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Shear Sort



Parallel Sorting Networks
• Previously: 


• Concurrent Bubble Sort (Sort Pump Gophers)


• One-dimensional sorting algorithm (pipeline)


• Time Complexity: O( n )


• Processors required: O( n )


• Can we do better time-wise? If so, how much?


• At what cost in number of processors required?



Shear Sort
• Two-dimensional sorting algorithm


• Can be implemented through either:


• shared memory (Linda / Tuple Space — Ruby/Rinda)


• message passing (CSP / channels — Go)


• Oblivious Comparison-Exchange (OCE) based


• same number of comparisons regardless of initial order



Shear Sort 
(snake-like order)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13



Shear Sort 
(implementation models)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

• Linda / Tuple Space


• each element is a tuple


• CSP


• each element is a process


• processes connected via 
channels



Shear Sort 
(algorithm)

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

• Input: unsorted n x n array


• Output: array sorted in snake-
like order 


• Algorithm:  
do log(n) times 
  - sort rows (alternating order) 
  - sort the columns 
sort the rows (one more time)


• Time Complexity: O( log(n) )



Shear Sort example
3 11 6 16

8 1 5 10

14 7 12 2

4 13 9 15

Initial state

3 6 11 16

10 8 5 1

2 7 12 14

15 13 9 4

After phase 1

2 6 5 1

3 7 9 4

10 8 11 14

15 13 12 16

After phase 2

1 2 5 6

9 7 4 3

8 10 11 14

16 15 13 12

After phase 3

1 2 4 3

8 7 5 6

9 10 11 12

16 15 13 14

After phase 4

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13
After phase 5: final



Correctness of Shear Sort

• Proof: 


• based on the 0-1 Principle (the 0-1 Sorting Lemma)


• if algorithm works for all permutations of 0’s and 1’s, it 
will work for numbers of any value!


• simplifies the number of cases we need to consider



Correctness of Shear Sort
• Assume any zero-one n x n matrix. There are only three 

kinds of rows:


• all-one rows containing only 1’s


• all-zero rows containing only 0’s


• dirty rows containing both 0’s and 1’s


• Initially, input matrix can contain n dirty rows (worst case)


• The final matrix can contain at most one dirty row



Correctness of Shear Sort

• Proposition: One row and one column phase reduce the 
number of dirty rows to at least one half.  


• Proof: (case analysis)


• Consider all dirty rows after one row phase. One half of 
them is sorted 0’s before 1’s, and the other half 1’s 
before 0’s. 


• If we consider pairs of 0-1 and 1-0 rows, we have 3 
cases:



Correctness of Shear Sort 
(three kinds of pairs of dirty rows)

0 . . . 0 1 . . 1 0 . . 0 1 . . . 1 0 . . 0 1 . . . 1

1 . 1 0 . . . . 0 1 . . . . 1 0 . 0 1 . . 1 0 . . . 0

0 . . . . . . . 0 0 . . 0 1 1 0 . 0 0 . . . . . . . 0

1 . 1 0 0 1 . . 1 1 . . . . . . . 1 1 . . . . . . . 1

(a) (b) (c)



Correctness of Shear Sort
• After applying one column phase:


• one dirty row disappears in cases (a) and (b), 


• and both dirty rows disappear in case © 


• Therefore, after two log(n) phases, at most one dirty row now 
remains and one more row sort completes sorting


• Note: if the rows were sorted all ascending, not in snake-like 
order, the algorithm wouldn’t work


• Unfortunately, shear sort is not optimal. But it is cool to 
study! 


