
8-Feb-07 Copyright P.H.Welch 1

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism

Peter Welch Peter Welch ((p.h.welch@kent.ac.ukp.h.welch@kent.ac.uk))
Computing Laboratory, University of Kent at CanterburyComputing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)

8-Feb-07 Copyright P.H.Welch 2

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 3

Deterministic Processes (CSP)Deterministic Processes (CSP)Deterministic Processes (CSP)
So far, our parallel systems have been So far, our parallel systems have been deterministicdeterministic::

the values in the output streams depend only on the values in the output streams depend only on
the values in the input streams; the values in the input streams;
the semantics is scheduling independent;the semantics is scheduling independent;
no race hazards are possible.no race hazards are possible.

CSPCSP parallelism, on its own, parallelism, on its own, does not introduce does not introduce
nonnon--determinismdeterminism..

This gives a firm foundation for exploring realThis gives a firm foundation for exploring real--world world
models which cannot always behave so simply.models which cannot always behave so simply.

8-Feb-07 Copyright P.H.Welch 4

Non-Deterministic Processes (CSP)NonNon--Deterministic Processes (CSP)Deterministic Processes (CSP)
In the real world, it is sometimes the case that In the real world, it is sometimes the case that
things happen as a result of:things happen as a result of:

what happened in the past;what happened in the past;
when (or, at least, in what order) things happened.when (or, at least, in what order) things happened.

In this world, things are scheduling dependent.In this world, things are scheduling dependent.

CSPCSP (and (and occamoccam--ππ) addresses these issues) addresses these issues
explicitlyexplicitly..

NonNon--determinism does not arise by default.determinism does not arise by default.

8-Feb-07 Copyright P.H.Welch 5

A Control ProcessA Control ProcessA Control Process

replace replace ((in?in?,, out!out!,, inject?inject?))

inin outout

injectinject?

?

Coping with the real world Coping with the real world -- making choices making choices ……

In In replacereplace, data normally flows from , data normally flows from in?in? to to out!out!
unchanged.unchanged.

However, if something arrives on However, if something arrives on inject?inject?, it is , it is
output on output on out!out! -- instead ofinstead of the next input from the next input from in?in?..

8-Feb-07 Copyright P.H.Welch 6

A Control ProcessA Control ProcessA Control Process

replace replace ((in?in?,, out!out!,, inject?inject?))

inin outout

injectinject?

?

xx

The The out!out! stream depends upon:stream depends upon:
The values contained in the The values contained in the inin and and injectinject streams;streams;
the the orderorder in which those values arrive.in which those values arrive.

aa
bb
cc
dd
ee
..
..

xx
bb
cc
dd
ee
..
..

aa
xx
cc
dd
ee
..
..

aa
bb
xx
dd
ee
..
..

aa
bb
cc
xx
ee
..
..

aa
bb
cc
dd
xx
..
..

The The out!out! stream is stream is notnot determined just by the determined just by the in?in?
and and inject?inject? streams streams -- it is it is nonnon--deterministicdeterministic..

8-Feb-07 Copyright P.H.Welch 7

A Control ProcessA Control ProcessA Control Process

inin outout

injectinject?

?

for information only for information only ……

replace (in?, out!, inject?) =replace (in?, out!, inject?) =
(inject?x (inject?x ----> ((in?a > ((in?a ----> SKIP) || (out!x > SKIP) || (out!x ----> SKIP))> SKIP))
[PRI] [PRI]
in?a in?a ----> out!a > out!a ----> SKIP> SKIP
););
replace (in?, out!, inject?)replace (in?, out!, inject?)

Note:Note:[][] is the (external) choice operator of CSP.is the (external) choice operator of CSP.
[PRI][PRI] is a is a prioritisedprioritised version version -- giving priority to the event on its left.giving priority to the event on its left.

8-Feb-07 Copyright P.H.Welch 8

Another Control ProcessAnother Control ProcessAnother Control Process

scalescale ((s, s, in?in?,, out!out!,, inject?inject?))

inin outout

injectinject??

??
**ss

Coping with the real world Coping with the real world -- making choices making choices ……

In In scalescale, data flows from , data flows from in?in? to to out!out!, getting , getting
scaled by a factor of scaled by a factor of ss as it passes.as it passes.

Values arriving on Values arriving on inject?inject? reset the reset the ss factor.factor.

8-Feb-07 Copyright P.H.Welch 9

Another Control ProcessAnother Control ProcessAnother Control Process

The The out!out! stream depends upon:

nn**aa
nn**bb
nn**cc
nn**dd
nn**ee
..
..

nn

stream depends upon:
The values contained in the The values contained in the in?in? and and inject!inject! streams;streams;
the the orderorder in which those values arrive.in which those values arrive.

aa
bb
cc
dd
ee
..
.

scalescale ((s, s, in?in?,, out!out!,, inject?inject?))

inin outout

injectinject??

??
**ss

ss**aa
nn**bb
nn**cc
nn**dd
nn**ee
..
.. .

ss**aa
ss**bb
nn**cc
nn**dd
nn**ee
..
..

The The out!out! stream is stream is notnot determined just by the determined just by the in?in?
and and inject?inject? streams streams -- it is it is nonnon--deterministicdeterministic..

8-Feb-07 Copyright P.H.Welch 10

Another Control ProcessAnother Control ProcessAnother Control Process

inin outout

injectinject??

??
**ss

scale (s, in?, out!, inject?) =scale (s, in?, out!, inject?) =
(inject?s (inject?s ----> SKIP> SKIP
[PRI] [PRI]
in?a in?a ----> out!s*a > out!s*a ----> SKIP> SKIP
););
scale (s, in?, out!, inject?)

for information only for information only ……
scale (s, in?, out!, inject?)

Note:Note:[][] is the (external) choice operator of CSP.is the (external) choice operator of CSP.
[PRI][PRI] is a is a prioritisedprioritised version version -- giving priority to the event on its left.giving priority to the event on its left.

8-Feb-07 Copyright P.H.Welch 11

A Real-Time ProcessA RealA Real--Time ProcessTime Process

countcount ((periodperiod, , in?in?,, out!out!))

outoutinin
??

countcount
((periodperiod))

Coping with the real world Coping with the real world -- making choices making choices ……

countcount observes passing time and messages arriving observes passing time and messages arriving
on on in?in?. Every . Every periodperiod microseconds, it outputs (onmicroseconds, it outputs (on
out!out!) the number of messages received during the) the number of messages received during the
previous previous periodperiod..

8-Feb-07 Copyright P.H.Welch 12

A Real-Time ProcessA RealA Real--Time ProcessTime Process
5
5
3
0
0
.
.

0
2
0
5
8
.
.

4
7
0
3
3
.
.

The The out!out! stream depends upon:

a
b
c
d
e
.
.

countcount ((periodperiod, , in?in?,, out!out!))

outoutinin
??

countcount
((periodperiod))

stream depends upon:
WhenWhen values arrived on the values arrived on the in?in? stream (the values stream (the values
received are irrelevant).received are irrelevant).

The The out!out! stream is stream is notnot determined by the determined by the in?in?
stream values stream values -- it is it is nonnon--deterministicdeterministic..

8-Feb-07 Copyright P.H.Welch 13

A Real-Time ProcessA RealA Real--Time ProcessTime Process

countcount ((periodperiod, , in?in?,, out!out!))

outoutinin
??

countcount
((periodperiod))

count (period, in?, out!) =count (period, in?, out!) =

standard CSP does standard CSP does
not address time not address time ……

but but occamoccam--ππ does does ……

8-Feb-07 Copyright P.H.Welch 14

A Resettable NetworkA A ResettableResettable NetworkNetwork
resetreset

numbers.resetnumbers.reset

outout

succsucc

00

This is a This is a resettableresettable version of the version of the numbersnumbers process.process.

If nothing is sent down If nothing is sent down resetreset, it behaves as before., it behaves as before.

But it may be But it may be resetreset to continue counting from to continue counting from anyany
number at number at anyany time.time.

8-Feb-07 Copyright P.H.Welch 15

Non-Deterministic ProcessesNonNon--Deterministic ProcessesDeterministic Processes
To enable these, To enable these, occamoccam--ππ introducesintroduces a new a new
programming structure: the programming structure: the ALTALT ……

…… which explicitly introduces which explicitly introduces nonnon--determinismdeterminism..

a very simple a very simple
and elegant ideaand elegant idea

will not frighten will not frighten
the horses the horses ……

8-Feb-07 Copyright P.H.Welch 16

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 17

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice
ALTALT

guardedguarded
processesprocesses

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

8-Feb-07 Copyright P.H.Welch 18

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

A A <guard><guard> may be may be readyready or or notnot--readyready..

A A notnot--readyready <guard><guard> may change to may change to readyready as as
a result of external activity.a result of external activity.

A A readyready <guard><guard> may be executed.may be executed.

8-Feb-07 Copyright P.H.Welch 19

ALTALT

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

guardedguarded
processesprocesses

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

8-Feb-07 Copyright P.H.Welch 20

AnAn ALTALT process executes as follows:process executes as follows:

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

if no guard is ready,if no guard is ready, the process is suspended until one, the process is suspended until one,
or more, become ready;or more, become ready;

if one guard is ready,if one guard is ready, execute it and then execute the execute it and then execute the
process it was defending process it was defending (end of (end of ALTALT process)process);;

if more than one guard is ready,if more than one guard is ready, one is one is arbitrarilyarbitrarily
chosenchosen and executes, followed by the process it was and executes, followed by the process it was
defending defending (end of (end of ALTALT process)process)..

Note:Note: only only oneone of the guarded of the guarded
processes is executed.processes is executed.

8-Feb-07 Copyright P.H.Welch 21

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

inputinput
guards guards

timeouttimeout
guards guards

SKIPSKIP
guards guards

There are 3 types ofThere are 3 types of <guard><guard> ……

8-Feb-07 Copyright P.H.Welch 22

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

inputinput
guards guards

<process><process><process>

in ? xin ? x

An input guard is An input guard is readyready if a process on the other end of the if a process on the other end of the
channel is trying to output to that channel and is waiting for channel is trying to output to that channel and is waiting for
its message to be taken.its message to be taken.

