
1

1

Circle class properties
o  What properties does a circle have?

n  Radius
n  PI = 3.141592653589793234
n  Color (if plotting in a graphics program)
n  (x,y) location

o  These properties will become instance variables

2

Our Circle class

public class Circle {

 double radius;

 double PI = 3.1415926536;

}

Note the fields
are not static

Note the radius
field is not

initialized by us

We’re ignoring the
 public for now

3

Accessing our Circle object
o  Any variable or method in an object can be accessed by using a

period
n  The period means ‘follow the reference’

n  Example: System.in

n  Example: System.out.println
 (c.radius);

n  Example: c.PI = 4;

This is bad – PI should
have been declared final
(this will be done later)

4

What’s the output?
public class Circle {

 double radius;

 double PI = 3.1415926536;

}

public class CircleTest {

 public static void main (String[] args) {
 int x;

 Circle c = new Circle();

 System.out.println (x);

 }

}

o  When a variable is declared as part of a method, Java does not initialize it
to a default value

Java will give a
“variable not

initialized” error

5

What’s the output now?
public class Circle {

 double radius;

 double PI = 3.1415926536;

}

public class CircleTest {

 public static void main (String[] args) {
 int x;

 Circle c = new Circle();

 System.out.println (c.radius);

 }

}

o  When a variable is declared as part of a class, Java does initialize
it to a default value

Java outputs 0.0!

6

What’s going on?

o  A (method) variable needs to be initialized before it is used

n  Usually called a local variable

o  A instance variable is automatically initialized by Java

n  All numbers are initialized to 0, booleans to false, etc.

2

7

Circle class behaviors
o  What do we want to do with (and to) our Circle class?

n  Create circles
n  Modify circles (mutators or setters)
n  Find out about our circles’ properties (accessors or getters)
n  Find the area of the circle
n  Plot it on the screen (or printer)
n  A few others…

o  These will be implemented as methods

8

Calling the Circle constructor
o  To create a Circle object:

 Circle c1 = new Circle();

o  This does four things:
n  Creates the c1 reference
n  Creates the Circle object
n  Makes the c1 reference point

to the Circle object
n  Calls the constructor with no

parameters (the ‘default’
constructor)

o  The constructor is always the first method called when creating (or
‘constructing’) an object

c1

Circle

-  radius = 0.0
- PI = 3.14159…
- …

+ Circle()
+ Circle (double r)
+ …

9

Calling the Circle constructor
o  To create a Circle object:

 Circle c1 = new Circle(2.0);

o  This does four things:
n  Creates the c1 reference
n  Creates the Circle object
n  Makes the c1 reference point

to the Circle object
n  Calls the constructor with 1

double parameter (the ‘specific’
constructor)

o  The constructor is always the first method called when creating (or
‘constructing’) an object

c1

Circle

-  radius = 0.0
- PI = 3.14159…
- …

+ Circle()
+ Circle (double r)
+ …

10

Constructors
o  Remember, the purpose of the constructor is to initialize the

instance variables
n  PI is already set, so only radius needs setting

public Circle() {

this (1.0);

}

public Circle (double r) {

radius = r;

}

Note there is no return
type for constructors

Note that the constructor
name is the EXACT same

as the class name

Note that there are two “methods” with the same name!

11

What happens in memory
o  Consider: Circle c = new Circle();
o  A double takes up 8 bytes in memory
o  Thus, a Circle object takes up 16 bytes of memory

n  As it contains two doubles

 c

Circle

-  radius = 1.0
- PI = 3.1415926536
- …

+ Circle()
+ Circle (double r)
+ …

Circle

-  radius = 1.0
- PI = 3.14159

 c

Shorthand representation

12

Consider the following code
public class CircleTest {

 public static void main (String[] args) {
 Circle c1 = new Circle();

 Circle c2 = new Circle();

 Circle c3 = new Circle();

 Circle c4 = new Circle();

 }

}

3

13

What happens in memory
o  There are 4 Circle objects in memory

n  Taking up a total of 4*16 = 64 bytes of memory

Circle

-  radius = 1.0
- PI = 3.14159

c1

Circle

-  radius = 1.0
- PI = 3.14159

c2

Circle

-  radius = 1.0
- PI = 3.14159

c3

Circle

-  radius = 1.0
- PI = 3.14159

c4

14

Consider the following code
public class CircleTest {

 public static void main (String[] args) {
 Circle c1 = new Circle();

 //...

