
1

Statements:
a.  package inclusion,
b.  import existing packages,
c.  variable declarations, initializations, and

instantiations
d.  assignments (z = y),
e.  conditionals (if, else), switch
f.  loops (for, while, do-while)
g.  flow of control modifiers (break, continue),
h.  method calls,
i.  method returns.

Items a and b occur before class definition. Items c
through i can occur only within class {}s

package example;

import java.util.*;

public class Example{

 <global variable/constant definitions>

 <method definitions> (){
 <local variable definitions>
 }
 <etc…>
}

import statements make
use of Java libraries
easier

package statement joins
classes in a single
application. Not required.

A Java package is a compressed collection of classes. You
need to know the package a class is written in before you
can use the class.

So how do you find the package that contains a particular
class, e.g. String, Color, Scanner?

You could spend hours going through the java API, but an
easier way to find the documentation is searching for the
class name in a browser: Scanner java API
 Choose link from docs.oracle.com

You can even look up methods this way:
 parseInt java API

There is a package called java.lang that you never have to
import because it is imported automatically.

This package provides fundamental classes in the Java
programming language.

java.lang contains many of the most commonly used classes
such as System, String, Object (the root of the class
hierarchy), and many more.

Data types come in two main categories:

primitive types: part of the formal syntax of Java:
- they evaluate only to themselves (literals)
- they each have a set of operations that can be used on
 variables and literals of the type

reference types: created from classes written by you and
those that are available in Java libraries:
- data of reference type are known as objects
- objects are created using the keyword "new"
- objects have instance variables (state) and instance
 methods (behaviors)

2

Classes, variables, methods, and constants are each identifiers
named according to programmer conventions:

•  Class names should start with a capital letter and all multiple-

word class names should start each word with a capital letter.

•  Variable and method names start with lowercase and if they

have multiple words, the start of each word except the first
should be capitalized.

•  Constant names should be written in all capital letters, with
words separated by _ (underscore).

•  Keywords and package names are all lowercase.

1.  Names can contain alpha characters, numbers, $, and _

2.  Names cannot start with a number.

The compiler checks for violations of naming rules.

A data type is a set of literal values and a set of operations
on those values.

There are four primitive data types that can be considered
the basis of the Java language:

1.  Integers, with arithmetic operators (int)
2.  Real numbers, with arithmetic operators (double)
3.  Booleans, with logical operators (boolean)
4.  Characters, alphanumeric symbols inside 's (char)

Strings, anything written inside "s (String)

Strings are not actually a primitive type, but they are used
like a primitive type. String is a class, with its own methods.

Each primitive data type has an associated reference type
defined in the java libraries. These classes provide methods
to convert primitives into objects and objects into primitives.

The wrapper classes include:

1.  Integer
2.  Double
3.  Boolean
4.  Character

Type Memory Smallest Largest

byte 8 Bits -128 127
short 16 Bits -32768 32767
int 32 Bits -2147483648 2147483647
long 64 Bits ≈ -9.2*1018 ≈ 9.2*1018

float 32 Bits ≈ ±1.4*10-45 ≈ ±3.4*1038

double 64 Bits ≈ ±4.9*10-324 ≈ ±1.8*10308

char 16 Bits NA NA
boolean 8 Bits NA NA

Reference types are created by declaring a variable with a
class name. For example:

To create an object of type Man, either in the main method
of this class or from another class, use this syntax:

 Man perry = new Man();

import java.awt.*; // package needed for Color class

public class Man {
 // declaration and initialization of instance variables
 static Color skinColor = Color.BLUE; // class variable
 static Color shoeColor = Color.BLACK; // class variable

 Color shirtColor, pantsColor; // declaration of instance variables
 double shoeSize; }

3

A Java program (i.e., class) is either:

1.  a library of static methods (functions) that may return

values or just have side effects (like Scheme); or

2.  a data type definition: a template for creation of objects.

There is one static method that must be included in every
Java application: the main method. Each application starts
execution at a method with the following signature:

public static void main(String[] args){…}

Reference types can contain data stored in fields and
method definitions that can be called on objects of the type.

import java.awt.*; // Needed for Color class

public class Man {
 static Color skinColor = Color.BLUE; // class variable
 static Color shoeColor = Color.BLACK; // class variable

 Color shirtColor, pantsColor; // object instance variables
 double shoeSize; // primitive instance variable

 public void setColors(Color shirt, Color pants, double size) {
 // instance method

 shirtColor = shirt;
 pantsColor = pants;

 shoeSize = size;
 }}

Definition of instance
method returning void. This
method sets the values of 3
instance variables

Java is a strongly typed language, meaning that all
variables must be declared as a particular type before
they can be used in an expression.