Execution of this guard Execution of this guard (if chosen)(if chosen) is just execution of the is just execution of the
input process. Note that execution of this guard leaves it input process. Note that execution of this guard leaves it
notnot--ready ready (until another process again outputs to the (until another process again outputs to the
channel). channel).

8-Feb-07 Copyright P.H.Welch 23

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice
in.0in.0

crude.plexcrude.plexcrude.plexin.1in.1
in.2in.2

outout

PROC PROC crude.plexcrude.plex (CHAN INT in.0?, in.1?, in.2?, out!)(CHAN INT in.0?, in.1?, in.2?, out!)
WHILE TRUEWHILE TRUE
INT x:INT x:
ALTALT
in.0 ? xin.0 ? x
out ! xout ! x

in.1 ? xin.1 ? x
out ! xout ! x

in.2 ? xin.2 ? x
out ! xout ! x

:

guardedguarded
processesprocesses

:

8-Feb-07 Copyright P.H.Welch 24

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

timeouttimeout
guards guards

<process><process><process>

timtim ? AFTER t? AFTER t

A timeout guard is A timeout guard is readyready if the time currently showing on the if the time currently showing on the
TIMERTIMER ((timtim) is) is AFTERAFTER the time indicated (the time indicated (tt). Note that the). Note that the
time on a time on a TIMERTIMER continually increments and that the time continually increments and that the time
indicated cannot change while awaiting this timeout.indicated cannot change while awaiting this timeout.

Execution of this guard Execution of this guard (if chosen)(if chosen) is null. is null. Note that execution Note that execution
of this guard leaves it of this guard leaves it readyready (until the value of timeout is (until the value of timeout is
changed).changed).

8-Feb-07 Copyright P.H.Welch 25

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

panicpanic

inin outout
watchdog (period)watchdog (period)watchdog (period)

PROC watchdog (VAL INT period,PROC watchdog (VAL INT period,
CHAN INT in?, out!, CHAN BOOL panic!)CHAN INT in?, out!, CHAN BOOL panic!)

WHILE TRUEWHILE TRUE
TIMER TIMER timtim::
INT INT tt, , xx::
SEQSEQ
timtim ? t? t
ALTALT
in ? xin ? x
out ! xout ! x

timtim ? AFTER t PLUS period? AFTER t PLUS period
panic ! TRUEpanic ! TRUE

::

guardedguarded
processesprocesses

8-Feb-07 Copyright P.H.Welch 26

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

SKIPSKIP
guards guards

<process><process><process>

SKIPSKIP

A A SKIPSKIP guard is always ready.guard is always ready.

Execution of this guard Execution of this guard (if chosen)(if chosen) is null.is null.

8-Feb-07 Copyright P.H.Welch 27

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice
ALTALT
SKIPSKIP
x := 42x := 42

SKIPSKIP
x := 43

guardedguarded
processesprocesses

x := 43

Both guards are ready Both guards are ready –– so an so an arbitrary choicearbitrary choice is made!is made!

Actually, such nonActually, such non--determinism is too much to be useful and determinism is too much to be useful and
the compiler issues warnings the compiler issues warnings –– the programmer probably the programmer probably
didndidn’’t mean to write this!t mean to write this!

SKIPSKIP guards only become useful with guards only become useful with prioritised choiceprioritised choice, ,
which comes next. which comes next.

8-Feb-07 Copyright P.H.Welch 28

Deterministic ChoiceDeterministic ChoiceDeterministic Choice
PRI ALTPRI ALT

guardedguarded
processesprocesses

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

8-Feb-07 Copyright P.H.Welch 29

AA PRIPRI ALTALT process executes as follows:process executes as follows:

Deterministic ChoiceDeterministic ChoiceDeterministic Choice

if no guard is ready,if no guard is ready, the process is suspended until one, the process is suspended until one,
or more, become ready;or more, become ready;

if one guard is ready,if one guard is ready, execute it and then execute the execute it and then execute the
process it was defending process it was defending (end of (end of PRIPRI ALTALT process)process);;

if more than one guard is ready,if more than one guard is ready, the first one listed isthe first one listed is
chosenchosen and executes, followed by the process it was and executes, followed by the process it was
defending defending (end of (end of PRIPRI ALTALT process)process)..

Note:Note: only only oneone of the guarded of the guarded
processes is executed.processes is executed.

8-Feb-07 Copyright P.H.Welch 30

Example – Polling a ChannelExample Example –– Polling a ChannelPolling a Channel
PRI ALTPRI ALT
in ? xin ? x
... message was pending... message was pending

SKIPSKIP
... message was not pending... message was not pending

guardedguarded
processesprocesses

If no message was pending on the channel, the first guard If no message was pending on the channel, the first guard
is is notnot--readyready. But the second guard is (always) . But the second guard is (always) readyready, so , so
that guarded process is executed.that guarded process is executed.

If a message was pending on the channel, the first guard If a message was pending on the channel, the first guard
is is readyready. So (always) is the second guard . So (always) is the second guard –– but the first but the first
has priority and is taken.has priority and is taken.

A A SKIPSKIP guard lets us poll channels to test if a message is guard lets us poll channels to test if a message is
pending and, if so, deal with it. pending and, if so, deal with it. Beware polling though Beware polling though –– it it
can lead to inefficient and poor design can lead to inefficient and poor design ……

8-Feb-07 Copyright P.H.Welch 31

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 32

Example – a Control ProcessExample Example –– a Control Processa Control Process

replace replace ((in?in?,, out!out!,, inject?inject?))

inin outout

injectinject?

?earlier example

earlier example ……

Coping with the real world Coping with the real world -- making choices making choices ……

In In replacereplace, data normally flows from , data normally flows from in?in? to to out!out!
unchanged.unchanged.

However, if something arrives on However, if something arrives on inject?inject?, it is , it is
output on output on out!out! -- instead ofinstead of the next input from the next input from in?in?..

8-Feb-07 Copyright P.H.Welch 33

Example – a Control ProcessExample Example –– a Control Processa Control Process

replace replace ((in?in?,, out!out!,, inject?inject?))

inin outout

injectinject?

?

xx

The The out!out! stream depends upon:stream depends upon:
The The valuesvalues contained in the contained in the inin and and injectinject streams;streams;
the the orderorder in which those values arrive.in which those values arrive.

aa
bb
cc
dd
ee
..
..

xx
bb
cc
dd
ee
..
..

aa
xx
cc
dd
ee
..
..

aa
bb
xx
dd
ee
..
..

aa
bb
cc
xx
ee
..
..

aa
bb
cc
dd
xx
..
..

The The out!out! stream is stream is notnot determined just by the determined just by the in?in?
and and inject?inject? streams streams -- it is it is nonnon--deterministicdeterministic..

8-Feb-07 Copyright P.H.Welch 34

coding
coding …… inin outout

injectinject?

?

Example – a Control ProcessExample Example –– a Control Processa Control Process

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)
WHILE TRUEWHILE TRUE
INT x, any:INT x, any:
PRI ALTPRI ALT
inject ? xinject ? x

in ? x in ? x ---- normallynormally
out ! x out ! x ---- just copy throughjust copy through

::

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)
WHILE TRUEWHILE TRUE
INT x, any:INT x, any:
PRI ALTPRI ALT
inject ? xinject ? x

in ? xin ? x

::

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)
WHILE TRUEWHILE TRUE
INT x, any:INT x, any:

::

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)

::

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)
WHILE TRUEWHILE TRUE
INT x, any:INT x, any:
PRI ALTPRI ALT
inject ? x inject ? x ---- replace thereplace the
PAR PAR ---- next next ‘‘inin’’
in ? any in ? any ---- with thewith the
out ! x out ! x ---- ‘‘injectinject’’ valuevalue

in ? x in ? x ---- normallynormally
out ! x out ! x ---- just copy throughjust copy through

::

8-Feb-07 Copyright P.H.Welch 35

inin outout

injectinject?

?better coding

better coding ……

Example – a Control ProcessExample Example –– a Control Processa Control Process

local declarationlocal declaration

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
INT x, any:INT x, any:
inject ? x inject ? x ---- replace thereplace the
PAR PAR ---- next next ‘‘inin’’
in ? any in ? any ---- with thewith the
out ! x out ! x ---- ‘‘resetreset’’ valuevalue

INT x:INT x:
in ? x in ? x ---- normallynormally
out ! x out ! x ---- just copy throughjust copy through

::

local declarationlocal declaration

8-Feb-07 Copyright P.H.Welch 36

Locals + Guarded ProcessesLocals + Guarded ProcessesLocals + Guarded Processes
ALT ALT ---- or PRI ALTor PRI ALT

guardedguarded
processesprocesses

local declarations local declarations
are optionalare optional

local declarations local declarations
have scope only have scope only
for the following for the following
guarded processguarded process

<process><process><process>

<local declarations><local declarations>
<guard><guard>

<process><process><process>

<local declarations><local declarations>
<guard><guard>

<process><process><process>

<local declarations><local declarations>
<guard><guard>

8-Feb-07 Copyright P.H.Welch 37

scalescale ((s, s, in?in?,, out!out!,, inject?inject?))

inin outout

injectinject??

??
**ss

earlier example

earlier example ……

Example – another Control ProcessExample Example –– another Control Processanother Control Process

Coping with the real world Coping with the real world -- making choices making choices ……

In In scalescale, data flows from , data flows from in?in? to to out!out!, getting , getting
scaled by a factor of scaled by a factor of ss as it passes.as it passes.

Values arriving on Values arriving on inject?inject? reset the reset the ss factor.factor.

8-Feb-07 Copyright P.H.Welch 38

Example – another Control ProcessExample Example –– another Control Processanother Control Process

The The out!out! stream depends upon:stream depends upon:
The The valuesvalues contained in the contained in the in?in? and and inject!inject! streams;streams;
the the orderorder in which those values arrive.in which those values arrive.

aa
bb
cc
dd
ee
..
..

nn**aa
nn**bb
nn**cc
nn**dd
nn**ee
..
..

nn

scalescale ((s, s, in?in?,, out!out!,, inject?inject?))

inin outout

injectinject??

