cmpu-145 spring, 2019
Homework, due April 29.

Problem 1.

Consider a variant of the Monty Hall puzzle with four doors. The host still opens just one
door with a goat - not the grand prize - behind it. What is the probability of winning if you always keep your original choice and if you always switch?

Problem 2.

Recall the definiton for any events A and B to be independent. Two events, A and B are independent iff $p(A \cap B)=p(A)^{*} p(B)$ Consider tossing a pair of dice. The outcome can be thought of as an ordered pair, (x, y). Let A be the event of rolling an even number (i.e., $x+y$ is even).

Let B be the event of rolling a 5,6 , or 7 (i.e., $x+y$ is 5,6 , or 7). Compute $p(A), p(B), p(A \cap B)$ and $p(A) * p(B)$. Are events A and B independent?

Problem 3.
Recall the definition of the probability of an event A given that event B occurred:
$p(A \mid B)=p(A \cap B) / p(B)$. Compute the conditional probabilities $p(A \mid B)$ and $p(B \mid A)$ using the events in problem 2 above.

Problem 4.

In recent years, "Nor'easter" storms dump large amounts of snow or rain in Poughkeepsie 5 days each year. (Assume Nor'easter storms last one day, allowing you to work with the total number of days in a year.) When a Nor'easter affects Poughkeepsie, the 'European Model' for weather prognostication correctly predicts this fact 97% of the time. When a Nor'easter does not affect Poughkeepsie, the European Model incorrectly predicts that it will 3\% of the time.
(see https://en.wikipedia.org/wiki/European Centre for Medium-Range Weather Forecasts for more!)
Unfortunately, the European Model is predicting a Nor'easter to affect Poughkeepsie on the day of our final exam! What is the probability that a Nor'easter actually occurs on the day of our final exam?
(Hint: one way to start is to state the events we care about, and then the probabilities of these events occurring.)