 Circle c1000000 = new Circle();

 }

}

This program creates 1 million Circle objects!

15

What happens in memory
o  There are 1 million Circle objects in memory

n  Taking up a total of 1,000,000*16 ≈ 16 Mb of memory

…
Note that the final PI field is repeated 1 million times

Circle

-  radius = 1.0
- PI = 3.14159

c1

Circle

-  radius = 1.0
- PI = 3.14159

c2

Circle

-  radius = 1.0
- PI = 3.14159

c1000000

16

Total memory usage: 8 Mb + 8 bytes (1,000,000+1=1,000,001 doubles)

The use of static for fields
o  If a variable is static, then there is only ONE of that variable

for ALL the objects
n  That variable is shared by all the objects

Total memory usage: 16 bytes (1+1=2 doubles) Total memory usage: 40 bytes (4+1=5 doubles)

… Circle

-  radius = 1.0

c1

Circle

-  radius = 1.0

c2 c1000000

Circle

-  radius = 1.0

c3 c4

Circle

-  radius = 1.0

PI 3.1415926536

17

More on static fields
o  What does the following print

n  Note that PI is not final

 Circle c1 = new Circle();

 Circle c2 = new Circle();

 Circle c3 = new Circle();

 Circle c4 = new Circle();

 c1.PI = 4.3;

 System.out.println (c2.PI);

o  It prints 4.3

Note you can refer
to static fields by
object.variable

18

Even more on static fields
o  There is only one copy of a static field no matter how

many objects are declared in memory
n  Even if there are zero objects declared!
n  The one field is “common” to all the objects

o  Static variables are called class variables
n  As there is one such variable for all the objects of the

class
n  Whereas non-static variables are called instance

variables

o  Thus, you can refer to a static field by using the class
name:
n  Circle.PI

4

19

Even even more on static fields
o  This program also prints 4.3:

 Circle c1 = new Circle();

 Circle c2 = new Circle();

 Circle c3 = new Circle();

 Circle c4 = new Circle();

 Circle.PI = 4.3;

 System.out.println (c2.PI);

20

Even even even more on static fields

o  We’ve seen static fields used with their class names:
n  System.in (type: InputStream)
n  System.out (type: OutputStream)
n  Math.PI (type: double)
n  Integer.MAX_VALUE (type: int)

21

What if we want the value of Pi?
o  Assume that PI is private, and that we need a getPi()

method to get it’s value
o  Remember that is only 1 PI field for all the Circle objects

declared
n  Even if there are none declared!

o  Consider a Circle object c:
n  c.getRadius() directly accesses a specific object
n  c.setRadius() directly modifies a specific object
n  c.getPi() does not access a specific object
n  c.setPi() (if there were such a method) does not modify

a specific object
o  Methods that do not access or modify a specific object are

called ‘class methods’

22

More on class methods
o  A class method does not refer to any specific object

n  Such as getPi()
o  It is declared as static:

static double getPi () {

 return PI;

}

o  Thus, class methods are often called static methods
o  Because Java knows that class methods don’t refer to any

specific object, it only allows them to access static
variables (aka class variables)

o  Consider Math.sin()
n  It doesn’t refer to the ‘state’ of any object
n  It only uses the parameter passed in

23

static and non-static rules
o  Member/instance (i.e. non-static) fields and methods can

ONLY be accessed by the object name

o  Class (i.e. static) fields and methods can be accessed by
Either the class name or the object name

o  Non-static methods can refer to BOTH class (i.e. static)
variables and member/instance (i.e. non-static) variables

o  Class (i.e. static) methods can ONLY access class (i.e. static)
variables

24

while loop syntax

o  While statements:
n  while (expression) action
n  Action is executed repeatedly while expression is

true
n  Once expression is false, program execution

moves on to next statement
n  Action can be a single statement or a block
n  If expression is initially false, action is never

executed

5

25

int valuesProcessed = 0;

double valueSum = 0;