??
**ss

ss**aa
nn**bb
nn**cc
nn**dd
nn**ee
..
..

ss**aa
ss**bb
nn**cc
nn**dd
nn**ee
..
..

The The out!out! stream is stream is notnot determined just by the determined just by the in?in?
and and inject?inject? streams streams -- it is it is nonnon--deterministicdeterministic..

8-Feb-07 Copyright P.H.Welch 39

Example – another Control ProcessExample Example –– another Control Processanother Control Process

inin outout

injectinject??

??
**sscoding

coding ……

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)
INT scale:INT scale:
SEQSEQ
scale := sscale := s
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
inject ? scale inject ? scale ---- get new scaleget new scale

INT x:INT x:
in ? x in ? x ---- datadata
out ! scale*x out ! scale*x ---- scale it upscale it up

::

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)
INT scale:INT scale:
SEQSEQ
scale := sscale := s
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
inject ? scale inject ? scale ---- get new scaleget new scale

INT x:INT x:
in ? x in ? x ---- datadata

::

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)
INT scale:INT scale:
SEQSEQ
scale := sscale := s
WHILE TRUEWHILE TRUE

::

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)

::

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)
INT scale:INT scale:
SEQSEQ
scale := sscale := s
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
inject ? scale inject ? scale ---- get new scaleget new scale
SKIPSKIP

INT x:INT x:
in ? x in ? x ---- datadata

::

local declarationlocal declaration

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)
INT scale:INT scale:
SEQSEQ
scale := sscale := s

::

8-Feb-07 Copyright P.H.Welch 40

Example – another Control ProcessExample Example –– another Control Processanother Control Process

inin outout

injectinject??

??
**ss

simplification

simplification ……

PROC PROC scale (VAL INT s, scale (VAL INT s, CHAN INT CHAN INT in?, out!, inject?)in?, out!, inject?)
INITIAL INT scale IS s:INITIAL INT scale IS s:
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
inject ? scale inject ? scale ---- get new scaleget new scale
SKIPSKIP

INT x:INT x:
in ? x in ? x ---- datadata
out ! scale*x out ! scale*x ---- scale it upscale it up

::

local declarationlocal declaration

initialising declarationinitialising declaration

8-Feb-07 Copyright P.H.Welch 41

Example – a Real-Time ProcessExample Example –– a Reala Real--Time ProcessTime Process

countcount ((periodperiod, , in?in?,, out!out!))

outoutinin
??

countcount
((periodperiod))earlier example

earlier example ……

Coping with the real world Coping with the real world -- making choices making choices ……

countcount observes passing time and messages arriving observes passing time and messages arriving
on on in?in?. Every . Every periodperiod microseconds, it outputs (onmicroseconds, it outputs (on
out!out!) the number of messages received during the) the number of messages received during the
previous previous periodperiod..

8-Feb-07 Copyright P.H.Welch 42

Example – a Real-Time ProcessExample Example –– a Reala Real--Time ProcessTime Process
4
7
0
3
3
.
.

5
5
3
0
0
.
.

The The out!out! stream depends upon:

a
b
c
d
e
.
.

0
2
0
5
8
.
.

countcount ((periodperiod, , in?in?,, out!out!))

outoutinin
??

countcount
((periodperiod))

stream depends upon:
WhenWhen values arrived on the values arrived on the in?in? stream (the values stream (the values
received are irrelevant).received are irrelevant).

The The out!out! stream is stream is notnot determined by the determined by the in?in?
stream values stream values -- it is it is nonnon--deterministicdeterministic..

8-Feb-07 Copyright P.H.Welch 43

Example – a Real-Time ProcessExample Example –– a Reala Real--Time ProcessTime Process
PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)
INITIAL INT seen IS 0:INITIAL INT seen IS 0:
TIMER TIMER timtim::
INT timeout:INT timeout:
SEQSEQ
timtim ? timeout? timeout
timeout := timeout PLUS periodtimeout := timeout PLUS period
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
timtim ? AFTER timeout ? AFTER timeout ---- timeouttimeout

INT any:INT any:
in ? any in ? any ---- datadata
seen := seen + 1seen := seen + 1

::

PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)
INITIAL INT seen IS 0:INITIAL INT seen IS 0:
TIMER TIMER timtim::
INT timeout:INT timeout:
SEQSEQ
timtim ? timeout? timeout
timeout := timeout PLUS periodtimeout := timeout PLUS period
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
timtim ? AFTER timeout ? AFTER timeout ---- timeouttimeout

INT any:INT any:
in ? any in ? any ---- datadata

::

PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)
INITIAL INT seen IS 0:INITIAL INT seen IS 0:
TIMER TIMER timtim::
INT timeout:INT timeout:
SEQSEQ
timtim ? timeout? timeout
timeout := timeout PLUS periodtimeout := timeout PLUS period
WHILE TRUEWHILE TRUE

::

PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)
INITIAL INT seen IS 0:INITIAL INT seen IS 0:
TIMER TIMER timtim::
INT timeout:INT timeout:
SEQSEQ
timtim ? timeout? timeout
timeout := timeout PLUS periodtimeout := timeout PLUS period

::

PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)
INITIAL INT seen IS 0:INITIAL INT seen IS 0:

::

PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)

::

outoutinin
??

countcount
((periodperiod))

PROC PROC count (VAL INT period, count (VAL INT period, CHAN INT CHAN INT in?, out!)in?, out!)
INITIAL INT seen IS 0:INITIAL INT seen IS 0:
TIMER TIMER timtim::
INT timeout:INT timeout:
SEQSEQ
timtim ? timeout? timeout
timeout := timeout PLUS periodtimeout := timeout PLUS period
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
timtim ? AFTER timeout ? AFTER timeout ---- timeouttimeout
SEQSEQ
out ! seenout ! seen
seen := 0seen := 0
timeout := timeout PLUS periodtimeout := timeout PLUS period

INT any:INT any:
in ? any in ? any ---- datadata
seen := seen + 1seen := seen + 1

::
coding
coding ……

8-Feb-07 Copyright P.H.Welch 44

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 45

Example – a Resettable NetworkExample Example –– a a ResettableResettable NetworkNetwork
resetreset

numbers.resetnumbers.reset

outout

succsucc

00
earlier example

earlier example ……

This is a This is a resettableresettable version of the version of the numbersnumbers process.process.

If nothing is sent down If nothing is sent down resetreset, it behaves as before., it behaves as before.

But it may be But it may be resetreset to continue counting from to continue counting from anyany
number at number at anyany time.time.

8-Feb-07 Copyright P.H.Welch 46

resetreset

numbers.resetnumbers.reset

outout

succsucc

00

parallel
implementation

PROC PROC numbers.resetnumbers.reset (CHAN INT reset?, out!)(CHAN INT reset?, out!)

::

aa

ccdd

CHAN INT a, b, c, d:CHAN INT a, b, c, d:

bb

PARPAR
prefix (0, d?, a!)prefix (0, d?, a!)
replace (a?, b!, reset?)replace (a?, b!, reset?)
delta (b?, out!, c!)delta (b?, out!, c!)
succsucc (c?, d!)(c?, d!)

Example – a Resettable NetworkExample Example –– a a ResettableResettable NetworkNetwork

8-Feb-07 Copyright P.H.Welch 47

numbers.resetnumbers.reset
outout

resetreset

Example – a Resettable NetworkExample Example –– a a ResettableResettable NetworkNetwork

PROC PROC numbers.resetnumbers.reset (CHAN INT reset?, out!)(CHAN INT reset?, out!)

::

PROC PROC numbers.resetnumbers.reset (CHAN INT reset?, out!)(CHAN INT reset?, out!)
INITIAL INT n IS 0:INITIAL INT n IS 0:
WHILE TRUEWHILE TRUE
SEQSEQ
PRI ALT PRI ALT ---- poll reset channelpoll reset channel
reset ? nreset ? n
SKIPSKIP

SKIPSKIP
SKIPSKIP

out ! nout ! n
n := n PLUS 1

serial
implementation

n := n PLUS 1
::

8-Feb-07 Copyright P.H.Welch 48

Example – Resettable IntegratorExample Example –– ResettableResettable IntegratorIntegrator

integrate.resetintegrate.reset
outout

resetreset

inin

PROC PROC integrate.resetintegrate.reset (CHAN INT in?, reset?, out!)(CHAN INT in?, reset?, out!)

::

PROC PROC integrate.resetintegrate.reset (CHAN INT in?, reset?, out!)(CHAN INT in?, reset?, out!)
INITIAL INT total IS 0:INITIAL INT total IS 0:
WHILE TRUEWHILE TRUE
SEQSEQ
PRI ALTPRI ALT
reset ? totalreset ? total
SKIPSKIP

INT x:INT x:
in ? xin ? x
total := total + xtotal := total + x

out ! total

serial
implementation

out ! total
::

8-Feb-07 Copyright P.H.Welch 49

PROC PROC integrate.resetintegrate.reset (CHAN INT in?, reset?, out!)(CHAN INT in?, reset?, out!)

::

PARPAR
plus (in?, d?, a!)plus (in?, d?, a!)
replace (a?, b!, reset?)replace (a?, b!, reset?)
delta (b?, out!, c!)delta (b?, out!, c!)
prefix (0, c?, d!)prefix (0, c?, d!)

parallel
implementation

resetreset

integrate.resetintegrate.reset

outout

prefix (0)prefix (0)

+++
inin

CHAN INT a, b, c, d:CHAN INT a, b, c, d:

aa

ccdd

bb

Example – Resettable IntegratorExample Example –– ResettableResettable IntegratorIntegrator

8-Feb-07 Copyright P.H.Welch 50

An Inertial Navigation ComponentAn Inertial Navigation Component

acc.inacc.in

accacc

velvel

pospos

pos.resetpos.resetvel.resetvel.reset

nav.1dnav.1d

acc.inacc.in:: carries carries regularregular accelerometer samples;accelerometer samples;
vel.resetvel.reset:: velocity velocity initialisationinitialisation and and correctionscorrections;;
pos.resetpos.reset:: position position initialisationinitialisation and and correctionscorrections;;
pospos//velvel//accacc:: regularregular outputs.outputs.

