# Lecture Notes 

CS377 - Parallel Programming Marc L. Smith

## Shear Sort

## Parallel Sorting Networks

- Previously:
- Concurrent Bubble Sort (Sort Pump Gophers)
- One-dimensional sorting algorithm (pipeline)
- Time Complexity: O(n)
- Processors required: O(n)
- Can we do better time-wise? If so, how much?
- At what cost in number of processors required?


## Shear Sort

- Two-dimensional sorting algorithm
- Can be implemented through either:
- shared memory (Linda / Tuple Space - Ruby/Rinda)
- message passing (CSP / channels - Go)
- Oblivious Comparison-Exchange (OCE) based
- same number of comparisons regardless of initial order

Shear Sort (snake-like order)


## Shear Sort

## (implementation models)



- Linda / Tuple Space
- each element is a tuple
- CSP
- each element is a process
- processes connected via channels


# Shear Sort (algorithm) 

- Input: unsorted $\mathrm{n} \times \mathrm{n}$ array
- Output: array sorted in snakelike order
- Algorithm: do $\log (n)$ times
- sort rows (alternating order)
- sort the columns
sort the rows (one more time)
- Time Complexity: $\mathrm{O}(\log (\mathrm{n})$ )


## Shear Sort example

| 3 | 11 | 6 | 16 |
| :---: | :---: | :---: | :---: |
| 8 | 1 | 5 | 10 |
| 14 | 7 | 12 | 2 |
| 4 | 13 | 9 | 15 |

Initial state

| 1 | 2 | 5 | 6 |
| :---: | :---: | :---: | :---: |
| 9 | 7 | 4 | 3 |
| 8 | 10 | 11 | 14 |
| 16 | 15 | 13 | 12 |

After phase 3

| 3 | 6 | 11 | 16 |
| :---: | :---: | :---: | :---: |
| 10 | 8 | 5 | 1 |
| 2 | 7 | 12 | 14 |
|  |  |  |  |
| 15 | 13 | 9 | 4 |

After phase 1

| 1 | 2 | 4 | 3 |
| :---: | :---: | :---: | :---: |
| 8 | 7 | 5 | 6 |
| 9 | 10 | 11 | 12 |
| 16 | 15 | 13 | 14 |

After phase 4

| 2 | 6 | 5 | 1 |
| :---: | :---: | :---: | :---: |
| 3 | 7 | 9 | 4 |
| 10 | 8 | 11 | 14 |
| 15 | 13 | 12 | 16 |
| After phase 2 |  |  |  |


| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 8 | 7 | 6 | 5 |
| 9 | 10 | 11 | 12 |
| 16 | 15 | 14 | 13 |

After phase 5: final

## Correctness of Shear Sort

- Proof:
- based on the 0-1 Principle (the 0-1 Sorting Lemma)
- if algorithm works for all permutations of 0's and 1's, it will work for numbers of any value!
- simplifies the number of cases we need to consider


## Correctness of Shear Sort

- Assume any zero-one $n \times n$ matrix. There are only three kinds of rows:
- all-one rows containing only 1's
- all-zero rows containing only 0's
- dirty rows containing both 0's and 1's
- Initially, input matrix can contain $n$ dirty rows (worst case)
- The final matrix can contain at most one dirty row


## Correctness of Shear Sort

- Proposition: One row and one column phase reduce the number of dirty rows to at least one half.
- Proof: (case analysis)
- Consider all dirty rows after one row phase. One half of them is sorted 0's before 1's, and the other half 1's before 0's.
- If we consider pairs of 0-1 and 1-0 rows, we have 3 cases:


## Correctness of Shear Sort

 (three kinds of pairs of dirty rows)| 0. . . 01 . . 1 | 0. . 01 . . . 1 | 0. . $01 . . . .1$ |
| :---: | :---: | :---: |
| 1 . $10 . . . .0$ | 1 . . . . 10 . 0 | 1 . . 10 . . . 0 |
|  |  | $\downarrow$ |
| 0 . . . . . . . 0 | 0 . . 01110.0 | 0. . . . . . . 0 |
| $1.10001 . .1$ | 1 . . . . . . . 1 | 1 . . . . . . . 1 |
| (a) | (b) | (c) |

## Correctness of Shear Sort

- After applying one column phase:
- one dirty row disappears in cases (a) and (b),
- and both dirty rows disappear in case ©
- Therefore, after two $\log (\mathrm{n})$ phases, at most one dirty row now remains and one more row sort completes sorting
- Note: if the rows were sorted all ascending, not in snake-like order, the algorithm wouldn't work
- Unfortunately, shear sort is not optimal. But it is cool to study!