// set up the input

Scanner stdin = new Scanner (System.in);

// prompt user for values

System.out.println("Enter positive numbers 1 per line.\n"

 + "Indicate end of the list with a negative number.");

// get first value

double value = stdin.nextDouble();

// process values one-by-one

while (value >= 0) {

 valueSum += value;

 ++valuesProcessed;

 value = stdin.nextDouble();

}

// display result

if (valuesProcessed > 0) {

 double average = valueSum / valuesProcessed;

 System.out.println("Average: " + average);

} else {

 System.out.println("No list to average");

}

Reading in values

26

Converting text to strictly lowercase

public static void main(String[] args) {

 Scanner stdin = new Scanner (System.in);

 System.out.println("Enter input to be converted:");

 String converted = "";

 String currentLine = stdin.nextLine();

 while (currentLine != null) {
 String currentConversion =
 currentLine.toLowerCase();
 converted += (currentConversion + "\n");
 currentLine = stdin.nextLine();
 }

 System.out.println("\nConversion is:\n" + converted);
}

27

for loop syntax

o  For statements:
n  for (forinit; forexpression; forupdate) action
n  forinit is executed once only (before the loop

starts the first time)
n  Ac t i on i s execu ted r epea ted l y wh i l e

forexpression is true
n  After action is executed at the end of each loop,

forupdate is executed
n  Once forexpression is false, program execution

moves on to next statement
n  Action can be a single statement or a block
n  If expression is initially false, action is never

executed 28

 System.out.println("i is " + i);

}

System.out.println("all done");

 System.out.println("i is " + i);

}

System.out.println("all done");

i is 0

i is 1

i is 2

all done

Execution Trace

i 0
int i = 0; i < 3; ++i for () { int i = 0; i < 3; ++i

1 2 3

Variable i has gone
out of scope – it

is local to the loop

29

for vs. while
o  An example when a for loop can be directly translated into a while

loop:

int count;

for (count = 0; count < 10; count++) {

 System.out.println (count);

}

o  Translates to:

int count;

count = 0;

while (count < 10) {

 System.out.println (count);

 count++;

}
30

for vs. while
o  An example when a for loop CANNOT be directly translated into a

while loop:

for (int count = 0; count < 10; count++) {

 System.out.println (count);

}

o  Would (mostly) translate as:

int count = 0;

while (count < 10) {

 System.out.println (count);

 count++;

}

count IS defined here

count is NOT defined here

only difference

6

31

Common pitfalls

o  Infinite loop: a loop whose test expression never
evaluates to false

o  Be sure that your for loop starts and ends where
you want it to
n  For example, in an array of size n, it needs to

start at 0 and end at n-1
n  Otherwise, it’s called an “off-by-one” error

o  Be sure your loop variable initialization is correct

32

Commands Used with Iteration

o  break
n  Immediately stops the execution of the current

loop

o  return
Immediately stops the execution of the current
method…if a void method, use return;

o  continue
n  Immediately starts execution of the next loop
n  The for update is executed, then the condition is

tested

33

File access

o  Java provides the File class for file I/O
n  Constructor takes in the file name as a String

o  A stream is a name for a input or output method
n  System.out: output stream
n  System.err: error output stream
n  System.in: input stream
n  File: file input or output stream

o  We are only concerned with the System.out printing methods
in this course

34

Scanner methods

o  The Scanner class can be initialized with an File object
n  Scanner filein = new Scanner (new File (filename));

o  The Scanner class has a bunch of methods useful in loops:
n  hasNextInt(): tells whether there is a next int
n  hasNextDouble(): same idea, but with doubles

o  To retrieve a value from the Scanner:
n  nextInt()
n  nextDouble()

35

Variable scope rules
public class Scope {

 int a;
 static int b;

 public void foo (int c) {
 int d = 0;
 System.out.println (c*d);
 int e = 0;
 }

 public void bar() {
 }

 int f;

