main(String[] args){…}

 Styles of Java Programs

 Comparison of Racket and Java

Write function to compute interest in Scheme and show
same method in Java. DONE

Write function that consumes an integer score and
calculates a grade in Scheme and show same method in
Java. NOT DONE

Write function to calculate the factorial and show same
method in Java. NOT DONE

One difference is that Java functions (called methods)
don't run on their own. They must be defined in a class.

 Scheme/Racket program
(define interest-calculator

 (lambda ()

 (local

 ((define principal 17000)

 (define rate 0.027)

 (define interest 0))

 (begin

 (set! interest (* principal rate))

 (set! principal (+ principal interest)

 (printf "The interest earned is $~a\n"

 interest)

 (printf "The value of the investment

 after one year is $~a\n" principal)

))))

public class InterestCalculator { // class declaration line

 public static void main(String[] args) { //main method start
 double principal; // The value of the investment.
 double rate; // The annual interest rate.
 double interest; // Interest earned in one year.

 principal = 17000;
 rate = 0.027;

 interest = principal * rate; // Compute and initialize the interest.

 principal = principal + interest;

 System.out.print("The interest earned is $");
 System.out.println(interest);
 System.out.print("The value of the investment after one year is $");
 System.out.println(principal);

 } // end of main
} // end of class InterestCalculator

 Java program