8-Feb-07 Copyright P.H.Welch 51

An Inertial Navigation ComponentAn Inertial Navigation Component

integrate.reset

nav.1dnav.1d

pos.resetpos.resetvel.resetvel.reset

integrate.reset
posposacc.inacc.in

accacc

velvel

acc.inacc.in:: carries carries regularregular accelerometer samples;accelerometer samples;
vel.resetvel.reset:: velocity velocity initialisationinitialisation and and correctionscorrections;;
pos.resetpos.reset:: position position initialisationinitialisation and and correctionscorrections;;
pospos//velvel//accacc:: regularregular outputs.outputs.

8-Feb-07 Copyright P.H.Welch 52

Half Inertial Navigation ComponentHalf Inertial Navigation Component

integrate.reset

half.nav.1dhalf.nav.1d

inin

resetreset

outout

in.copyin.copy

inin:: carries carries regularregular samples;samples;
in.copyin.copy:: copy of the copy of the inin stream;stream;
outout:: regularregular outputs outputs (sample running sums)(sample running sums);;
resetreset:: running sum running sum initialisationinitialisation and and correctionscorrections.

Build it from two Build it from two
componentscomponents

.

8-Feb-07 Copyright P.H.Welch 53

An Inertial Navigation ComponentAn Inertial Navigation Component

nav.1dnav.1d

pos.resetpos.resetvel.resetvel.reset

half.nav.1d half.nav.1d
posposacc.inacc.in

accacc

velvel

acc.inacc.in:: carries carries regularregular accelerometer samples;accelerometer samples;
vel.resetvel.reset:: velocity velocity initialisationinitialisation and and correctionscorrections;;
pos.resetpos.reset:: position position initialisationinitialisation and and correctionscorrections;;
pospos//velvel//accacc:: regularregular outputs.outputs. Build it from two Build it from two

componentscomponents

8-Feb-07 Copyright P.H.Welch 54

Example – Integrator (again)Example Example –– Integrator Integrator (again)(again)

integrateintegrate

outoutinin

COMPONENT

COMPONENT

COMPONENTx

y

z

.

.

.

x

x + y

x + y + z

.

.

.
PROC integrate (CHAN INT in?, out!)PROC integrate (CHAN INT in?, out!)

:

INITIAL INT total IS 0:INITIAL INT total IS 0:
WHILE TRUEWHILE TRUE
INT x:INT x:
SEQSEQ
in ? xin ? x
total := total + xtotal := total + x
out ! total

serial
implementation

out ! total
:

8-Feb-07 Copyright P.H.Welch 55

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel

killkill

x

x + y

x + y + z

.

.

.

integrate.killintegrate.kill

outoutininx

y

z

.

.

.

COMPONENT

COMPONENT

COMPONENT

PROC integrate.kill (CHAN INT in?, out!, kill?)PROC integrate.kill (CHAN INT in?, out!, kill?)

:

INITIAL INT total IS 0:INITIAL INT total IS 0:
INITIAL BOOL running IS TRUE:INITIAL BOOL running IS TRUE:
... main loop... main loop

:

8-Feb-07 Copyright P.H.Welch 56

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel

WHILE running WHILE running ---- main loopmain loop
PRI ALTPRI ALT
INT any:INT any:
kill ? anykill ? any
running := FALSErunning := FALSE

INT x:INT x:
in ? xin ? x
SEQSEQ
total := total + xtotal := total + x
out ! totalout ! total

killkill

x

x + y

x + y + z

.

.

.

integrate.killintegrate.kill

outoutininx

y

z

.

.

.

COMPONENT

COMPONENT

COMPONENT

serial
implementation

8-Feb-07 Copyright P.H.Welch 57

Example – Integrator (again)Example Example –– Integrator Integrator (again)(again)
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

integrateintegrate
00

PROC integrate (CHAN INT in?, out!)PROC integrate (CHAN INT in?, out!)

::

PARPAR
plus (in?, c?, a!)plus (in?, c?, a!)
delta (a?, out!, b!)delta (a?, out!, b!)
prefix (0, b?, c!)prefix (0, b?, c!)

CHAN INT a, b, c:CHAN INT a, b, c:

aa

bbcc

parallel
implementation

COMPONENT
COMPONENT
COMPONENT

8-Feb-07 Copyright P.H.Welch 58

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

aa

bbcc

dd

killkill

integrate.killintegrate.kill
COMPONENT
COMPONENT
COMPONENT

PARPAR
killer (in?, kill?, d!)killer (in?, kill?, d!)
plus (d?, c?, a!)plus (d?, c?, a!)
delta (a?, out!, b!)delta (a?, out!, b!)
prefix (0, b?, c!)prefix (0, b?, c!)

PROC integrate.kill (CHAN INT in?, out !, kill?)PROC integrate.kill (CHAN INT in?, out !, kill?)

::

CHAN INT a, b, c, d:CHAN INT a, b, c, d:

parallel
implementation

8-Feb-07 Copyright P.H.Welch 59

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

aa

bbcc

dd

killkill

integrate.killintegrate.kill
COMPONENT
COMPONENT
COMPONENT

To shut down a network To shut down a network gracefullygracefully (without leaving some (without leaving some
processes stranded processes stranded –– i.e. deadlocked), we i.e. deadlocked), we poisonpoison all the all the
components. The poison spreads through the normal components. The poison spreads through the normal
dataflow.dataflow.
For For integrate.killintegrate.kill, the , the killerkiller process injects poison process injects poison
upon receiving a upon receiving a killkill signal, and then shuts down.signal, and then shuts down.

8-Feb-07 Copyright P.H.Welch 60

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

aa

bbcc

dd

killkill

integrate.killintegrate.kill
COMPONENT
COMPONENT
COMPONENT

This shutdown protocol generalises to work for any process This shutdown protocol generalises to work for any process
network network –– see the paper:see the paper:

““Graceful Termination, Graceful ResettingGraceful Termination, Graceful Resetting””

…… background readingbackground reading

8-Feb-07 Copyright P.H.Welch 61

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

aa

bbcc

dd

killkill

integrate.killintegrate.kill
COMPONENT
COMPONENT
COMPONENT

The other processes check for poisonous input data The other processes check for poisonous input data –– if found, if found,
they pass it on and die.they pass it on and die.

The The plusplus process must wait for the poison to return from the process must wait for the poison to return from the
feedback loop before dying.feedback loop before dying.

The The deltadelta process only forwards the poison internally process only forwards the poison internally –– unless unless
it really wants to bring down the next component!it really wants to bring down the next component!

8-Feb-07 Copyright P.H.Welch 62

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 63

A Memory CellA Memory CellA Memory Cell
inin

outout

requestrequest

PROC PROC mem.cellmem.cell (CHAN INT in?,(CHAN INT in?,
CHAN BOOL request?, CHAN INT out!)CHAN BOOL request?, CHAN INT out!)

---- WARNING: write before reading!WARNING: write before reading!
INT x:INT x:
WHILE TRUEWHILE TRUE
ALTALT
inin ? x ? x
SKIPSKIP

BOOL any:BOOL any:
request ? anyrequest ? any
out ! xout ! x

::

8-Feb-07 Copyright P.H.Welch 64

Asynchronous CommunicationAsynchronous CommunicationAsynchronous Communication
requestrequest

AA BB

AA sends information to sends information to BB..

AA can send at any time (it will never be blocked by can send at any time (it will never be blocked by BB not being ready not being ready
to receive).to receive).

BB can receive data at any time but, first, it has to can receive data at any time but, first, it has to requestrequest some (it some (it
will never be blocked by will never be blocked by AA not being able to send).not being able to send).

The memory cell acts as a The memory cell acts as a common poolcommon pool of information.of information.

8-Feb-07 Copyright P.H.Welch 65

Asynchronous CommunicationAsynchronous CommunicationAsynchronous Communication
requestrequest

AA BBpromptpromptprompt

We We couldcould relieve relieve BB from having to make requests by combining an from having to make requests by combining an
autoauto--prompterprompter with the memory cell.with the memory cell.

requestrequest

inin

outout
promptpromptprompt

PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)
WHILE TRUEWHILE TRUE

INT x:INT x:
SEQSEQ

request ! TRUErequest ! TRUE
in ? xin ? x
out ! xout ! x

::

8-Feb-07 Copyright P.H.Welch 66

Asynchronous CommunicationAsynchronous CommunicationAsynchronous Communication
requestrequest

AA BBpromptpromptprompt

We We couldcould relieve relieve BB from having to make requests by combining an from having to make requests by combining an
autoauto--prompterprompter with the memory cell.with the memory cell.

But if But if autoauto--prompterprompter gets its first gets its first requestrequest in before in before AA sends sends
anything, it will pick up garbage from the cell.anything, it will pick up garbage from the cell.

Also, if Also, if BB is not taking data, is not taking data, autoauto--prompterprompter stores old stores old (stale)(stale) data, data,
while the while the memorymemory--cellcell holds anything new that arrives. holds anything new that arrives. This is This is
probably a bad thingprobably a bad thing.. When When BB takes data, it wants the takes data, it wants the latestlatest item item
that that AA has sent.has sent.

8-Feb-07 Copyright P.H.Welch 67

Asynchronous CommunicationAsynchronous CommunicationAsynchronous Communication
requestrequest

AA BBpromptpromptprompt

We We couldcould relieve relieve BB from having to make requests by combining an from having to make requests by combining an
autoauto--prompterprompter with the memory cell.with the memory cell.

But if But if autoauto--prompterprompter gets its first gets its first requestrequest in before in before AA sends sends
anything, it will pick up garbage from the cell.anything, it will pick up garbage from the cell.

Also, if Also, if BB is not taking data, is not taking data, autoauto--prompterprompter stores old stores old (stale)(stale) data, data,
while the while the memorymemory--cellcell holds anything new that arrives. holds anything new that arrives. This is This is
probably a bad thingprobably a bad thing.. When When BB takes data, it wants the takes data, it wants the latestlatest item item
that that AA has sent.has sent.