}

a & b are visible anywhere within the class

where is f visible?

d is visible in the method after it is declared

e is visible in the method after it is declared

formal parameters are only visible in
the method in which they are declared

e is not visible here!

what is visible here?

local
variables

36

Instance methods vs. class methods

o  Instance (member) methods modify the state of
the object
n  That state can include instance (member)

variables as well as class variables
o  Class methods do not modify the state of the

object
n  Examples: Math.sin(), Math.cos(), etc.
n  Can only access class variables
n  They are declared with the keyword static

7

37

Instance variables vs. class variables

o  Instance (member) variables are one per object
n  Can only be accessed by instance (member)

methods
o  Class variables are one for the entire class

n  The single class variable is common to all the
objects of a class

n  Can be accessed by both instance (member)
methods and class methods

38

Parameters

o  The values passed into the method call are called
arguments
n  foo (7); // 7 is the argument

o  The names within the ()s of the method signature are
called parameters
n  void foo (int x) { // x is the parameter

o  Java copies the values of the arguments to the parameters
n  That copy is kept in a spot of memory called the
“activation record”

n  Any modifications in the method are modifications to
the copy

n  Note that if a object is passed in, the object’s
reference is what is copied, not the object itself
o  Thus, the object can be modified, just not the

reference

39

Instance variables

o  Instance variables are normally declared private
n  Modification is via mutator (setter) methods
n  Access is through accessor (getter) methods

o  Classes should use their own setter and getter
methods to change/access the fields of the class
n  For setters, it allows “checking” to be done

when they are changed
n  For getters, it becomes more important when

dealing with inheritance

40

Blocks and scoping

o  A statement block is a number of statements within
braces

o  A nested block is one block within another
o  A local variable is a variable defined within a block

n  You can define as many local variables in each
block as you want
o  However, there can’t be variables of the same name

declared within the same block
o  Example: void public foo (int x) {

 double x = 0;

41

Overloading

o  Method overloading is when there are multiple methods of
the same name with different parameter lists
n  Java will figure out which one you mean to call by which

method’s parameter list best matches the actual
parameters you supply

42

Constructors and this

o  Keyword this references the object being operated
within
n  Is not valid within a class method, as you are

not within an object!
n  this, within the Circle class, getRadius() and

this.getRadius() do the exact same thing
o  A constructor can invoke another constructor

n  Needs to be at the beginning of the method
o  If you don’t provide any constructors, Java creates

a default constructor for you
n  This default constructor invokes the default

constructor of the super class

8

43

Specific methods and instances

o  All classes inherit certain methods, and should
override them
n  toString()
n  clone()
n  equals()

o  clone()’s return type must be Object
o  instanceof returns true if the object is an instance

of the class
n  Example: String s = “foo”;

 if (s instanceof Object) {

44

equals()

o  equals() should have the following properties:
n  Reflexivity: x.equals(x) should be true
n  Symmetry: if x.equals(y) then y.equals(x)
n  Transitivity: if x.equals(y) and y.equals(z) then

x.equals(z)
n  Consistency: x.equals(y) should always return

the same value (provided x and y don’t change)
n  Physicality: x.equals(null) should return false

o  You don’t have to remember the property names,
though…

45

Array basics

o  An array is an object
n  Thus, it is actually a reference to a series of

values somewhere in memory
o  The individual parts of an array are called elements

n  Elements can be a primitive type or an object
o  All elements in the array must have the same type
o  An array is an object, with fields and methods

n  The length is a field in the array object

46

Array declarations

o  There are two parts to creating an array
n  Array declaration

o  int[] array;
o  This declared an uninitialized array reference!

n  Array initialization
o  array = new int[10];
o  This creates an array of 10 ints each with value 0
o  Java gives default values to the elements: null, 0, or

false
o  Can be combined

n  int[] array = new int[10];
o  If declaring an array can declare specific elements:

n  int[] array = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
o  Note that the int here could have been String, etc.

