
CS377
Parallel Programming

Lecture 1
Introduction

Marc L. Smith

Preliminaries

• Introductions

• Why are you taking this course?

• Discuss syllabus: online

Computing Platform

• Linux command: $ lscpu

• SP 307 and 309 Linux workstations are:

• single-socket, quad core, hyper-threaded (8 CPUs)

• Remote access server: mote.cs.vassar.edu

• 4 single-socket, oct-core, single-threaded (32 CPUs)

• but don’t use for running your parallel programs!

• Your computer / mobile device has parallel computing
capability!

A motivating example

• Find the max of n numbers

• How would you do it?

• Assumptions?

• How many comparisons? 
(we are computer scientists!)

Find max of n numbers

• Case 1: sorted (ascending)

• no comparisons -- just return last number
in array

• O(1) comparisons

• It’s easy when numbers already sorted!

• Hidden cost?

Find max of n numbers

• Case 2: unsorted

• sort array first, then return max

• O(n log(n)) comparisons

• a lot of work just to return the max!

Find max of n numbers

• Case 3: unsorted

• Compare unsorted numbers from first to
last, keep track of max as you go

• O(n) comparisons

• sure beats sorting them all first!

Find max of n numbers

• Let’s pause for a moment...

• the unsorted cases are the interesting
ones...

• it takes n-1 comparisons to find the max
of n unsorted numbers ~ O(n)

• can we do better than O(n)?  
(and what do we mean by better?)

Find max of n numbers

• Let’s look at the problem again

• just the problem

• no assumptions about its solution

• Did we make assumptions previously?

• yes: single processor

• what if we had more processors?

Find max of n numbers
8 6 4 2 1 3 5 7array A:

All numbers must be compared at least once to find the
max, but the pairs we choose to compare, and the order

of those comparisons, depends on the algorithm.

Max = ?

Order. Traditional (imperative) programming causes
us to become (necessarily) obsessed with order...

It’s time to break out of the sequential box.

Find max of n numbers

• Why were we counting comparisons?

• a measure independent of machine speed

• Is this still what we want if not sequential?  
(i.e., we can do >1 comparisons concurrently)

• We need new measures!

• Like what? (time, speedup, cost, work,
efficiency)

Find max of N numbers
• Let T1(N) be the Best Sequential Algorithm

• Let TP(N) be the Time for Parallel Algorithm (P processors)

• The Speedup SP(N) is T1(N)/TP(N)

• The Cost CP(N) is PTP(N), assuming P processors

• The Work WP(N) is the summation of the number of steps
taken by each of the processors. It is often, but not always,
the same as Cost.

• The Cost Efficiency CEP(N) (often called efficiency EP(N)) is 
SP(N)/P = C1(N) / CP(N) = T1(N) / (PTP(N))

• The Work Efficiency WEP(N) is 
W1(N) / WP(N) = T1(N) / WP(N)

Find max of n numbers
8 6 4 2 1 3 5 7A:

8 4 3 7

8 7

8Comparisons in each row
can be performed in parallel

Time = # rows = log(n)

A binary tree!

How many
processors needed?

Tradeoffs of time, cost, efficiency...

Find max of n numbers
8 6 4 2 1 3 5 7A:

This problem can be solved in
Time = O(1)

How?
Next time...

Reading Assignment 1

• Read Sutter and Larus article from
September 2005 issue of ACM Queue

• Write one-page summary (no more)

• to discuss during next class

• points in article most striking to you

Programming
Assignment 1

• Write a C program that finds the max of n
numbers

• Why? (it’s a familiar problem)

• Goals

• implement sequential solution to max

• use a real editor: vim (learn it!)

• compile / execute C program (not C++)

Programming
Assignment 1

• Write a C program that finds the max of n
numbers

• main() function

• initializes array (read values from stdin)

• prints array

• calls max() and prints result

Programming
Assignment 1

• Write a C program that finds the max of n
numbers

• max() function

• takes array of integers as parameter

• iterates through array to find max

• returns value of max element in given
array