The auto-prompter not a good idea here ...

(but see its later use the blocking-FIFO
buffer)

The
The auto

auto--prompter

prompter not a good idea here ...

not a good idea here ...

(but see its later use the

(but see its later use the blocking

blocking--FIFO
FIFO

buffer)

buffer)

8-Feb-07 Copyright P.H.Welch 68

Regular EventsRegular EventsRegular Events

clock (cycle)clock (cycle)
ticktick

PROC clock (VAL INT cycle, CHAN BOOL tick!)PROC clock (VAL INT cycle, CHAN BOOL tick!)
TIMER TIMER timtim::
INT t:INT t:
SEQSEQ

timtim ? t? t
WHILE TRUEWHILE TRUE

SEQSEQ
t := t PLUS cyclet := t PLUS cycle
timtim ? AFTER t? AFTER t
tick ! TRUEtick ! TRUE

:

Run this at high
priority!!

Run this at Run this at highhigh
priority!!priority!!

:

8-Feb-07 Copyright P.H.Welch 69

regular data flowregular data flow

Run all these at Run all these at
highhigh prioritypriority

clock (cycle)clock (cycle)

ticktick

irregular data flowirregular data flow

8-Feb-07 Copyright P.H.Welch 70

Another Memory CellAnother Memory CellAnother Memory Cell

The implementation of The implementation of mem.cellmem.cell captured state captured state
information information (the memory) (the memory) with a variable. This is OK with a variable. This is OK
for the demonstrated application for the demonstrated application (asynchronous (asynchronous
communication)communication) …… but a bit of a cheat if we want to but a bit of a cheat if we want to
modelmodel a variable.a variable.

The following implementation retains state information The following implementation retains state information
just by the topology just by the topology (feedback loops)(feedback loops) of the internal of the internal
connections. The internal components do not connections. The internal components do not
themselves retain state. They give a design for themselves retain state. They give a design for
hardware implementation.hardware implementation.

8-Feb-07 Copyright P.H.Welch 71

anyany
cc bb

aa

outout

requestrequest
inin

PROC PROC mem.cellmem.cell (CHAN INT in?,(CHAN INT in?,
CHAN BOOL request?, CHAN INT out!)CHAN BOOL request?, CHAN INT out!)

---- WARNING: write before reading!!!WARNING: write before reading!!!
CHAN INT a, b, c:CHAN INT a, b, c:
PARPAR
replace (c?, a!, in?)replace (c?, a!, in?)
sample (a?, b!, request?, out!)sample (a?, b!, request?, out!)
INT any:INT any:
prefix (any, b?, c!)prefix (any, b?, c!)

::

8-Feb-07 Copyright P.H.Welch 72

Seen before

Seen before ?

inin outout

injectinject

?

PROC replace (CHAN INT in?, out!, inject?)PROC replace (CHAN INT in?, out!, inject?)
WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
INT x, any:INT x, any:
inject ? x inject ? x ---- replace thereplace the
PAR PAR ---- next next ‘‘inin’’
in ? any in ? any ---- with thewith the
out ! x out ! x ---- ‘‘injectinject’’ valuevalue

INT x:INT x:
in ? x in ? x ---- normallynormally
out ! x out ! x ---- just copy throughjust copy through

::

8-Feb-07 Copyright P.H.Welch 73

PROC sample (CHAN INT in?, out!,PROC sample (CHAN INT in?, out!,
CHAN BOOL request?, CHAN INT answer!)CHAN BOOL request?, CHAN INT answer!)

WHILE TRUEWHILE TRUE
PRI ALTPRI ALT
BOOL any:BOOL any:
request ? anyrequest ? any
INT x:INT x:
SEQSEQ
in ? xin ? x
PARPAR
answer ! x answer ! x ---- duplicateduplicate
out ! x out ! x ---- outputoutput

INT x:INT x:
in ? x in ? x ---- normallynormally
out ! x out ! x ---- just copy throughjust copy through

::

answeranswerrequestrequest

outoutinin

8-Feb-07 Copyright P.H.Welch 74

anyany
cc bb

aa

outout

requestrequest
inin

video.outvideo.out

dd
Video
Video--RAMRAM

PROC PROC vid.cellvid.cell (CHAN INT in?, CHAN INT (CHAN INT in?, CHAN INT video.outvideo.out!,!,
CHAN BOOL request?, CHAN INT out!)CHAN BOOL request?, CHAN INT out!)

---- WARNING: write before reading or viewing!!!WARNING: write before reading or viewing!!!
CHAN INT a, b, c, d:CHAN INT a, b, c, d:
PARPAR
replace (c?, a!, in?)replace (c?, a!, in?)
delta (a?, delta (a?, video.outvideo.out!, d!)!, d!)
sample (d?, b!, request?, out!)sample (d?, b!, request?, out!)
INT any:INT any:
prefix (any, b?, c!)prefix (any, b?, c!)

::

8-Feb-07 Copyright P.H.Welch 75

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 76

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice
ALTALT

guardedguarded
processesprocesses

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

<process><process><process>

<guard><guard>

Revision :

Revision :

8-Feb-07 Copyright P.H.Welch 77

AnAn ALTALT process executes as follows:process executes as follows:

Non-Deterministic ChoiceNonNon--Deterministic ChoiceDeterministic Choice

if no guard is ready,if no guard is ready, the process is suspended until one, the process is suspended until one,
or more, become ready;or more, become ready;

if one guard is ready,if one guard is ready, execute it and then execute the execute it and then execute the
process it was defending process it was defending (end of (end of ALTALT process)process);;

if more than one guard is ready,if more than one guard is ready, one is one is arbitrarilyarbitrarily
chosenchosen and executes, followed by the process it was and executes, followed by the process it was
defending defending (end of (end of ALTALT process)process)..

Note:Note: only only oneone of the guarded of the guarded
processes is executed.processes is executed.

Revision :

Revision :

8-Feb-07 Copyright P.H.Welch 78

AA PRIPRI ALTALT process executes as follows:process executes as follows:

Deterministic ChoiceDeterministic ChoiceDeterministic Choice

if no guard is ready,if no guard is ready, the process is suspended until one, the process is suspended until one,
or more, become ready;or more, become ready;

if one guard is ready,if one guard is ready, execute it and then execute the execute it and then execute the
process it was defending process it was defending (end of (end of PRIPRI ALTALT process)process);;

if more than one guard is ready,if more than one guard is ready, the first one listed isthe first one listed is
chosenchosen and executes, followed by the process it was and executes, followed by the process it was
defending defending (end of (end of PRIPRI ALTALT process)process)..

Note:Note: only only oneone of the guarded of the guarded
processes is executed.processes is executed.

Revision :

Revision :

8-Feb-07 Copyright P.H.Welch 79

Any guard may be prefixed by a Any guard may be prefixed by a BOOLBOOL prepre--conditioncondition::

Pre-Conditioned GuardsPrePre--Conditioned GuardsConditioned Guards

<process><process><process>

<pre<pre--condition> &condition> & <guard><guard>

When theWhen the ALTALT (or(or PRIPRI ALTALT)) starts execution, any starts execution, any prepre--conditionsconditions
on the guards are evaluated.on the guards are evaluated.

If a If a prepre--conditioncondition turns out to beturns out to be FALSEFALSE, , that guarded processthat guarded process
is not chosen for executionis not chosen for execution –– even if the guard is (or becomes) even if the guard is (or becomes)
ready.ready.

8-Feb-07 Copyright P.H.Welch 80

Any guard may be prefixed by a Any guard may be prefixed by a BOOLBOOL prepre--conditioncondition::

Pre-Conditioned GuardsPrePre--Conditioned GuardsConditioned Guards

<process><process><process>

<pre<pre--condition> &condition> & <guard><guard>

For each execution of anFor each execution of an ALTALT (or(or PRIPRI ALTALT)), any , any prepre--conditionsconditions
only need evaluating only need evaluating onceonce –– no rechecks are necessary.no rechecks are necessary.

A A prepre--conditioncondition is a is a BOOLBOOL expression, expression, whose variables cannot whose variables cannot
changechange whilst waiting for a guard to become ready. No other whilst waiting for a guard to become ready. No other
process can change those variables process can change those variables (simply because this (simply because this
process is observing them)process is observing them)..

8-Feb-07 Copyright P.H.Welch 81

INT a:INT a:
BOOL timing:BOOL timing:
SEQSEQ

... set a and timing... set a and timing
TIMER TIMER timtim::
INT time.out, x:INT time.out, x:
SEQSEQ

timtim ? time.out? time.out
time.out := time.out PLUS 1000time.out := time.out PLUS 1000
ALTALT

in.0 ? xin.0 ? x
out ! xout ! x

in.1 ? xin.1 ? x
out ! xout ! x

(a = 42) & in.2 ? x(a = 42) & in.2 ? x
out ! xout ! x

timing & timing & timtim ? AFTER time.out? AFTER time.out
out ! out ! ––11

RUNRUN--TIME DECISION:TIME DECISION:

listen out for thelisten out for the in.2in.2 channel?channel?
set the timeout?set the timeout?

outout

in.0in.0

in.1in.1

in.2in.2

8-Feb-07 Copyright P.H.Welch 82

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 83

Another (FIFO) Buffer ProcessAnother Another (FIFO) (FIFO) Buffer ProcessBuffer Process
Recall that Recall that ……

ididid idididididid

ididid idididididid

is a blocking is a blocking FIFOFIFO buffer of capacity 6buffer of capacity 6

8-Feb-07 Copyright P.H.Welch 84

Another (FIFO) Buffer ProcessAnother Another (FIFO) (FIFO) Buffer ProcessBuffer Process
This is a great and simple design This is a great and simple design …… for hardwarefor hardware ……

ididid idididididid

ididid idididididid

…… where buffered data can flowwhere buffered data can flow in parallelin parallel along the along the
pipeline pipeline ……

8-Feb-07 Copyright P.H.Welch 85

Another (FIFO) Buffer ProcessAnother Another (FIFO) (FIFO) Buffer ProcessBuffer Process
This is a great and simple design This is a great and simple design …… for hardwarefor hardware ……

ididid idididididid

ididid idididididid

…… but not so goodbut not so good for softwarefor software …… where each item of where each item of
buffered data must be copied (from process to process)buffered data must be copied (from process to process)
NN times (wheretimes (where NN is the size of the buffer).is the size of the buffer).