n  If an object type, then the array holds references to those
objects

47

More about how Java represents Arrays
o  Consider

 int[] a;

 int[] b = null;

 int[] c = new int[5];

 int[] d = { 1, 2, 3, 4, 5 };

 a = c;

 d = c;

1 2 3 4 5

0 0 0 0 0

a -

b null

c

d

 int[] a;

 int[] b = null;

 int[] c = new int[5];

 int[] d = { 1, 2, 3, 4, 5 };

 a = c;

 d = c;

48

Array access

o  Retrieving a particular element from an array is called
subscripting or indexing

o  Value passed in square brackets
n  Can be any non-negative int expression

o  Java checks to see if you go past the end of an array
n  IndexOutOfBounds exception is generated

9

49

Array size

o  Arrays can not be resized
n  Use an ArrayList if you need to resize your collection

o  Array length is via the length field
n  It’s public final, so it can’t be changed

o  Arrays are indexed from 0
n  So there are elements 0 to array.length-1

50

Array miscellaneous

o  When passed as a parameter, the reference to the

array is what is passed
n  An array is an object, thus acts like other

objects with respect to parameter passing
o  Java’s main method takes in an array:

n  public static void main (String[] args)
n  This array is the command line parameters, if

any
o  The Collections class provides a number of useful

methods for arrays and other collections (such as
ArrayLists)

51

Sorting and such

o  A sort puts the elements of an array in a particular
order

o  Selection sort is one method discussed
n  Algorithm:

o  Select the smallest element, put it first
o  Then select the second smallest element, and put it

second
o  Etc

n  If there are n elements in the array, it requires
n2 comparisons

o  There are more efficient array sorting methods out
there

52

Multidimensional array visualization

o  Segment
int c[][] = {{1, 2}, {3, 4}, {5, 6}, {7, 8, 9}};

o  Produces

c

c[0] c[1] c[2]

1 2

3 4

7 8 9

c[3][0] c[3][1] c[3][2]

c[1][0] c[1][1]

c[0][0] c[0][1]

5 6

c[2][0] c[2][1]

c[3]

ragged array

53

Multidimensional array visualization

o  A multi-dimensional array declaration (either one):
int[][] m = new int[3][4];

o  How we visualize it:

0 0 0

0 0 0

0 0 0

0 0 0

0

0

0

0

0

0

0

0

0

0

0

0

or

The for each loop
class ForEachExample1{
 public static void main(String args[])
 { int arr[]={12,13,14,44};
 for(int i:arr)
 {
 System.out.println(i);
 }
 }
}

54

10

for each loop
import java.util.*;
class ForEachExample2
{
 public static void main(String args[])
 {
 ArrayList<String> list=new ArrayList<String>();
 list.add("vimal");
 list.add("sonoo");
 list.add("ratan");
 for(String s:list){
 System.out.println(s);
 }
 }
}

55

GUIs
import javax.swing.*;
public class FirstSwingExample {
 public static void main(String[] args) {
 JFrame f=new JFrame();//creating instance of JFrame
 JButton b=new JButton("click");//creating instance of JButton
 b.setBounds(130,100,100, 40);//x axis, y axis, width, height

 f.add(b);//adding button in JFrame

 f.setSize(400,500);//400 width and 500 height
 f.setLayout(null);//using no layout managers
 f.setVisible(true);//making the frame visible
 }
}
 56

GUIs
import javax.swing.*;
 public class Simple {
 JFrame f;
 Simple(){
 f=new JFrame();//creating instance of JFrame
 JButton b=new JButton("click");
 b.setBounds(130,100,100, 40);
 f.add(b);//adding button in JFrame
 f.setSize(400,500);//400 width and 500 height
 f.setLayout(null);//using no layout managers
 f.setVisible(true);//making the frame visible }
 public static void main(String[] args) {
 new Simple();
}}

57

GUIs by Inheritance
import javax.swing.*;
 public class Simple extends JFrame{
 Simple() {
 JButton b=new JButton("click");
 b.setBounds(130,100,100, 40);
 add(b);
 setSize(400,500);
 setLayout(null);
 setVisible(true); }
 public static void main(String[] args) {
 new Simple2(); }}

58

