Lecture Notes

CS377 - Parallel Programming Marc L. Smith

Shear Sort

Parallel Sorting Networks

- Previously:
 - Concurrent Bubble Sort (Sort Pump Gophers)
 - One-dimensional sorting algorithm (pipeline)
 - Time Complexity: O(n)
 - Processors required: O(n)
 - Can we do better time-wise? If so, how much?
 - At what cost in number of processors required?

Shear Sort

- Two-dimensional sorting algorithm
- Can be implemented through either:
 - shared memory (Linda / Tuple Space Ruby/Rinda)
 - message passing (CSP / channels Go)
- Oblivious Comparison-Exchange (OCE) based
 - same number of comparisons regardless of initial order

Shear Sort (snake-like order)

Shear Sort (implementation models)

- Linda / Tuple Space
 - each element is a tuple
- CSP
 - each element is a process
 - processes connected via channels

Shear Sort (algorithm)

- Input: unsorted n x n array
- Output: array sorted in snakelike order
- Algorithm:
 - do log(n) times
 - sort rows (alternating order)
 - sort the columns sort the rows (one more time)
- Time Complexity: O(log(n))

Shear Sort example

3	11	6	16
8	1	5	10
14	7	12	2
4	13	9	15

3	6	11	16
10	8	5	1
2	7	12	14
15		9	4

Initial state

After	phase 1	

After phase 2

1	2	5	6
9	7	4	3
8	10	11	14
16	15	13	12

1	2	4	3
8	7	5	6
9	10	111	12
16	15		14

After phase 3

After phase 4

After phase 5: final

- Proof:
 - based on the 0-1 Principle (the 0-1 Sorting Lemma)
 - if algorithm works for all permutations of 0's and 1's, it will work for numbers of any value!
 - simplifies the number of cases we need to consider

- Assume any zero-one n x n matrix. There are only three kinds of rows:
 - all-one rows containing only 1's
 - all-zero rows containing only 0's
 - dirty rows containing both 0's and 1's
- Initially, input matrix can contain n dirty rows (worst case)
- The final matrix can contain at most one dirty row

- **Proposition:** One row and one column phase reduce the number of dirty rows to at least one half.
- Proof: (case analysis)
 - Consider all dirty rows after one row phase. One half of them is sorted 0's before 1's, and the other half 1's before 0's.
 - If we consider pairs of 0-1 and 1-0 rows, we have 3 cases:

Correctness of Shear Sort (three kinds of pairs of dirty rows)

- After applying one column phase:
 - one dirty row disappears in cases (a) and (b),
 - and both dirty rows disappear in case ©
- Therefore, after two log(n) phases, at most one dirty row now remains and one more row sort completes sorting
- Note: if the rows were sorted all ascending, not in snake-like order, the algorithm wouldn't work
- Unfortunately, shear sort is not optimal. But it is cool to study!