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Foundations of Computer Science, Spring 2019 

Induction Junction, or, tips on reading, understanding and doing proofs* 

Induction is useful for proving assertions about natural numbers. The set of natural numbers, N  = {0, 
1, 2, 3, 4, …}.  You will want to use it to show some statement/property, P, is true for the set 
of natural numbers.  

Form:  Prove statement P(n) is true for each integer n in the set of natural numbers with some 
restriction, e.g. for all  n >= n0.   

Why it works: You can define natural numbers in a recursive way; In order to list the natural numbers, 
start with 0 and repeatedly add one. So, you can prove P is true by a) showing that 0 has property P and 
b) whenever you add one to a number that already has P, the resulting number also has the same 
property. Thus, like falling dominos,  all natural numbers have this property P. 

Variations: The initial starting point does not have to be 0 or even 1.  A proof could start with, say, all 
even numbers, or all numbers > some arbitrary value. In cases such as these, you still have a starting 
point (i.e. Base Case) to consider. Also, instead of adding one, you could add negative one and 
accomplish the same task.  

Procedure: There are four five general sections to resolve. 

1. Rewrite what it is you are trying to prove and ensure the variables and conditions/restrictions 
are noted. Usually they are expressed in terms of n.  

2. Prove that the Base Case is true, and the first domino falls. 
3. Write the inductive hypothesis as an assumption: assume the kth domino falls. 
4. Prove the inductive case. Use the inductive hypothesis to show that domino k+1 also falls.   
5. Then the property is proven true for the identified set of natural numbers. 

Side notes: 1) For anything defined by recursion, the preferred proof technique is induction. This is 
because of the same idea that guides our proofs of transitivity, set equality, etc. – we simply need to 
follow the relevant definitions. So, when we prove something by induction, we are typically 
guided to do so by an underlying recursive definition. 2) Makinson recommends using k and k+1 in 
the proof, instead of the variable in the problem statement, n. This helps to separate sections and can 
reduce confusion when rereading a proof.  3) Optionally, and before writing a proof, you can make use 
of a work area to convince yourself that an assertion is true. 4) As we saw last week, we can utilize and 
maintain an equation where we update (only) one side of the equation (and comment the action this 
step takes!) Some proofs do not need to maintain LHS=RHS style statements.  

We will review two example proofs.  

(example 6.1.3 from Velleman) Prove that ∀n >= 5, 2n > n2. 

Step 1: We want to show that for the set of natural numbers, all n that are greater than or equal to 5, 
the following inequality holds: 2n > n2 .  

Step 2: Base Case (No need to start with 0 or 1 for this problem.) When n = 5, then  
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2n = 32 and n2 = 25. And,  32 > 25. 

Step 3: Inductive Hypothesis: Let k be an arbitrary value such that k >= 5. Suppose that 2k > k2 

Step 4: Induction:  We need to show that 2k+1 > (k+1)2 

 We have 2k+1  = 2*2k   // by arithmetic 

>  2*k2                     // by inductive hypothesis 

= k2 + k2 // by arithmetic 

>= k2  + 5*k  // by arithmetic since k >= 5. 

= k2 + 2*k + 3*k  // by arithmetic. Break it up this way for next step. 

>  k2  + 2*k + 1     // by arithmetic since k >= 5. 

= (k+1)2    // by arithmetic 

Step 5: We have shown that  2k+1  > (k+1)2   and we have proven the assertion.  

Side notes: the above steps switched between equality statements and inequality statements when 
necessary. Moving from k2  to k2  >= 5*k may have required, as Thomas Edison might say,  some 
inspiration and perspiration to find. The key here may be to factor (k+1)2  first and use what we know 
to find a value greater than the result of  k2  + 2*k + 1. Making use of a work area could be helpful for 
proofs like this one.  

For the next example we need a few definitions: 

1.  Prime number: A positive integer n > 1is a prime number iff the only positive integers that 
divide n are 1 and n.  

2. Division: An integer n divides an integer m if m = k*n for some integer k and with n !=0. (our 
“divisible by” definition), i.e. m/n = k 

(example 11.3 from Solow)  Prove that ∀n >= 2, n can be expressed as a finite product of prime 

numbers.  

For this example we do not have to maintain LHS = RHS format! 

Step 1: We want to show that for the set of natural numbers, all n that are greater than or equal to 2, 
can be expressed as a product of prime numbers.   

Step 2: Base Case (No need to start with 0 or 1 for this problem either.) When n = 2, then both 1 and 2 
are prime numbers and 1*2 = 2. Indeed, 2 itself is prime.  

Step 3: Inductive Hypothesis: Assume that the statement is true for all integers in between 2 and k. I 
other words for all j such that 2 <= j <= k, j can be expressed as a finite product of prime numbers.  

Step 4: We need to show that for 2 <= j <= k+1, j can be expressed as a finite product of prime numbers.  

Part a: if k+1 is a prime number, then the statement is true.  
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Part b: if k+1 is not a prime number, then we can make use of the definition of division! 

Even though k+1 is not a prime number, it has a divisor, say p, that is prime. So, p divides k+1  

means k+1= p*j. Now j must be an integer such that 2<=j<=k. (Not k+1. Why?) This is our  

inductive hypothesis!  

 

Step 5. So, j can be expressed as a finite product of primes. Since p is prime, that means k+1 can  be 
expressed as a finite product of prime numbers.  

Side notes: I had to make use of divisible by again ??!? Luckily, we did not have to consider 0. The Solow 
text didn’t seem to show how we know that p must be prime in step 4. It doesn’t matter because we can 
establish that both p and j must have the same property. That is 2<=p<=k and 2<=j<=k. This is because 
k+1 is not a prime number and both p and j have to be less than k+1.  

---- ---- ----- ------ ------- -------- --------- ---------- 

We can now make the following statement:  ∀students n ∈ cmpu-145, these next proofs can be 
completed for homework. This assignment is due April 9. Please hand in this assignment using a 
separate set of paper. 

1. Prove that: for a set with n >= 1 elements, there are 2n subsets that can be created from 
it.  (This has a familiar ring to it.) 

2. Prove that:  for   n >= 1, the following is true: 1 + 2 + 22 + … + 2n-1 = 2n – 1.   
 

   


