Applying ...

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)
\ /

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

The Dining Philosophers

Once upon a time, five philosophers lived in the same
college. They were proud, independent philosophers
who thought independent thoughts and never
communicated with each other (or with anyone else,
for that matter) what these thoughts might have been.

From time to time, each philosopher would get hungry.
At such times, she (or he) would stop thinking and go
to the single dining room in the college — shared by all
the philosophers.

The Dining Philosophers

The dining room contained one circular table, around
which were symmetrically placed five chairs. Each chair
was labelled with the name of one of the philosophers and

each philosopher was only allowed to sit in her/his own
chair.

The Dining Philosophers

Opposite each chair was a plate and, between the plates,
was laid a single golden fork. In the centre of the table was a
large bowl of spaghetti, which was constantly replenished.

The Dining Philosophers

The philosophers never managed to master the art of
serving, or indeed, eating the spaghetti with a single fork.

To eat, they had to pick up two forks — one from each side
of their plates.

The Dining Philosophers

The philosophers never managed to master the art of
serving, or indeed, eating the spaghetti with a single fork.

To eat, they had to pick up two forks — one from each side
of their plates.

The Dining Philosophers

If a fork was being used by a neighbouring philosopher,
a hungry philosopher anxiously waited for the neighbour
to finish eating.

The Dining Philosophers

If a fork was being used by a neighbouring philosopher,
a hungry philosopher anxiously waited for the neighbour

to finish eating.

This was the only occasion when the existence of one
philosopher had an impact on the life of another ...

The Dining Philosophers

The philosophers lived like this for years and years until,
one day, something most unfortunate happened.

The Dining Philosophers

The philosophers lived like this for years and years until,
one day, something most unfortunate happened.
By chance, all the philosophers got hungry at the same

time, went to the dining room, sat down and reached for
the forks.

The Dining Philosophers

By further chance, each philosopher picked up the fork on
her/his left.

5-Dec-06 Copyright P.H.Welch

12

The Dining Philosophers

By further chance, each philosopher picked up the fork on
her/his left. Noticing that the other fork was being used, all

philosophers waited for their neighbours to finish
and waited ... and waited ... and waited

The Dining Philosophers

By further chance, each philosopher picked up the fork on
her/his left. Noticing that the other fork was being used, all

philosophers waited for their neighbours to finish
and waited ... and waited ... and waited and starved

to death!

® o ®

2 b The Dining Philosophers

®

The story of The Dining Philosophers is due to Edsger
Dijkstra — one of the founding fathers of Computer Science.

It illustrates a classic problem in concurrency: how to share
resources safely between competing consumers.

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF

<:::E£§;;maldo;;;;i:::>

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF
http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD310.PDF

.55, The Dining Philosophers

-y

In this example, the resources are the forks and the
consumers are the philosophers.

Problems arise because of the limited nature of the
resources (only 5 forks) and because each consumer
(5 of them) needs 2 forks at a time.

The spaghetti is an infinite resource in this tale — so,
plays no role in the catastrophe.

Similarly, the college provides exclusive facilities for
thinking (rooms) and eating (chairs and plates) for each
philosopher — so, these also play no role.

® ®

B2 £
®

The source of the story was a deadlock that would
mysteriously arise from time to time in an early
multiprocessing operating system.

The Dining Philosophers

@

The philosophers are user processes that need file 1/O.

To read or write a file, a process has to acquire a data
buffer (to smooth data transfer and make it fast). If 2 files
need to be open at the same time, 2 buffers are needed.

In those days, memory was scarce — so the number of
buffers was limited. The forks are the buffers.

.. The Dining Philosophers

®

Today — some 34 years later — memory is not so scarce!

Yet, operating system (or specific application) deadlock is
rampant. How often does your whole PC (or one of its
applications) lock up on you?

We have been, and still are, making the same mistakes
again and again and again ...

8 gy

® g ® D O g® Bm® B ®
® ® ® ® ®

The Dining Philosophers

We’'ll modify the system to eliminate deadlock presently.
First, let’'s model the system as it stands. Then, we can
start reasoning about it!

As discussed, the only significant players are the forks and
the philosophers. We’'ll start with the philosophers.

right) left
phi losopher

PROC philosopher (CHAN BOOL left!, right!)

This philosopher’s only point of contact with the rest of the
world is when picking up the forks ...

right) left
¢ phi losopher

PROC philosopher (CHAN BOOL left!, right!)
WHILE TRUE

SEQ

... think

PAR -- pick up forks
left ! TRUE
right ! TRUE

... eat

PAR -- put down forks
left ! TRUE

right ! TRUE

This philosopher’s only point of contact with the rest of the
world is when picking up the forks ... the philosopher will
be blocked if one or both are not there ...

right) left
phi losopher

PROC philosopher (CHAN BOOL left!, right!)
WHILE TRUE

SEQ

... think

PAR -- pick up forks
left ! TRUE
right ! TRUE

... eat

PAR -- put down forks
left ! TRUE

right ! TRUE

This philosopher’s only point of contact with the rest of the
world is when picking up the forks ... the philosopher will
never be blocked putting down the forks ...

left)@(right

PROC fork (CHAN BOOL left?, right?)

WHILE TRUE
BOOL any:
ALT
left ? any -- left phil picks up
left ? any -- left phil puts down
right ? any -- right phil picks up
right ? any -- right phil puts down

Once a fork has been picked up by a philosopher (say the
one on its left), it waits to be put down by that philosopher
(the one on its left). While it is being held by one, it cannot

be picked up by another.

left)@(right

PROC fork (CHAN BOOL left?, right?)

WHILE TRUE
BOOL any:
ALT
left ? any -- left phil picks up
left ? any -- left phil puts down
right ? any -- right phil picks up
right ? any -- right phil puts down

Once a fork has been picked up by a philosopher (say the
one on its left), it waits to be put down by that philosopher
(the one on its left). While it is being held by one, it cannot

be picked up by another.

left)@(right

PROC fork (CHAN BOOL left?, right?)

WHILE TRUE
BOOL any:
ALT
left ? any -- left phil picks up
left ? any -- left phil puts down
right ? any -- right phil picks up
right ? any -- right phil puts down

Note: this fork process provides a mutual exclusion lock —
commonly known as a ‘mutex’. If two processes must not
engage in a particular activity at the same time, program
them to acquire a mutex first ... and release it afterwards’.

* NB: there are other ways ...

right) left
phi losopher

AN
A 4

PROC philosopher (CHAN BOOL left!, right!)
WHILE TRUE
SEQ

--- think

PAR -- pick up forks
left ! TRUE
right ! TRUE

... eat

PAR -- put down forks
left ! TRUE
right ! TRUE

For our phi losopher processes, the competitive activity is
using a particular fork. Only one may use it at a time ...
Hence, it must acquire the fork before eating ... and release

It afterwards.

The Dining Philosophers

Now, let’'s build the coll lege system ... which is simply
all the philosophers and all the forks ... connected
together correctly.

The col lege is just a process. Itis a closed system,
currently, with no connections to the outside world.

@ Ilege (o3 P
1[4]
P P
r[4] 1[1]

1[3] /@\ r[2]
P [z iczy] P

“1"="left’, “r" ="“right” channels (from the philosophers’ points of view)

6 llege r[o] P 1[0] \
.[},G)/ o

P P

r[4] Ifi]
1[2] /@\ r[2]

P

\\\\\‘ 1[2] 4“’///
PROC college ()

[5]CHAN BOOL left, right:
PAR i = O FOR 5
PAR
philosopher (left[i]!, right[i]}!)
fork (left[i]?, right[(i+1)\5]?)

The Dining Philosophers

Now, let’s eliminate the potential for deadlock in this
system ... and prove it!

Ways to avoid this deadlock ...

O Buy one extra fork:

Asymmetric solution. Also, the philosophers are very jealous
and would not tolerate one of their number having more
resources (an extra fork) than the others!

QO Buy five extra forks:

Too expensive!! The college is suffering from government
cut-backs and the forks are made of gold.

O One of the philosophers picks up the right fork first:

Asymmetric solution. Each philosopher would need to be
told whether to go for the right or left first. Also, it forces the
fork pick-ups to be done in sequence. Philosophers have
two hands and want to use them in parallel.

Ways to avoid this deadlock ...

External authority:

College hires a security guard to whom each
philosopher has to report when she wants to sit down at
or stand up from the table.

The security guard has instructions not to allow more
than four philosophers at a time to sit down.

This solution is symmetric (the philosophers still have
equal, though reduced, rights), does not reduce
concurrency (in the fork pick-ups) and is cheap (salaries
are peanuts compared with the cost of extra forks).

We'll go for this one ...

///;;cure. r[0]

col lege

1[4]

\ P Irr=] 1[2]

“d” = “down”, “u” = “up” channels (for indicating wish to sit down or stand up)

right) left
philosopher

downly ‘lup

PROC philosopher (CHAN BOOL left!, right!, down!, up!)
WHILE TRUE

A
\ %

SEQ
... think
down ! TRUE -- get permission to sit down
PAR -- pick up forks
left ! TRUE
right ! TRUE
... eat
PAR -- put down forks
left ! TRUE
right ! TRUE
up ! TRUE -- notify security that

-- you have finished

ugol|ldro]

PROC security ([JCHAN BOOL down?, up?)
VAL INT max IS (SIZE down?) - 1:
INITIAL INT n.sat.down IS O:
WHILE TRUE

BOOL any:
ALT @ = 0 FOR SIZE down?
ALT
(n.sat.down < max) & down[i] ? any
n.sat.down = n.sat.down + 1
up[i] ? any
n.sat.down := n.sat.down — 1

///;;cure. r[0]

col lege

1[4]

\ P Irr=] 1[2]

“d” = “down”, “u” = “up” channels (for indicating wish to sit down or stand up)

//1;;Ilege r[o]

1[4]

P Iz 2yl P

PROC college O \\\;

[5]CHAN BOOL left, right:

PAR I = 0 FOR 5
PAR
philosopher (left[i]!, right[i]!)
fork (left[1]?, right [(i+1)\5]7?)

//;;cure.

college

1[4]

rio]

d[4]
\

riz]

U[OTUT[O]

1]
—

1[1]
ul2]
2]
r[2]

-
uf4]
r[4]
Q7
ul3] d
13]
4)

1[2]

P

P

/

PROC secure.college () \\\;
[5]CHAN BOOL left, right:
[5]CHAN BOOL up, down:

PAR § = 0 FOR 5
PAR

philosopher (left[i]!, right[i]!, down[i]!, up[i]!)

fork (left[i]?, right [(i+1)\5]?)

//;;cure.

college

1[4]

A0

P Irs] 1[2]
PROC secure.college () \\\;

[5]CHAN BOOL left, right:
[5]CHAN BOOL up, down:
PAR
security (down?, up?)
PAR i = 0 FOR 5
PAR
philosopher (left[i]!, right[i]!, down[i]!, up[i]!)
fork (left[i1]?, right [(i+1)\5]?)

The potential for deadlock in coll lege was not
obvious to its designers.

The claim that there is no such potential within
secure.col lege should not be accepted lightly.

We must provide a (formal) proof of the absence
of deadlock in any safety-critical application.

Systematic validation through “exhaustive” testing
is unacceptable ... been there ... doesn't work ... !

DEF (informal): DEADLOCK

A network of processes is deadlocked when every process is
blocked trying to communicate with other processes within that
network.

If any process within the network is blocked waiting for an external
communication, its environment may eventually offer that communication
— and the network would proceed. It is not deadlocked.

If any process within the network is blocked on a timeout, that process
will eventually continue — and the network is not deadlocked.

A deadlocked network refuses all external events (communications, the
passing of time, ...), as well as all internal activity.

DEF (informal): DEADLOCK

A network of processes is deadlocked when every process is

blocked trying to communicate with other processes within that
network.

Theorem: a deadlocked network will contain a cycle of

processes with each process in the cycle blocked trying to
communicate with the next node in the cycle.

ﬂllege

1[4]

\ P Irr=]

This college
may deadlock

OB®

?

] [2]-

Note the cycle of blocked
communications

@cu re. r[0]

col lege

1[4]

P risl : 1[2] . What about
this one?

The claim that there is no deadlock within secure.col lege
should not be accepted lightly.

ASSUME: secure.col lege is deadlocked ...

In that case, all its processes — each phi losopher, each fork
and the security guard are blocked. Where might they be?

The security guard can only be in one place — blocked on its
ALT, waiting for a phi losopher to enter/leave the dining room.

ufo]||drol

uf4]

PROC security ([JCHAN BOOL down?, up?)
VAL INT max IS (SIZE down?) — 1:
INT n.sat.down:
SEQ
n.sat.down = 0
WHILE TRUE
BOOL any:
ALT § = 0 FOR SIZE down?
ALT
(n.sat.down < max) & down[i] ? any
n.sat.down := n.sat.down + 1
up[i] ? any
n.sat.down := n.sat.down - 1

The claim that there is no deadlock within secure.col lege
should not be accepted lightly.

ASSUME: secure.col lege is deadlocked ...

In that case, all its processes — each phi losopher, each fork
and the security guard are blocked. Where might they be?

The security guard can only be in one place — blocked on its
ALT, waiting for a phi losopher to enter/leave the dining room.

Each fork is either on the table or in the hands of one of its
neighbouring philosophers.

left @ _right

PROC fork (CHAN BOOL left?, right?)

WHILE TRUE
BOOL any:
ALT
left ? any -- left phil picks up
left ? any -- left phil puts down
right ? any -- right phil picks up

right ? any right phil puts down

5-Dec-06 Copyright P.H.Welch 48

The claim that there is no deadlock within secure.col lege
should not be accepted lightly.

ASSUME: secure.col lege is deadlocked ...

In that case, all its processes — each phi losopher, each fork
and the security guard are blocked. Where might they be?

Each phi losopher could be in one of several places — thinking,
trying to get past security, trying to pick up its forks, eating,
trying to put down its forks or trying to leave the dining room (i.e.
telling security that it's leaving).

left

A 4

€ I phi losopher

down l l up

PROC philosopher (CHAN BOOL left!, right!, down!, up!)
WHILE TRUE

SEQ
--- think
down ! TRUE get permission to sit dgwn
PAR pick up forks
left ! TRUE
right ! TRUE
... eat
PAR put down forks
left ! TRUE
right ! TRUE
up ! TRUE -- notify security that

-- you have finished

The claim that there is no deadlock within secure.col lege
should not be accepted lightly.

ASSUME: secure.col lege is deadlocked ...

In that case, all its processes — each phi losopher, each fork
and the security guard are blocked. Where might they be?

Therefore, one phi losopher must be stuck trying to get past
security. The other four must be in the dining room, trying to
pick up their forks. No philosopher can have picked up both
forks (else s/he would be eating — which is in the non-stuck
region).

left

A 4

€ I phi losopher

down l l up

PROC philosopher (CHAN BOOL left!, right!, down!, up!)
WHILE TRUE

SEQ
--- think
down ! TRUE get permission to sit dgwn
PAR pick up forks
left ! TRUE
right ! TRUE
... eat
PAR put down forks
left ! TRUE
right ! TRUE
up ! TRUE -- notify security that

-- you have finished

@cu re. r[0]

col lege

1[4]

\ P [r=1 iczy] P /

Without loss of generality, suppose it's the top philosopher who is not there.

@cu re. r[0]

col lege

fork]

P r[3]= iczy] P

Philosophers 1 and 4 must get the top forks ...

@cu re. r[0]

col lege

fork .

\ P Irr=] 1[2]

They can’t have both their forks — so philosophers 2 and 3 must have them ...

@cu re. r[0]

col lege

fork]

r[4]

flork

\ P Irr=] 1[2]

Philosophers 2 and 3 can’t have both their forks ...

///;;cure.

col lege

r[o] P \

fork .

r[3] 1[2]
\\\\\\‘ fork 4"////

... but ONE WILL GET BOTH !l

5-Dec-06

Simiiar (Inrormal) proor that the otner
5d)1or ensunng freedom from
USt that!

Copyright P.H.Welch

58

EXercise:

Provide seme links from
[0 the outside worid anad animate an
nteractive demonstration of life inside.

“

5-Dec-06 Copyright P.H.Welch

59

reporting.

dr4l
uf4]

r[o]l

ufi]
d[il

security =
1[1]

d[3
u[3] d[2] A °

r[2]

risl 1[2]

P

\/

P |

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

Applying ...

The dining philosophers ...
Compiling ...

Real-time inference engine ...
Fast fourier transform ...
Computing on global data ...
Neural nets ...
Microprocessor design ...

Autonomous robots ...

To appear ...

	Applying ...
	Applying …
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	The Dining Philosophers
	Applying …
	Applying …
	Applying …
	Applying …
	Applying …
	Applying …
	Applying …

