
Lecture Notes
CS377 - Parallel Programming

Marc L. Smith

Shear Sort

Parallel Sorting Networks
• Previously:

• Concurrent Bubble Sort (Sort Pump Gophers)

• One-dimensional sorting algorithm (pipeline)

• Time Complexity: O(n)

• Processors required: O(n)

• Can we do better time-wise? If so, how much?

• At what cost in number of processors required?

Shear Sort
• Two-dimensional sorting algorithm

• Can be implemented through either:

• shared memory (Linda / Tuple Space — Ruby/Rinda)

• message passing (CSP / channels — Go)

• Oblivious Comparison-Exchange (OCE) based

• same number of comparisons regardless of initial order

Shear Sort
(snake-like order)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

Shear Sort
(implementation models)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

• Linda / Tuple Space

• each element is a tuple

• CSP

• each element is a process

• processes connected via
channels

Shear Sort
(algorithm)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

• Input: unsorted n x n array

• Output: array sorted in snake-
like order

• Algorithm:  
do log(n) times 
 - sort rows (alternating order) 
 - sort the columns 
sort the rows (one more time)

• Time Complexity: O(log(n))

Shear Sort example
3 11 6 16

8 1 5 10

14 7 12 2

4 13 9 15

Initial state

3 6 11 16

10 8 5 1

2 7 12 14

15 13 9 4

After phase 1

2 6 5 1

3 7 9 4

10 8 11 14

15 13 12 16

After phase 2

1 2 5 6

9 7 4 3

8 10 11 14

16 15 13 12

After phase 3

1 2 4 3

8 7 5 6

9 10 11 12

16 15 13 14

After phase 4

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13
After phase 5: final

Correctness of Shear Sort

• Proof:

• based on the 0-1 Principle (the 0-1 Sorting Lemma)

• if algorithm works for all permutations of 0’s and 1’s, it
will work for numbers of any value!

• simplifies the number of cases we need to consider

Correctness of Shear Sort
• Assume any zero-one n x n matrix. There are only three

kinds of rows:

• all-one rows containing only 1’s

• all-zero rows containing only 0’s

• dirty rows containing both 0’s and 1’s

• Initially, input matrix can contain n dirty rows (worst case)

• The final matrix can contain at most one dirty row

Correctness of Shear Sort

• Proposition: One row and one column phase reduce the
number of dirty rows to at least one half.

• Proof: (case analysis)

• Consider all dirty rows after one row phase. One half of
them is sorted 0’s before 1’s, and the other half 1’s
before 0’s.

• If we consider pairs of 0-1 and 1-0 rows, we have 3
cases:

Correctness of Shear Sort
(three kinds of pairs of dirty rows)

0 . . . 0 1 . . 1 0 . . 0 1 . . . 1 0 . . 0 1 . . . 1

1 . 1 0 0 1 1 0 . 0 1 . . 1 0 . . . 0

0 0 0 . . 0 1 1 0 . 0 0 0

1 . 1 0 0 1 . . 1 1 1 1 1

(a) (b) (c)

Correctness of Shear Sort
• After applying one column phase:

• one dirty row disappears in cases (a) and (b),

• and both dirty rows disappear in case ©

• Therefore, after two log(n) phases, at most one dirty row now
remains and one more row sort completes sorting

• Note: if the rows were sorted all ascending, not in snake-like
order, the algorithm wouldn’t work

• Unfortunately, shear sort is not optimal. But it is cool to
study!

