
1 

Comments about Lab 11 

Start of Breakout game 

2 

Start Final Project 

n  Differences between graphics in acm package and normal 
graphics from javax.swing: 
n  import acm.graphics.*, acm.program.*, 
java.awt.*, java.awt.event.*, and 
acm.util.* 

n  In main, create object  obj of the class type and call 
obj.start() 

n  The start method invokes a call to the run method of the 
program. 

n  Use an object of the RandomGenerator class to generate 
random numbers 

3 

Start Final Project 

n  Differences between graphics in acm package and normal 
graphics from javax.swing: 
n  No need to implement any listeners; for example, just use 

call to addMouseListeners and then add the mouse 
response methods you need. 

n  Can add a component, use the method waitForClick(), and 
then remove message.  All GObjects can be added and 
removed using add and remove 

n  Uses a loop to move, pause, and move again instead of a 
Timer 

n  Easier to detect collisions between any two GObjects, 
returning the GObject in collision. 

Comparable and Comparator 

Nuts and Bolts 

5 

Nuts and bolts 

n  Four methods underlie many of Java's important Collection 
types: equals, compare, compareTo, and hashCode 
n  To put your own objects into a Collection, you need to ensure that these 

methods are defined properly 
n  Any collection with some sort of membership test uses equals (which, in 

many cases, defaults to ==) 
n  Any collection that depends on sorting requires larger/equal/smaller 

comparisons (compare or compareTo) 
 

n  Some of Java’s classes, such as String, already define all of 
these properly for you 
n  For your own objects, you have to do it yourself 

6 

Comparing our own objects 

n  The Object class provides public boolean 
equals(Object obj) and public int hashCode() 
methods 
n  For objects that we define, the inherited equals method 

uses the object's address in memory 
n  We can (and often should) override this method 

 
n  The Object class does not provide any methods 

for “less” or “greater”—however, 
n  There is a Comparable interface in java.lang 
n  There is a Comparator interface in java.util 



2 

7 

Outline of a Student class 
public class Student implements Comparable { 

 
 public Student(String name, int score) {...} 
 
 public int compareTo(Object o) 

  throws ClassCastException {...} 
 
 public static void main(String args[]) {...} 

} 

8 

Constructor for Student 

n  public Student(String name, int score) { 
 this.name = name; 
 this.score = score; 

} 
n  We will be sorting students according to their 

score 
n  This example will use sets, but that's irrelevant—

comparisons happen between two objects, 
whatever kind of collection they may or may not 
be in 

9 

The main method, version 1 
   public static void main(String args[]) { 

     TreeSet<Student> set = new TreeSet<Student>(); 
         
     set.add(new Student("Ann", 87)); 
     set.add(new Student("Bob", 83)); 
     set.add(new Student("Cat", 99)); 
     set.add(new Student("Dan", 25)); 
     set.add(new Student("Eve", 76)); 
 
     Iterator<Student> iter = set.iterator(); 
     while (iter.hasNext()) { 
        Student s = iter.next(); 
        System.out.println(s.name + "  " + s.score); 
     } 
} 

10 

Using the TreeSet 

n  In the main method we have the line 
  TreeSet set = new TreeSet(); 

n  Later we use an iterator to print out the values in order, 
and get the following result: 

   Dan  25 
Eve  76 
Bob  83 
Ann  87 
Cat  99 

n  How did the iterator know that it should sort Students 
by score, rather than, say, by name? 

11 

Implementing Comparable<T> 
n  public class Student implements Comparable 
n  This means it must implement the method 

 public int compareTo(Object o) 

n  Notice that the parameter is an Object 
n  In order to implement this interface, our parameter must also be 

an Object 
n  public int compareTo(Object o) throws ClassCastException { 

   if (o instanceof Student) 
      return score - ((Student)o).score; 
   else 
      throw new ClassCastException("Not a Student!"); 
} 

n  A ClassCastException should be thrown if we are given a non-
Student parameter 

12 

An improved method 

n  Since casting an arbitrary Object to a Student may throw a 
classCastException for us, we don't need to throw it 
explicitly: 
 

n  public int compareTo(Object o) throws ClassCastException { 
    return score - ((Student)o).score; 
} 

n  Moreover, since classCastException is a subclass of 
RuntimeException, we don’t even need to declare that we 
might throw one: 
 

n  public int compareTo(Object o) { 
    return score - ((Student)o).score; 
} 



3 

13 

Using a separate Comparator 

n  In the program we just finished, Student 
implemented Comparable  
n  Therefore, it had a compareTo method 

 
n  We could sort students only by their score 

 
n  If we wanted to sort students another way, such 

as by name, we are out of luck 

14 

Using a separate Comparator 

n  Now we will put the comparison method in a 
separate class that implements Comparator instead 
of Comparable 
n  This is more flexible (you can use a different 

Comparator to sort Students by name or by score) 
n  Comparator is in java.util, not java.lang 
n  Comparable requires a definition of compareTo but 

Comparator requires a definition of compare  
n  Comparator also (sort of) requires equals 

15 

Outline of StudentComparator 

   import java.util.*; 

   public class StudentComparator 
   implements Comparator<Student> { 

 
        public int compare(Student s1, Student s2) {...} 

  
        public boolean equals(Object o1) {...} 

} 
 

n  Note: When we are using this Comparator, we don't need 
the compareTo method in the Student class 

n  Because of generics, our compare method can take 
Student arguments instead of just Object arguments 

16 

The compare method 
   public int compare(Student  s1, Student s2) { 

        return s1.score – s2.score; 
} 
 

n  This differs from compareTo(Object o) in 
Comparable in these ways: 
n  The name is different 
n  It takes both objects as parameters, not just one 
n  We have to either use generics, or check the type of both 

objects 
n  If our parameters are Objects, they have to be cast to 

Students 

18 

The main method 

n  The main method is just like before, except that 
instead of 
 
   TreeSet<Student> set = new TreeSet<Student>(); 
 
We have 
 
  Comparator<Student> comp = new StudentComparator(); 
  TreeSet<Student> set = new TreeSet<Student>(comp); 

19 

When to use each 

n  The Comparable interface is simpler and less work 
n  Your class implements Comparable 
n  You provide a public int compareTo(Object o) method 
n  Use no argument in your TreeSet or TreeMap constructor 
n  You will use the same comparison method every time 

n  The Comparator interface is more flexible but slightly 
more work 
n  Create as many different classes that implement Comparator 

as you like 
n  You can sort the TreeSet or TreeMap differently with each 

n  Construct TreeSet or TreeMap using the comparator you want 
n  For example, sort Students by score or by name 



4 

20 

Sorting differently 

n  Suppose you have students sorted by score in a TreeSet you call 
studentsByScore 

n  Now you want to sort them again, this time by name 
 

   Comparator<Student> myStudentNameComparator = 
           new MyStudentNameComparator(); 
 

   TreeSet studentsByName = 
    new TreeSet(myStudentNameComparator); 

 
   studentsByName.addAll(studentsByScore); 