Variables declared inside a method block are called
"local variables". Those outside a method block are
"global variables".

To use the integer variable num as either a global or
local variable, the use must be preceded by the
declaration
 int num; // declares num as integer
 num = 15; // initializes value of num
or
 int num = 15; // all on one line

skinColor: __BLUE__

shirtColor: _________

pantsColor: _________

shoeSize: _________

shoeColor: __BLACK__

Example:

Class

Man

Instances

of Man type

a.k.a. Objects

Form of main method signature:

 public static void main(String[] args)

The main method is the single starting point of execution;
other methods must be called on some trail starting from the
main method.

The first line of a method is called the signature. The
signature tells the programmer what they need to know to
use the method, including a list of comma separated type
name pair parameters in parenthesis. Methods always
contain code inside a set of {}s.

Examples of static method signatures:
 public static int getNumTicketsSold(TicketBox tb)

 public static boolean spellCheck(String word)
 public static void printVars(int a, double b, String c)

Global variables (fields) can also be declared static:

 public static Color skinColor = Color.BLUE;
 public static Color shoeColor = Color.BLACK;

Static methods and fields belong to the entire class and are
accessed through the class name when used by other
classes. Static fields are the same in all objects made from
the class.

4

Forms of non-static method signatures:
 public int getAge(Man guy)

 public boolean spellCheck(String word)
 public void printVars()

Global variables (fields) can also be declared non-static, in
which case, each object can have unique values for those
fields:

 public Color shirtColor;
 public Color pantsColor;
 public int shoeSize;

Lack of keyword “static” means method/field belongs to an object
created from the class by using the keyword “new”.

abstract double int super
assert else interface switch
boolean enum long synchronized
break extends native this
byte final new throw
case finally package throws
char float private transient
catch for protected try
class if public void
continue implements return volatile
default import short while
do instanceof static

abstract double int super
assert else interface switch
boolean enum long
break extends this
byte final new throw

package throws
char float private
catch for protected try
class if public void
continue implements return

import short while
do instanceof static

double int super
else interface switch

boolean
break extends this

final new throw
package throws

char private
catch for try
class if public void

implements return
import while
instanceof static

Objects of class type must also be declared before they
are instantiated (can be on the same line)

 Man bobby = new Man();

new is keyword that calls a special part of each class
called the constructor.

The main purpose of a constructor is to set values of
instance variables (but they can have other executable
code inside too). Constructors always have the same
name as the class they are written in and they have no
return value.

Variables can also be declared inside the class braces,
but outside any methods.

These are “global” or “class variables”, accessible in any
method of the class.

Class variables are defined for the entire class.

Class variable declaration can specify a variable is static
(the same for all objects of the class)

 static int i = 12;

5

A primitive variable name is actually a memory location.
The value you assign to that name becomes the content
of that memory location.

For example, after declaring the integer i, you could
assign a value (sometimes a literal, sometimes an
expression) to i as follows: i = 5;

You can also combine declaration and initialization on
one line as follows:
 String name = "Nancy";

Numeric literals are discussed in Eck, Sect 2.2.3. We will
use primarily integers and doubles.

Character literals are written between apostrophes:
 ‘A’ , ‘b’, ‘\n’ etc.

String literals are character enclosed in “”s.

true and false are boolean literals.

Calling a function. A method call always has the form:

 methodName(comma-separated argument list);

The line
 System.out.println(“Hello World”);
 // is a call to the println method of System.out

For example, let’s look at a Java program.

Methods that return a non-void type must contain 1 or
more return statements:
 public class MethodExample{
 public static void main (String[] args) {
 int num = 17;
 System.out.println(“num cubed is ” + cube(num));
 }

 public static int cube(int n) {

 return (n * n * n);
 }
}

Notice that the cube method is declared static, like main. This means that the
cube method is a class method. It must be called on the class name using the .
(“dot” or selection) operator: MethodExample.cube(num).

In the same class, there is no need for the class name before the method call

definition of static
method returning an
integer

call of cube method
passing in integer

In order for the static method main to call a non-static (instance)
method, it must create an object of the class type to call the
method on.
public class MethodExample{

 public static void main (String[] args) {
 int num = 17;

MethodExample methodCube = new MethodExample();
 System.out.println(“num cubed is ” + methodCube.cube(num));
 }

 public int cube(int n) {

 return (n * n * n);
 }
}

Notice that the cube method is not declared static. This means that the
cube method is an instance method, which means that it must be called on an
object of type MethodExample.

definition of
instance method
returning an integer

call of cube method
passing in integer

declaration and
instantiation of
MethodExample object