8-Feb-07 Copyright P.H.Welch 86

Another (FIFO) Buffer ProcessAnother Another (FIFO) (FIFO) Buffer ProcessBuffer Process
So letSo let’’s do something better suited fors do something better suited for software software …… that that
does not do all that copying.does not do all that copying. LetLet’’s just haves just have oneone process.process.

requestrequest

outout

inin
bufferbufferbuffer

bufferbuffer has a capacity of has a capacity of maxmax (say)(say). A process may send . A process may send
data into the buffer until it isdata into the buffer until it is fullfull. If it then tries to send . If it then tries to send
more, itmore, it will be blocked until the buffer gets emptier.will be blocked until the buffer gets emptier.

A process may extract data A process may extract data (by first making a(by first making a requestrequest))
until theuntil the bufferbuffer is empty. If it then requests more, itis empty. If it then requests more, it will will
be blockedbe blocked until theuntil the bufferbuffer gets some data.gets some data.

8-Feb-07 Copyright P.H.Welch 87

WithinWithin bufferbuffer, we declare an array (to, we declare an array (to holdhold up toup to maxmax
items) anditems) and three control variablesthree control variables::

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

hold

...

...sizesize

hihi

lolo

1111

66

Number of Number of
items currently items currently

in the bufferin the buffer

Index of the Index of the
oldest item in oldest item in

the bufferthe buffer

Index of the Index of the
next free slotnext free slot

55

8-Feb-07 Copyright P.H.Welch 88

IfIf bufferbuffer receives another item:receives another item:

sizesize

hihi

lolo

1212

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

hold

Number of Number of
items currently items currently

in the bufferin the buffer

Index of the Index of the
oldest item in oldest item in

the bufferthe buffer

Index of the Index of the
next free slotnext free slot

66

66

...

...

8-Feb-07 Copyright P.H.Welch 89

And, then, is requested for and delivers an item:And, then, is requested for and delivers an item:

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

hold

sizesize

hihi

lolo

1212

Number of Number of
items currently items currently

in the bufferin the buffer

Index of the Index of the
oldest item in oldest item in

the bufferthe buffer

Index of the Index of the
next free slotnext free slot

55

77

...

...

8-Feb-07 Copyright P.H.Welch 90

And, then, And, then, receives another itemreceives another item ::

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

hold

sizesize

hihi

lolo

1313

Number of Number of
items currently items currently

in the bufferin the buffer

Index of the Index of the
oldest item in oldest item in

the bufferthe buffer

Index of the Index of the
next free slotnext free slot

66

77

...

...

8-Feb-07 Copyright P.H.Welch 91

And And another itemanother item ::

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

hold

sizesize

hihi

lolo

Number of Number of
items currently items currently

in the bufferin the buffer

Index of the Index of the
oldest item in oldest item in

the bufferthe buffer

Index of the Index of the
next free slotnext free slot

77

77

1414

...

...

8-Feb-07 Copyright P.H.Welch 92

And, then, is requested for and delivers an item:And, then, is requested for and delivers an item:

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

hold

sizesize

hihi

lolo

Number of Number of
items currently items currently

in the bufferin the buffer

Index of the Index of the
oldest item in oldest item in

the bufferthe buffer

Index of the Index of the
next free slotnext free slot

66

88

1414

...

...

8-Feb-07 Copyright P.H.Welch 93

requestrequest

outout

inin
bufferbufferbuffer

SEQSEQ
hi := (hi + 1)hi := (hi + 1)\\maxmax
size := size + 1size := size + 1

WHILE TRUEWHILE TRUE
ALTALT
(size < max) & in ? (size < max) & in ? hold[hihold[hi]]

BOOL any:BOOL any:
(size > 0) & request ? any(size > 0) & request ? any

SEQSEQ
lo, hi, size := 0, 0, 0lo, hi, size := 0, 0, 0

[max]INT hold:[max]INT hold:
INT lo, hi, size : INT lo, hi, size : ---- size = hi size = hi –– lo (modulo wraplo (modulo wrap--around)around)

CHAN BOOL request?, CHAN INT out!)PROC buffer (CHAN INT in?, PROC buffer (CHAN INT in?, CHAN BOOL request?, CHAN INT out!)

::

SEQSEQ
out ! out ! hold[lohold[lo]]
lo := (lo + 1)lo := (lo + 1)\\maxmax
size := size size := size –– 11

indexindex
wrapwrap--aroundaround

8-Feb-07 Copyright P.H.Welch 94

requestrequest

outout

inin
bufferbufferbuffer

SEQSEQ
hi := (hi + 1)hi := (hi + 1)\\maxmax
size := size + 1size := size + 1

WHILE TRUEWHILE TRUE
ALTALT
(size < max) & in ? (size < max) & in ? hold[hihold[hi]]

BOOL any:BOOL any:
(size > 0) & request ? any(size > 0) & request ? any

SEQSEQ
lo, hi, size := 0, 0, 0lo, hi, size := 0, 0, 0

[max]INT hold:[max]INT hold:
INT lo, hi, size : INT lo, hi, size : ---- size = hi size = hi –– lo (modulo wraplo (modulo wrap--around)around)

PROC buffer (CHAN INT in?, CHAN BOOL request?, CHAN INT out!)PROC buffer (CHAN INT in?, CHAN BOOL request?, CHAN INT out!)

::

SEQSEQ
out ! out ! hold[lohold[lo]]
lo := (lo + 1)lo := (lo + 1)\\maxmax
size := size size := size –– 11

Note: the process
taking items from this
buffer has to make a
request … because
output guards are not
supported … despite
their semantic power.

Note: the process Note: the process
taking items from this taking items from this
buffer has to make a buffer has to make a
request request …… because because
output guards are not output guards are not
supportedsupported …… despite despite
their semantic power.their semantic power.

8-Feb-07 Copyright P.H.Welch 95

outoutinin
bufferbufferbuffer

SEQSEQ
hi := (hi + 1)hi := (hi + 1)\\maxmax
size := size + 1size := size + 1

WHILE TRUEWHILE TRUE
ALTALT
(size < max) & in ? (size < max) & in ? hold[hihold[hi]]

(size > 0) & out ! (size > 0) & out ! hold[lohold[lo]]

SEQSEQ
lo, hi, size := 0, 0, 0lo, hi, size := 0, 0, 0

[max]INT hold:[max]INT hold:
INT lo, hi, size : INT lo, hi, size : ---- size = hi size = hi –– lo (modulo wraplo (modulo wrap--around)around)

PROC buffer (CHAN INT in?, CHAN INT out!)PROC buffer (CHAN INT in?, CHAN INT out!)

::

SEQSEQ
lo := (lo + 1)lo := (lo + 1)\\maxmax
size := size size := size –– 11

Note: the process
taking items from this
buffer has to make a
request … because
output guards are not
supported … despite
their semantic power.

Note: the process Note: the process
taking items from this taking items from this
buffer has to make a buffer has to make a
request request …… because because
output guards are not output guards are not
supportedsupported …… despite despite
their semantic power.their semantic power./

This is not allowed /

//
This is not allowed

This is not allowed //

8-Feb-07 Copyright P.H.Welch 96

Output guards require an independent mediator to resolve Output guards require an independent mediator to resolve
choices choices –– because more than one process because more than one process must make the must make the
same choicesame choice. For example:. For example:

aa

bb

ALTALT
a ? xa ? x
b ! nb ! n

ALTALT
a ! ma ! m
b ? yb ? y

Which communication should be done? Either is allowed. Which communication should be done? Either is allowed.
Both processes must reach the same decision.Both processes must reach the same decision.

We know how to solve this We know how to solve this …… but it costs!but it costs!

By only allowing input guards, only one process is ever By only allowing input guards, only one process is ever
involved in any choice (i.e. if one process is involved in any choice (i.e. if one process is ALTALTinging, no , no
process communicating with it can be process communicating with it can be ALTALTinging).).

8-Feb-07 Copyright P.H.Welch 97

To relieve the receiving process from the bother of making To relieve the receiving process from the bother of making
the requests, we can install anthe requests, we can install an autoauto--prompterprompter alongside the alongside the
bufferbuffer::

inin
bufferbufferbuffer

outout
promptpromptprompt

new.buffernew.buffer

reqreq

PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)
WHILE TRUEWHILE TRUE

INT x:INT x:
SEQSEQ

request ! TRUErequest ! TRUE
in ? xin ? x
out ! xout ! x

:

requestrequest

inin

outout
promptpromptprompt

seen before

seen before

:

8-Feb-07 Copyright P.H.Welch 98

To relieve the receiving process from the bother of making To relieve the receiving process from the bother of making
the requests, we can install anthe requests, we can install an autoauto--prompterprompter alongside the alongside the
bufferbuffer::

inin
bufferbufferbuffer

outout
promptpromptprompt

new.buffernew.buffer

reqreq

Just as when used like this with the Just as when used like this with the mem.cellmem.cell process, process,
promptprompt holds old holds old (stale)(stale) data. Meanwhile, the data. Meanwhile, the bufferbuffer
holds anything new that arrives. holds anything new that arrives. This is a good thing this This is a good thing this
time!time!

Whatever takes data from Whatever takes data from new.buffernew.buffer wants the wants the oldestoldest
item put into it item put into it –– itit is, after all, a is, after all, a FIFOFIFO. . ☺☺ ☺☺ ☺☺

8-Feb-07 Copyright P.H.Welch 99

To relieve the receiving process from the bother of making To relieve the receiving process from the bother of making
the requests, we can install anthe requests, we can install an autoauto--prompterprompter alongside the alongside the
bufferbuffer::

inin
bufferbufferbuffer

outout
promptpromptprompt

new.buffernew.buffer

reqreq

The The promptprompt process will be blocked making its first process will be blocked making its first requestrequest
until something is put into theuntil something is put into the bufferbuffer..

