CS102

Introduction to
data structures, algorithms,
and object-oriented
programming

2/22/17

class Animal

class Dog extends Animal
class Cat extends Animal
class Human extends Animal
class Mime extends Human

» Each has
public void speak()

public void speak() in each class contains a single print statement:

* Animal:
System.out.printin("* generic animal noise *");

* Dog:
System.out.printin("woof");

« Cat:
System.out.printin("meow");

* Human:
System.out.printin("hello");

* Mime:
System.out.printin();

Animal [] animals = new Animal[MAX];

animals[0] = new Dog();
animals[1] = new Cat();
animals[2] = new Human();
animals[3] = new Dog();
animals[4] = new Mime();
animals[5] = new Cat();
animals[6] = new Animal();
for (inti=0;i<MAX;i++)
{

animalsl[i].speak();

}

Motivation for Abstract Classes

* We shouldn't instantiate Animal —
The class is too generic!

* Let's make Animal an abstract class.

2/22/17

abstract class Animal

{

//
abstract public void speak();

/1

}

Animal [] animals = new Animal[MAX];
animals[0] = new Dog();

animals[1] = new Cat();

animals[2] = new Human();

animals[3] = new Dog();

animals[4] = new Mime();

animals[5] = new Cat();

animals[6] = new Cat();

public void processAnimals(Animal[] ani) {

for (inti=0;i < ani.length; i++) {
anifi].speak;
}
}

static BankAccount processAccount(BankAccount acct)

if (acct instanceof SavingsAccount)
((SavingsAccount)acct).addPeriodicInterest();

else if (acct instanceof CheckingAccount)
((CheckingAccount)acct).subtractPenalty();

System.out.printin(acct);
acct.withdraw(5);
System.out.printin(acct);
return acct;

Person
String name
String toString()

Volunteer Employee
String ssn
double pay() String toString()
String toString()

Salaried Hourly
double weeklySalary double hourlyRate
Jouble pay() double hoursWorked

void addHours(double)

double pay()
UnionMember

double pay()

abstract class Person
{

private String name;

/!

public Person (String name) { this.name = name; }

/!

public String toString() { return name; }
1/

abstract public double pay();
1/
}

class Volunteer extends Person
{
//
public Volunteer (String name)
{
super(name);
}
Vi
public double pay()
{
System.out.printin("Thank you, " + super.toString() + ".");
return 0.0;
}
Vi
}

2/22/17

abstract class Employee extends Person
{
protected String ssn;
//
public Employee (String name, String ssn)
{
super(name);
this.ssn = ssn;
}
//
public String toString() { return super.toString() + " (" +ssn+")"; }
//
}

class Salaried extends Employee

private double weeklySalary;

public Salaried (String name, String ssn, double weeklySalary)

super(name,ssn);
this.weeklySalary = weeklySalary;
}
/1

public double pay()
{

System.out.printf("Pay $%7.2f to %s.\n",weeklySalary,
super.toString());
return weeklySalary;

class Hourly extends Employee

{
protected double hourlyRate;
protected double hoursWorked;

/

public Hourly (String name, String ssn, double hourlyRate)

super(name,ssn);
this.hourlyRate = hourlyRate;
this.hoursWorked = 0.0;
}
/

public void addHours (double hours) { hoursWorked += hours; }

public double pay()
{

double amount = hoursWorked * hourlyRate;
System.out.printf("Pay $%7.2f to %s.\n",amount, super.toString());
hoursWorked = 0.0;
return amount;
}
/
}

class UnionMember extends Hourly

{

public UnionMember (String name, String ssn, double hourlyRate)

super(name,ssn,hourlyRate);
this.hoursWorked = 0.0;
}

public double pay()

double amount = hoursWorked * hourlyRate;
if (hoursWorked > 40) amount += 0.5 * (hoursWorked - 40) * hourlyRate;
System.out.printf("Pay $%7.2f (includes overtime) to %s.\n",
amount,
super.toString());
hoursWorked = 0.0;
return amount;
}
/1

}

Interfaces

« Java only allows single inheritance, so a
subclass can only have one superclass,
including abstract classes.

* Interfaces can be used to achieve most
of the effects of multiple inheritance. A
class that implements an interface is a
subtype of the interface.

2/22/17

Interfaces

Interfaces are like abstract classes, but
they can contain no method bodies, only
method stubs.

Classes that implement an interface are
required to provide full method bodies for
each method stub in the interface.

Interfaces

Interfaces can be a data type for a
declared variable, but the instantiated
type must be a subtype of the interface, a
concrete class.

Classes can implement any number of
interfaces and they must have method
bodies for all method stubs in the
interface.

Interfaces

Because of the inheritance model Java
provides, an object can have multiple data

types.

Look at one of the graphics programs
from the Eck book.

Structural recursion in Java

Recall the definition of a list in Scheme:
Alist of integers (IList) is either:
— empty, oritis a
— constructed list, formed by using (cons num LON),
where num is an integer and LON is an IList.

To write the structurally recursive IList, we make an interface
called IList with method stubs for all the methods that are
needed to implement a list. Then we create subtypes
MTList and ConsList to implement the IList interface.

A class that implements the IList interface "is-a" IList.
Therefore, we can call the same methods on both MTList
and ConsList

Structural recursion in Java

Recall the definition of a list in Scheme:
Alist of integers (IList) is either:
— empty, oritis a
— constructed list, formed by using (cons num LON),
where num is an integer and LON is an IList.

We can make a similar structure in Java using an Interface:
public interface IList {
/I stub for method to return length of this IList
public int length();
/I stub for method to sum all integers in this IList
public int sum();
}

Structural recursion in Java

A subtype of interface IList to represent a constructed list:

public class ConsList implements IList {
int first;
IList rest;
/I fully implemented method returns length of this IList
public int length() {
<code to compute length of list>
}
/I fully implemented method returns sum of numbers in this IList
public int sum() {
<code to compute sum of numbers in list>

}
}

Structural recursion in Java

A subtype of interface IList to represent an empty list:

public class MTList implements IList {
/I implementation of length method for empty list
public int length() {
<length of empty list>

}
/I implementation of sum method for empty list
public int sum() {
<sum of numbers in empty list>
}
}

2/22/17

