Type Declarations

In Haskell, a new name for an existing type can be defined using a *type declaration*.

```haskell
type String = [Char]
```

String is a synonym for the type `[Char]`.
Type declarations can be used to make other types easier to read. For example, given

```haskell
type Pos = (Int,Int)
```

we can define:

```haskell
origin :: Pos
origin = (0,0)

left :: Pos → Pos
left (x,y) = (x-1,y)
```
Like function definitions, type declarations can also have **parameters**. For example, given

```haskell
type Pair a = (a,a)
```

we can define:

```haskell
mult :: Pair Int → Int
mult (m,n) = m*n

copy :: a → Pair a
copy x = (x,x)
```
Type declarations can be nested:

```haskell
type Pos = (Int,Int)
type Trans = Pos -> Pos
```

However, they cannot be recursive:

```haskell
type Tree = (Int,[Tree])
```
Data Declarations

A completely new type can be defined by specifying its values using a data declaration.

```hs
data Bool = False | True
```

Bool is a new type, with two new values False and True.
Note:

- The two values False and True are called the **constructors** for the type Bool.

- Type and constructor names must always begin with an upper-case letter.

- Data declarations are similar to context free grammars. The former specifies the values of a type, the latter the sentences of a language.
Values of new types can be used in the same ways as those of built in types. For example, given

```haskell
data Answer = Yes | No | Unknown
```

we can define:

```haskell
answers :: [Answer]
answers = [Yes, No, Unknown]
```

```haskell
flip :: Answer -> Answer
flip Yes = No
flip No = Yes
flip Unknown = Unknown
```
The constructors in a data declaration can also have parameters. For example, given

```haskell
data Shape = Circle Float
         | Rect Float Float
```

we can define:

```haskell
square :: Float → Shape
square n = Rect n n

area :: Shape → Float
area (Circle r) = pi * r^2
area (Rect x y) = x * y
```
Note:

- Shape has values of the form Circle \(r \) where \(r \) is a float, and Rect \(x \, y \) where \(x \) and \(y \) are floats.

- Circle and Rect can be viewed as functions that construct values of type Shape:

 \[
 \text{Circle} :: \text{Float} \rightarrow \text{Shape} \\
 \text{Rect} :: \text{Float} \rightarrow \text{Float} \rightarrow \text{Shape}
 \]
Not surprisingly, data declarations themselves can also have parameters. For example, given

```
data Maybe a = Nothing | Just a
```

we can define:

```
safediv :: Int → Int → Maybe Int
safediv _ 0 = Nothing
safediv m n = Just (m `div` n)
```

```
safehead :: [a] → Maybe a
safehead [] = Nothing
safehead xs = Just (head xs)
```
Recursive Types

In Haskell, new types can be declared in terms of themselves. That is, types can be recursive.

```haskell
data Nat = Zero | Succ Nat
```

Nat is a new type, with constructors Zero :: Nat and Succ :: Nat → Nat.
Note:

- A value of type Nat is either Zero, or of the form Succ n where n :: Nat. That is, Nat contains the following infinite sequence of values:

 Zero

 Succ Zero

 Succ (Succ Zero)

 ...
We can think of values of type Nat as natural numbers, where Zero represents 0, and Succ represents the successor function 1+.

For example, the value

\[
\text{Succ (Succ (Succ Zero))}
\]

represents the natural number

\[
1 + (1 + (1 + 0)) = 3
\]
Using recursion, it is easy to define functions that convert between values of type Nat and Int:

```haskell
nat2int :: Nat → Int
nat2int Zero = 0
nat2int (Succ n) = 1 + nat2int n
```

```haskell
int2nat :: Int → Nat
int2nat 0 = Zero
int2nat n = Succ (int2nat (n-1))
```
Two naturals can be added by converting them to integers, adding, and then converting back:

```haskell
add :: Nat → Nat → Nat
add m n = int2nat (nat2int m + nat2int n)
```

However, using recursion the function `add` can be defined without the need for conversions:

```haskell
add Zero n = n
add (Succ m) n = Succ (add m n)
```
For example:

\[
\begin{align*}
\text{add} \ (\text{Succ} \ (\text{Succ} \ \text{Zero})) \ (\text{Succ} \ \text{Zero}) &= \\
= \quad \text{Succ} \ (\text{add} \ (\text{Succ} \ \text{Zero}) \ (\text{Succ} \ \text{Zero})) &= \\
= \quad \text{Succ} \ (\text{Succ} \ (\text{add} \ \text{Zero} \ (\text{Succ} \ \text{Zero}))) &= \\
= \quad \text{Succ} \ (\text{Succ} \ (\text{Succ} \ \text{Zero})))
\end{align*}
\]

Note:

- The recursive definition for add corresponds to the laws \(0+n = n\) and \((1+m)+n = 1+(m+n)\).
Arithmetic Expressions

Consider a simple form of expressions built up from integers using addition and multiplication.
Using recursion, a suitable new type to represent such expressions can be declared by:

```haskell
data Expr = Val Int
          | Add Expr Expr
          | Mul Expr Expr
```

For example, the expression on the previous slide would be represented as follows:

```
Add (Val 1) (Mul (Val 2) (Val 3))
```
Using recursion, it is now easy to define functions that process expressions. For example:

```haskell
size :: Expr → Int
size (Val n)   = 1
size (Add x y) = size x + size y
size (Mul x y) = size x + size y

eval :: Expr → Int
eval (Val n)   = n
eval (Add x y) = eval x + eval y
eval (Mul x y) = eval x * eval y
```
Note:

- The three constructors have types:

\[
\begin{align*}
\text{Val} &: \text{Int} \rightarrow \text{Expr} \\
\text{Add} &: \text{Expr} \rightarrow \text{Expr} \rightarrow \text{Expr} \\
\text{Mul} &: \text{Expr} \rightarrow \text{Expr} \rightarrow \text{Expr}
\end{align*}
\]

- Many functions on expressions can be defined by replacing the constructors by other functions using a suitable fold function. For example:

\[
\text{eval} = \text{fold} \text{id} (+) (*)
\]
Binary Trees

In computing, it is often useful to store data in a two-way branching structure or binary tree.
Using recursion, a suitable new type to represent such binary trees can be declared by:

```haskell
data Tree a = Leaf a
            | Node (Tree a) a (Tree a)
```

For example, the tree on the previous slide would be represented as follows:

```haskell
t :: Tree Int
t = Node (Node (Leaf 1) 3 (Leaf 4)) 5
    (Node (Leaf 6) 7 (Leaf 9))
```
We can now define a function that decides if a given value occurs in a binary tree:

\[
\text{occurs} :: \text{Ord}\ a \Rightarrow a \rightarrow \text{Tree}\ a \rightarrow \text{Bool} \\
\text{occurs}\ x\ (\text{Leaf}\ y) = x == y \\
\text{occurs}\ x\ (\text{Node}\ l\ y\ r) = x == y \\
\hspace{1cm} \text{||}\ \text{occurs}\ x\ l \\
\hspace{1cm} \text{||}\ \text{occurs}\ x\ r
\]

But... in the worst case, when the value does not occur, this function traverses the entire tree.
Now consider the function `flatten` that returns the list of all the values contained in a tree:

```haskell
flatten :: Tree a → [a]
flatten (Leaf x) = [x]
flatten (Node l x r) = flatten l ++ [x] ++ flatten r
```

A tree is a search tree if it flattens to a list that is ordered. Our example tree is a search tree, as it flattens to the ordered list `[1,3,4,5,6,7,9]`.
Search trees have the important property that when trying to find a value in a tree we can always decide which of the two sub-trees it may occur in:

\[
\begin{align*}
\text{occurs } x \ (\text{Leaf } y) & \quad = \quad x \ == \ y \\
\text{occurs } x \ (\text{Node } l \ y \ r) \ & \ | \quad x \ == \ y \ = \ True \\
& \ | \quad x \ < \ y \ = \ \text{occurs } x \ l \\
& \ | \quad x \ > \ y \ = \ \text{occurs } x \ r
\end{align*}
\]

This new definition is more **efficient**, because it only traverses one path down the tree.
Exercises

(1) Using recursion and the function add, define a function that multiplies two natural numbers.

(2) Define a suitable function fold for expressions, and give a few examples of its use.

(3) A binary tree is complete if the two sub-trees of every node are of equal size. Define a function that decides if a binary tree is complete.