
1

1

CS102

Introduction to
data structures, algorithms,

and object-oriented
programming

Inheritance & Class Hierarchies

The central new idea in object-
oriented programming -- the idea that
really distinguishes it from traditional
programming -- is to allow classes to
express the similarities among objects
that share some, but not all, of their
structure and behavior.

3

has-a Relationship
class Student
{
 private String name;
 private Date dateOfBirth;
 ...
}
•  a Student has-a String for its name
•  a Student has-a Date for its dateOfBirth

4

In UML Terms

Student
String name
Date dateOfBirth
...
...

5

Terminology for Inheritance

• parent class
• superclass
• base class

• child class
• subclass
• derived class

The term inheritance refers to the fact that one
class can inherit part or all of its structure and
behavior from another class. A subclass is
created by using the extends keyword in the
subclass signature.

6

Person
name
ssn
dateOfBirth
address
...

↑
Student

major
gpa
classList
transcript
advisor
...

2

7

Syntax to Set Up Inheritance

•  class Student extends Person

8

is-a Relationship
•  a Student is-a Person

•  Every Student object is also a Person
object.

•  Class Student inherits non-private data &
methods from Class Person.

9

Inheritance Promotes Software Reuse

•  Start with a class to which you want to add
fields/methods.

•  Extend it and add additional capabilities to
the subclasses.

10

Programmer Decisions

•  What methods and variables of the parent
class can the child class see?

•  What if the child wants to add a method or
variable with the same name as a method or
variable of the parent?

11

Why Not Modify Existing Code?

•  Source code may not be available to us and
the implementation may be difficult to
understand.���

•  Our changes could break the existing code.

12

Person
String name
Person(String)
String toString()

↑
Student

String major
Student(String,String)
String toString()

3

13

class Person
{
 protected String name;
 public Person (String name)
 { this.name = name; }
 public String toString() { return name; }
}

14

public class Student extends Person {
 private String major; // added field in subclass
 public Student (String name, String major)
 { super(name); // call to Person constructor
 this.major = major;
 }
 public String toString()
 {
 return this.name + " (" + this.major + ")";
 }
}

15

•  Use the parent's constructor to initialize
parent variables (in a subclass, this will
be a call to super() with zero or more
parameters).

•  Inside a subclass constructor, a call to
the superclass constructor must be the
first line. If not, there will be an error.

16

class Person
{
 // name is non-accessible, even from subclasses
 private String name;
 public String toString()
 {
 return name;
 }
}

17

class Student extends Person
{
 private String major;
 public String toString()
 {
 return super.toString() + " (" + major + ")";
 }
}

18

Object — The Top of All Hierarchies

•  public String toString()
•  public boolean equals(Object)

4

19

•  Don't confuse overriding with overloading.

•  Can anyone tell me the difference?

 Overriding vs Overloading

20

Single vs Multiple Inheritance

Car Truck

Minivan

•  Java allows only single inheritance, i.e., a
subclass can extend only one superclass.

21

•  Java only allows single inheritance, so a
subclass can only have one superclass

•  Interfaces can be used to achieve the
effects of multiple inheritance. A class
that implements an interface is a
subtype of the interface.

Interfaces

22

Animal

Dog HumanCat

Mime

23

class Animal

class Dog extends Animal

class Cat extends Animal

class Human extends Animal

class Mime extends Human

•  Each has
 public void speak()

24

•  Animal:
 System.out.println("* generic animal noise *");

•  Dog:
 System.out.println("woof");

•  Cat:
 System.out.println("meow");
•  Human:
 System.out.println("hello");

•  Mime:
 System.out.println();

public void speak() in each class contains the single print statement:

5

25

 Animal [] animals = new Animal[MAX];
 animals[0] = new Dog();
 animals[1] = new Cat();
 animals[2] = new Human();
 animals[3] = new Dog();
 animals[4] = new Mime();
 animals[5] = new Cat();
 animals[6] = new Animal();
 for (int i = 0 ; i < MAX ; i++)
 {
 animals[i].speak();
 }

26

Motivation for Abstract Classes

•  We shouldn't instantiate Animal —
 The class is too generic!

•  Let's make Animal an abstract class.

27

abstract class Animal
{
//--
 abstract public void speak();
//--
}

28

 Animal [] animals = new Animal[MAX];
 animals[0] = new Dog();
 animals[1] = new Cat();
 animals[2] = new Human();
 animals[3] = new Dog();
 animals[4] = new Mime();
 animals[5] = new Cat();
 animals[6] = new Cat();

29

Interfaces are like abstract classes, but
they can contain no method bodies, only
method stubs.

Classes that implement an interface are
required to provide full method bodies for
each method stub in the interface.

 Interfaces

30

Interfaces can be a data type for a
declared variable, but the instantiated
type must be a subtype of the interface.

Classes can implement any number of
interfaces and they must have method
bodies for all method stubs in the
interface.

 Interfaces

6

31

Because of the inheritance model Java
provides, an object can have multiple data
types.

 Interfaces

32

Recall the definition of a list in Scheme:
A list of integers (IList) is either:
–  empty, or it is a
–  constructed list, formed by using (cons element lon),

where lon is an IList.

We can make a similar structure in Java using an Interface:

public interface IList {
 // stub for method to return length of this IList
 public int length();
 // stub for method to sum all integers in this IList
 public int sum();
}

 Structural recursion in Java

33

A subtype of interface IList to represent a constructed list:

public class ConsList implements IList {
 // fully implemented method returns length of this IList
 public int length() {
 <syntax to compute the length>
 }
 // fully implemented method returns sum of numbers in this IList
 public int sum() {
 <syntax to compute the sum of all numbers in this IList>
 }
}

 Structural recursion in Java

34

A subtype of interface IList to represent an empty list:

public class MTList implements IList {
 // implementation of length method for empty list
 public int length() {
 return 0;
 }
 // implementation of sum method for empty list
 public int sum() {
 return 0;
 }
}

 Structural recursion in Java