It then extracts that item and offers it It then extracts that item and offers it outout. When (if) that is . When (if) that is
taken, taken, promptprompt again requests from again requests from bufferbuffer, which , which maymay oror
may notmay not have accumulated more items.have accumulated more items.

8-Feb-07 Copyright P.H.Welch 100

To relieve the receiving process from the bother of making To relieve the receiving process from the bother of making
the requests, we can install anthe requests, we can install an autoauto--prompterprompter alongside the alongside the
bufferbuffer::

inin
bufferbufferbuffer

outout
promptpromptprompt

new.buffernew.buffer

reqreq

An empty An empty bufferbuffer always blocks a always blocks a requestrequest from from promptprompt, ,
leaving leaving new.buffernew.buffer not trying to not trying to outout anything.anything.

An nonAn non--empty empty bufferbuffer always gives always gives promptprompt its its oldestoldest item, item,
which which promptprompt then offers on then offers on outout..

So, So, new.buffernew.buffer is just a is just a FIFOFIFO with capacity with capacity (max + 1)(max + 1)..
And it has single input/output lines And it has single input/output lines –– no request is needed.no request is needed.

8-Feb-07 Copyright P.H.Welch 101

To relieve the receiving process from the bother of making To relieve the receiving process from the bother of making
the requests, we can install anthe requests, we can install an autoauto--prompterprompter alongside the alongside the
bufferbuffer::

inin
bufferbufferbuffer

outout
promptpromptprompt

new.buffernew.buffer

reqreq

ansans

The capacity ofThe capacity of new.buffernew.buffer
isis (max + 1)(max + 1)

PROC new.buffer (CHAN INT in?, out!)PROC new.buffer (CHAN INT in?, out!)
CHAN BOOL CHAN BOOL reqreq::
CHAN INT CHAN INT ansans::
PARPAR

buffer (in?, buffer (in?, reqreq?, ?, ansans!)!)
prompt (prompt (ansans?, ?, reqreq!, out!)!, out!)

::

8-Feb-07 Copyright P.H.Welch 102

ididid ididid ididid ididid

new.buffernew.buffer

inin outout……

(max + 1)(max + 1)

≡≡

inin
bufferbufferbuffer

outout
promptpromptprompt

new.buffernew.buffer

The top version is a more regular and simpler design. The The top version is a more regular and simpler design. The
bottom is more efficient for software bottom is more efficient for software –– less copying of data.less copying of data.

8-Feb-07 Copyright P.H.Welch 103

ididid ididid ididid ididid

new.buffernew.buffer

inin outout……

(max + 1)(max + 1)

PROC new.buffer (CHAN INT in?, out!)PROC new.buffer (CHAN INT in?, out!)
[max]CHAN INT c:[max]CHAN INT c:
PARPAR

id (in?, c[0]!)id (in?, c[0]!)
PAR i = 0 FOR max PAR i = 0 FOR max –– 11

id (id (c[ic[i]?, c[i+1]!)]?, c[i+1]!)
id (id (c[maxc[max –– 1]?, out!)1]?, out!)

::

c[0]c[0] c[1]c[1] c[2]c[2] c[maxc[max--1]1]

8-Feb-07 Copyright P.H.Welch 104

Exercise:Exercise:

requestrequest

outout

inin
overflow.bufferoverflow.bufferoverflow.buffer

errorerror

This is the same as This is the same as bufferbuffer, except that it does not block the source , except that it does not block the source
when it is full. Instead, it outputs a signal on the (when it is full. Instead, it outputs a signal on the (BOOLBOOL)) errorerror line line
and discards the incoming item.and discards the incoming item.

This type of buffer is used in a realThis type of buffer is used in a real--time system if it is important time system if it is important
not to delay the source process if the receiver is slow not to delay the source process if the receiver is slow and and it is it is
not crucial if we miss some items, so long as we know about it!not crucial if we miss some items, so long as we know about it!

8-Feb-07 Copyright P.H.Welch 105

Exercise:Exercise:

requestrequest

outout

inin
overwrite.bufferoverwrite.bufferoverwrite.buffer

This is the similar to This is the similar to overflow.bufferoverflow.buffer; it also does not block the ; it also does not block the
source when it is full. However, the incoming item (when full) source when it is full. However, the incoming item (when full) is is
not discarded but not discarded but overwritesoverwrites the oldest item in the buffer. No error the oldest item in the buffer. No error
is reported for this (though another version could easily do thais reported for this (though another version could easily do that).t).

This type of buffer is used in a realThis type of buffer is used in a real--time system if it is important time system if it is important
not to delay the source process if the receiver is slow not to delay the source process if the receiver is slow and and we we
dondon’’t mind losing old items when full. Whatever it holds, it t mind losing old items when full. Whatever it holds, it
always holds the always holds the latestlatest values received from the source.values received from the source.

8-Feb-07 Copyright P.H.Welch 106

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 107

Consider a process with an array of input channels:

The Replicated ALTThe Replicated ALT

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33

And an internal data array of the same type and size as
the input channel array.

The process needs to accept any message from any
input channel, putting it into the corresponding element
of its data array.

8-Feb-07 Copyright P.H.Welch 108

Consider a process with an array of input channels:

The Replicated ALTThe Replicated ALT

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33

Before, we introduced the Before, we introduced the replicatedreplicated PARPAR for this. We for this. We
knew that a message on knew that a message on oneone channel was accompanied channel was accompanied
by a message on by a message on allall channels.channels.
This time, we donThis time, we don’’t know the frequency t know the frequency (if any)(if any) with with
which messages will arrive from any channel.which messages will arrive from any channel.

8-Feb-07 Copyright P.H.Welch 109

We must await these inputs with an We must await these inputs with an ALTALT::

The Replicated ALTThe Replicated ALT

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33ALTALT
in[0]in[0] ? ? x[0]x[0]

... deal with it... deal with it
in[1]in[1] ? ? x[1]x[1]

... deal with it... deal with it
in[2]in[2] ? ? x[2]x[2]

... deal with it... deal with it
in[3]in[3] ? ? x[3]x[3]

... deal with it

But what if there were 40
channels in the array? Or

400 … or 4000 … ?!!

But what if there were 40 But what if there were 40
channels in the array? Or channels in the array? Or

400 400 …… or 4000 or 4000 …… ?!!?!!
... deal with it

8-Feb-07 Copyright P.H.Welch 110

We must await these inputs with an We must await these inputs with an ALTALT::

The Replicated ALTThe Replicated ALT

This guarded processThis guarded process
gets replicatedgets replicated

ALT i = 0 FOR 4ALT i = 0 FOR 4
in[i]in[i] ?? x[ix[i]]

... deal with it... deal with it

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33

8-Feb-07 Copyright P.H.Welch 111

We must await these inputs with an We must await these inputs with an ALTALT::

The Replicated ALTThe Replicated ALT

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33ALTALT
in[0]in[0] ? ? x[0]x[0]

... deal with it... deal with it
in[1]in[1] ? ? x[1]x[1]

... deal with it... deal with it
in[2]in[2] ? ? x[2]x[2]

... deal with it... deal with it
in[3]in[3] ? ? x[3]x[3]

... deal with it... deal with it

ALT i = 0 FOR 4ALT i = 0 FOR 4
in[i]in[i] ?? x[ix[i]]

... deal with it... deal with it
≡≡

8-Feb-07 Copyright P.H.Welch 112

A Simple MultiplexorA Simple Multiplexor
in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

......
outoutplexplex

This process just forwards any message it receives This process just forwards any message it receives ……

…… but prefixes the message with the index of the channel but prefixes the message with the index of the channel
on which it had been received on which it had been received ……

…… which will allow subsequent which will allow subsequent dede--multiplexingmultiplexing. . ☺☺ ☺☺ ☺☺

8-Feb-07 Copyright P.H.Welch 113

A Simple MultiplexorA Simple Multiplexor
in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

......
outoutplexplex

the array sizethe array size

This guarded processThis guarded process
gets replicatedgets replicated

PROC PROC plexplex ([]CHAN INT in?, CHAN INT out!)([]CHAN INT in?, CHAN INT out!)

:

PROC PROC plexplex ([]CHAN INT in?, CHAN INT out!)([]CHAN INT in?, CHAN INT out!)
WHILE TRUEWHILE TRUE
ALT i = 0 FOR SIZE in?ALT i = 0 FOR SIZE in?
INT x:INT x:
in[i] ? xin[i] ? x
SEQSEQ
out ! iout ! i
out ! xout ! x

:::

8-Feb-07 Copyright P.H.Welch 114

A Matching De-MultiplexorA Matching De-Multiplexor
out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......
inin de.plexde.plex

This process recovers input messages to their correct This process recovers input messages to their correct
output channels output channels …… and assumes each message is and assumes each message is
prefixed by the correct target channel index prefixed by the correct target channel index ……

Each message must be a Each message must be a <index,<index, data>data> pair, generated pair, generated
by a by a plexplex process (with the same number of inputs as this process (with the same number of inputs as this
has outputs).has outputs).

8-Feb-07 Copyright P.H.Welch 115

A Matching De-MultiplexorA Matching De-Multiplexor
out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......
inin de.plexde.plex

This must be a This must be a
legal index of legal index of
thethe outout array!array!

PROC PROC de.plexde.plex (CHAN INT in?, []CHAN INT out!)(CHAN INT in?, []CHAN INT out!)

::

PROC PROC de.plexde.plex (CHAN INT in?, []CHAN INT out!)(CHAN INT in?, []CHAN INT out!)
WHILE TRUEWHILE TRUE
INT i, x:INT i, x:
SEQSEQ
in ? iin ? i
in ? xin ? x
out[iout[i] ! x] ! x

::

8-Feb-07 Copyright P.H.Welch 116

machine.amachine.a machine.bmachine.b

Multiplexor Application (Example) Multiplexor Application (Example)

only a single wire only a single wire
available between the available between the

two machines two machines ……

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

8-Feb-07 Copyright P.H.Welch 117

Multiplexor Application (Example) Multiplexor Application (Example)

machine.amachine.a machine.bmachine.b

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

If each If each messagemessage arriving at arriving at plexplex (and departing (and departing de.plexde.plex))
is of type is of type THINGTHING, then each , then each messagemessage on the on the multiplexedmultiplexed
channel consists of a channel array index (type channel consists of a channel array index (type INTINT))
followed by a followed by a THINGTHING..

8-Feb-07 Copyright P.H.Welch 118

Multiplexor Application (Example) Multiplexor Application (Example)

machine.amachine.a machine.bmachine.b

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

MessageMessage structures should bestructures should be documenteddocumented somewhere!somewhere!

8-Feb-07 Copyright P.H.Welch 119

Multiplexor Application (Example) Multiplexor Application (Example)

machine.amachine.a machine.bmachine.b

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

In our example, we were fortunate that the In our example, we were fortunate that the messagesmessages to be to be
multiplexed were type multiplexed were type INTINT –– the same as channel indices! the same as channel indices!
This lets us type the This lets us type the multiplexedmultiplexed channel: channel: CHANCHAN INT c:INT c:

Remembering that Remembering that messagesmessages on on cc have form: have form: INT;INT; INTINT

8-Feb-07 Copyright P.H.Welch 120

Multiplexor Application (Example) Multiplexor Application (Example)

machine.amachine.a machine.bmachine.b

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

However, suppose that the However, suppose that the messagesmessages to be multiplexed were to be multiplexed were
type type REAL64REAL64 ……
Now, messages on Now, messages on cc have form: have form: INT;INT; REAL64REAL64

How do we type the How do we type the multiplexedmultiplexed channel: channel: CHAN CHAN ?????? c:c:

8-Feb-07 Copyright P.H.Welch 121

Multiplexor Application (Example) Multiplexor Application (Example)

machine.amachine.a machine.bmachine.b

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

occamoccam--ππ introduces the concept of introduces the concept of PROTOCOLPROTOCOL, which enables , which enables
rich rich messagemessage structures (containing possibly mixed types) to structures (containing possibly mixed types) to
be declared for individual channels. be declared for individual channels.

The compiler enforces strict adherence The compiler enforces strict adherence –– we gain we gain safetysafety and and
autoauto--documentationdocumentation (of those (of those messagemessage structures).structures).

8-Feb-07 Copyright P.H.Welch 122

Multiplexor Application (Example) Multiplexor Application (Example)

machine.amachine.a machine.bmachine.b

out[0]out[0]

out[1]out[1]

out[nout[n--1]1]

......de.plexde.plex

in[0]in[0]

in[1]in[1]

in[nin[n--1]1]

...... plexplex
cc

We will return to this example in the chapter on message We will return to this example in the chapter on message
PROTOCOLPROTOCOLss..

8-Feb-07 Copyright P.H.Welch 123

Choice and Non-DeterminismChoice and NonChoice and Non--DeterminismDeterminism
NonNon--determinism ...determinism ...

The The ALTALT and and PRIPRI ALTALT ……

Control and realControl and real--timetime ……

Resets and kills Resets and kills ……

Memory cells ...Memory cells ...

PrePre--conditioned guards conditioned guards ……

Serial Serial FIFOFIFO ((‘‘ringring’’)) bufferbuffer ……

The replicated The replicated ALTALT ……

Nested Nested ALTALTss ……

8-Feb-07 Copyright P.H.Welch 124

≡≡

ALTALT
<guard 0><guard 0>

ALTALT
<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

ALTALT
<guard 0><guard 0>

<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss

The innerThe inner ALTALT disappears and its disappears and its guarded processesguarded processes align with align with
the the guarded processesguarded processes of the outer of the outer ALTALT..

8-Feb-07 Copyright P.H.Welch 125

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss

≡≡

PRI ALTPRI ALT
<guard 0><guard 0>

ALTALT
<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

PRI ALTPRI ALT
<guard 0><guard 0>

<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

AnAn ALTALT nested inside anested inside a PRIPRI ALTALT gets gets prioritisedprioritised

8-Feb-07 Copyright P.H.Welch 126

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss

≡≡

PRI ALTPRI ALT
<guard 0><guard 0>

ALTALT
<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

PRI ALTPRI ALT
<guard 0><guard 0>

<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

... which is OK... which is OK (an(an ALTALT can always be replaced by acan always be replaced by a PRIPRI ALTALT))

8-Feb-07 Copyright P.H.Welch 127

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss
ALTALT

<guard 0><guard 0>

PRI ALTPRI ALT
<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

ALTALT
<guard 0><guard 0>

<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

≡≡

AA PRIPRI ALTALT nested inside annested inside an ALTALT is is illegalillegal

8-Feb-07 Copyright P.H.Welch 128

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss
ALTALT

<guard 0><guard 0>

PRI ALTPRI ALT
<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

ALTALT
<guard 0><guard 0>

<guard 1><guard 1>

<guard 2><guard 2>

<guard 3><guard 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

≡≡

... ... (a(a PRIPRI ALTALT cannot always be replaced by ancannot always be replaced by an ALTALT))

8-Feb-07 Copyright P.H.Welch 129

≡≡

ALTALT
<guard 0><guard 0>

ALT i = 0 FOR nALT i = 0 FOR n
<rep guard i><rep guard i>

<guard 1><guard 1>

<process 0><process 0>

<rep process i><rep process i>

<process 1><process 1>

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss
ALTALT

<guard 0><guard 0>

ALTALT
<rep guard 0><rep guard 0>

<rep guard (n<rep guard (n--1)>1)>

<guard 1><guard 1>

<process 0><process 0>

<process 1><process 1>

<rep process 0><rep process 0>

<rep process (n<rep process (n--1)>1)>

......

NestedNested ALTALTss are mainlyare mainly
useful useful …… when the inner or when the inner or

outer is replicated.outer is replicated.

8-Feb-07 Copyright P.H.Welch 130

NestedNested ALTALTss are onlyare only
useful useful …… when the inner or when the inner or

outer is replicated.outer is replicated.

≡≡

ALTALT
<guard 0><guard 0>

ALT i = 0 FOR nALT i = 0 FOR n
<rep guard i><rep guard i>

<guard 1><guard 1>

<process 0><process 0>

<rep process i><rep process i>

<process 1><process 1>

Nested ALTs and PRI ALTsNested Nested ALTALTss and and PRIPRI ALTALTss
ALTALT

<guard 0><guard 0>

<rep guard 0><rep guard 0>

<rep guard (n<rep guard (n--1)>1)>

<guard 1><guard 1>

<process 0><process 0>

<process 1><process 1>

<rep process 0><rep process 0>

<rep process (n<rep process (n--1)>1)>

......

They enable us toThey enable us to ALTALT
between between arraysarrays of guards of guards

and and individualsindividuals..

8-Feb-07 Copyright P.H.Welch 131

For example:

For example:

……

a[]a[]

pausepause

PRI ALTPRI ALT

BOOL any:BOOL any:
pause ? anypause ? any

pause ? any

timtim ? AFTER timeout? AFTER timeout
... deal with it... deal with it

ALTALTinging between between an arrayan array
of channel inputs, of channel inputs, a singlea single
channel input and channel input and a singlea single

timeout.timeout.

pause ? any
ALT i = 0 FOR SIZE a?ALT i = 0 FOR SIZE a?

INT x: INT x:
a[ia[i] ? x] ? x

... deal with it... deal with it

8-Feb-07 Copyright P.H.Welch 132

For example:

For example:…… ……

a[]a[] b[]b[]

ALT i = 0 FOR SIZE a?ALT i = 0 FOR SIZE a?
INT x: INT x:
a[ia[i] ? x] ? x

... deal with it

ALTALT

ALTALTinging between between twotwo
arraysarrays of guards.of guards.

... deal with it
ALT i = 0 FOR SIZE b?ALT i = 0 FOR SIZE b?

INT x: INT x:
b[ib[i] ? x] ? x

... deal with it... deal with it

8-Feb-07 Copyright P.H.Welch 133

For example:

For example:
a[][]a[][]

………………

INT x: INT x:
a[i][ja[i][j] ? x] ? x

... deal with it

ALT j = 0 FOR SIZE ALT j = 0 FOR SIZE a[ia[i]?
ALT i = 0 FOR SIZE a?ALT i = 0 FOR SIZE a?

]?ALTALTinging between a between a 2D2D
arrayarray of guards.of guards.

... deal with it

	Choice and Non-Determinism
	Choice and Non-Determinism
	Deterministic Processes (CSP)
	Non-Deterministic Processes (CSP)
	A Control Process
	A Control Process
	A Control Process
	Another Control Process
	Another Control Process
	Another Control Process
	A Real-Time Process
	A Real-Time Process
	A Real-Time Process
	Non-Deterministic Processes
	Choice and Non-Determinism
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Deterministic Choice
	Deterministic Choice
	Example – Polling a Channel
	Choice and Non-Determinism
	Example – a Control Process
	Example – a Control Process
	Example – a Control Process
	Example – a Control Process
	Locals + Guarded Processes
	Example – another Control Process
	Example – another Control Process
	Example – another Control Process
	Example – another Control Process
	Example – a Real-Time Process
	Example – a Real-Time Process
	Example – a Real-Time Process
	Choice and Non-Determinism
	Example – Resettable Integrator
	Example – Resettable Integrator
	An Inertial Navigation Component
	An Inertial Navigation Component
	Half Inertial Navigation Component
	An Inertial Navigation Component
	Example – Integrator (again)
	With an Added Kill Channel
	With an Added Kill Channel
	Example – Integrator (again)
	With an Added Kill Channel
	With an Added Kill Channel
	With an Added Kill Channel
	With an Added Kill Channel
	Choice and Non-Determinism
	Choice and Non-Determinism
	Non-Deterministic Choice
	Non-Deterministic Choice
	Deterministic Choice
	Pre-Conditioned Guards
	Pre-Conditioned Guards
	Choice and Non-Determinism
	Choice and Non-Determinism
	The Replicated ALT
	The Replicated ALT
	The Replicated ALT
	The Replicated ALT
	The Replicated ALT
	A Simple Multiplexor
	A Simple Multiplexor
	A Matching De-Multiplexor
	A Matching De-Multiplexor
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Choice and Non-Determinism
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs

