Choice and Non-Determinism

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)
\ /




Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and Kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Deterministic Processes (CSP)

So far, our parallel systems have been deterministic:
= the values in the output streams depend only on
the values in the input streams;
= the semantics is scheduling independent;
= Nno race hazards are possible.

CSP parallelism, on its own, does not introduce
non-determinism.

This gives a firm foundation for exploring real-world
models which cannot always behave so simply.



Non-Deterministic Processes (CSP)

In the real world, it Is sometimes the case that
things happen as a result of:

= what happened in the past;
= when (or, at least, in what order) things happened.

In this world, things are scheduling dependent.

CSP (and occam-1t) addresses these issues
explicitly.

Non-determinism does not arise by default. @



A Control Process

7 | inject
in out
? v

replace (in?, out!, inject?)

Coping with the real world - making choices ...

In replace, data normally flows from in? to out!
unchanged.

However, if something arrives on inject?, itis
output on out! - instead of the next input from in?.



A Control Process

X ?| inject
a X
b in_ out | b
C ? C
& &

replace (in?, out!, inject?)

DA X9
D AX TP
D X O T

The out! stream depends upon:
= The values contained in the 1n and 1nject streams;
= the order in which those values arrive.

The out! stream is not determined just by the In?
and inject? streams - it is non-deterministic.

X QO oY



A Control Process

replace (in?, out!, Inject?) =
(inject?x --> ((in?a --> SKIP) || (out!x --> SKIP))
[PRI]
in?a --> out!a --> SKIP
);

replace (In?, out!, Inject?)

fior infermation enly: ...

Note:[] is the (external) choice operator of CSP.
[PR1] is a prioritised version - giving priority to the event on its left.



Another Control Process

?| inject

in out
?

scale (s, in?, out!, inject?)

Coping with the real world - making choices ...

In scalle, data flows from in? to out!, getting
scaled by a factor of s as it passes.

Values arriving on inject? reset the s factor.



Another Control Process

n ?|inject

n*a s*a Ss*a
n*b n*b s*b
n*c n*c n*c
n*d n*d n*d
scale (s, in?, out!, inject?) n‘e n*e n*e

a
b
c
d
e

The out! stream depends upon:

» The values contained in the in? and inject! streams;
= the order in which those values arrive.

The out! stream is not determined just by the In?
and inject? streams - it is non-deterministic.



Another Control Process

scale (s, 1In?, out!, iInject?) =
(inject?s --> SKIP
[PRI1]

In?a --> outls*a --> SKIP

): ] o for information enly. ...
scale (s, 1In?, out!, Inject?)

Note:[] is the (external) choice operator of CSP.
[PR1] is a prioritised version - giving priority to the event on its left.



A Real-Time Process

in count out
X —_—
? (period)

count (period, in?, out!)

Coping with the real world - making choices ...

count observes passing time and messages arriving
on In?. Every period microseconds, it outputs (on
out!) the number of messages received during the

previous period.



A Real-Time Process

in count out
X —_—
? (period)

count (period, in?, out!)

D QO O T oL
W woN Pk
oo onN O

The out! stream depends upon:

= When values arrived on the In? stream (the values
received are irrelevant).

The out! stream is not determined by the in?
stream values - it IS non-deterministic.

O O W o1 o



A Real-Time Process

in count out
N ﬁ
? (period)

count (period, in?, out!)

count (period, In?, out!) =

Standardl CSP does
not address time ...

but occam-7 dOES ...



A Resettable Network

reset

oy out__
o/

SUCC

numbers.reset

This is a resettable version of the numbers process.
If nothing Is sent down reset, it behaves as before.

But it may be reset to continue counting from any
number at any time.



Non-Deterministic Processes

To enable these, occam-m introduces a new
programming structure: the ALT ...

. which explicitly introduces non-determinism.

avery simple
and elegant idea

will not frighten
the horses ...




Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Non-Deterministic Choice

ALT
<guard>

J\,

<process>

<guard>

<process>

J\\

<guard>

<process>

J\,

<guard>

<process=

guarded
processes



Non-Deterministic Choice

s A <guard> may be ready or not-ready.

= A not-ready <guard> may change to ready as
a result of external activity.

» A ready <guard> may be executed.



Non-Deterministic Choice

ALT
<guard>

J\,

<process>

<guard>

<process>

J\\

<guard>

<process>

J\,

<guard>

<process=

guarded
processes



Non-Deterministic Choice

An ALT process executes as follows:

» if no guard is ready, the process is suspended until one,
or more, become ready;

» if one guard is ready, execute it and then execute the
process it was defending (end of ALT process);

= if more than one guard is ready, one Is arbitrarily
chosen and executes, followed by the process it was
defending (end of ALT process).

Note: only one of the guarded
processes is executed.




Non-Deterministic Choice

There are 3 types of@
SKIP
‘ guards
timeout
guards




Non-Deterministic Choice

in ? x

<process>

input
guards

An input guard is ready if a process on the other end of the
channel is trying to output to that channel and is waiting for

Its message to be taken.

Execution of this guard (if chosen) is just execution of the
Input process. Note that execution of this guard leaves it
not-ready (until another process again outputs to the

channel).



Non-Deterministic Choice

in.0 |
!n.l > crude.plex wll
in.2

PROC crude.plex (CHAN INT in.0?, in.1?, in.2?, out!)
WHILE TRUE

INT X:
ALT
in.0 ? x
out ! X
in.l1 ? x
out ! X
in.2 ? x
out ! X

guarded
processes



Non-Deterministic Choice

timeout

tim ? AFTER t
guards

<process>

A timeout guard Is ready If the time currently showing on the
TIMER (tim) is AFTER the time indicated (t). Note that the
time on a TIMER continually increments and that the time

Indicated cannot change while awaiting this timeout.

Execution of this guard (if chosen) is null. Note that execution
of this guard leaves it ready (until the value of timeout is
changed).



Non-Deterministic Choice

out

watchdog (period)

panic

v

PROC watchdog (VAL INT period,
CHAN INT in?, out!, CHAN BOOL panic!)
WHILE TRUE
TIMER tim:
INT €, x:
SEQ
tim ? t
ALT
in ? X
out ! x
tim ? AFTER t PLUS period
panic ! TRUE

guarded
processes



Non-Deterministic Choice

SKIP SKIP

guards
I <process> I

A SKIP guard is always ready.

Execution of this guard (if chosen) is null.



Non-Deterministic Choice

ALT
SKIP
% == 42 guarded
SKIP processes
X = 43

Both guards are ready — so an arbitrary choice is made!

Actually, such non-determinism is too much to be useful and
the compiler issues warnings — the programmer probably
didn’t mean to write this!

SKI1P guards only become useful with prioritised choice,
which comes next.



Deterministic Choice

PRI ALT
<guard>

J\\

<process>

<guard>

<process>

J\\

<guard>

<process>

J\

<guard>

<process>

guarded
processes



Deterministic Choice

A PRI ALT process executes as follows:

» if no guard is ready, the process is suspended until one,
or more, become ready;

» if one guard is ready, execute it and then execute the
process it was defending (end of PRI ALT process);

= if more than one guard is ready, the first one listed is
chosen and executes, followed by the process it was
defending (end of PRI ALT process).

Note: only one of the guarded
processes is executed.




Example — Polling a Channel

PRI ALT
in ? X

guarded
Processes

... message was pending
SKIP
message was not pending
If no message was pending on the channel, the first guard
Is not-ready. But the second guard is (always) ready, so
that guarded process is executed.

If a message was pending on the channel, the first guard
IS ready. So (always) is the second guard — but the first
has priority and is taken.

A SKIP guard lets us poll channels to test if a message Is
pending and, if so, deal with it. Beware polling though — it
can lead to inefficient and poor design ...



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Example — a Control Process

7 | inject
\e
‘ ‘e*a‘“() in out
ea‘\\e ? VV V

replace (in?, out!, inject?)

Coping with the real world - making choices ...

In replace, data normally flows from in? to out!
unchanged.

However, if something arrives on inject?, itis
output on out! - instead of the next input from in?.



Example — a Control Process

X ?| inject
a

b in out
c ? '
d U
&

replace (in?, out!, inject?)

D QA0 T X

O Ao X 9
D AX TP
D X O T

The out! stream depends upon:
= The values contained in the 1N and 1nject streams;
= the order in which those values arrive.

The out! stream is not determined just by the In?
and inject? streams - it is non-deterministic.

X QO oY



Example — a Control Process

7 | inject
in out
: U

PROC replace (CHAN INT in?, out!, inject?)

WHILE TRUE
INT X, any:
PRI ALT
inject ? x -- replace the
PAR -- next “in’
in ? any -- with the
out ! x -- “iInject’ value
in ? X -- normally

out ! Xx --— just copy through



Example — a Control Process

PROC replace (CHAN INT in?, out!, inject?)

WHILE TRUE
PRI ALT
INT x, any:
inject ? x -- replace the
PAR -- next “in’
in ? any -- with the

out ! x -- “‘reset’ value

INT Xx: local declaration
in ? X -- normally

out ! Xx -- just copy through



Locals + Guarded Processes

ALT -- or PRI ALT

<local declarations>
<guard>

<process>

[

<local declarations>
<guard>

<process>

[

<local declarations>
<guard>

<process>

[

\

> <€

local declarations
are optional

guarded

Processes

local declarations

have scope only
for the following
guarded process



Example — another Control Process

?| inject

: 2™ in out
\© 2

scale (s, in?, out!, inject?)

Coping with the real world - making choices ...

In scalle, data flows from in? to out!, getting
scaled by a factor of s as it passes.

Values arriving on inject? reset the s factor.



Example — another Control Process

n ?|inject

n*a s*a Ss*a
n*b n*b s*b
n*c n*c n*c
n*d n*d n*d
scale (s, in?, out!, inject?) n‘e n*e n*e

a
b
c
d
e

The out! stream depends upon:

» The values contained in the in? and inject! streams;
= the order in which those values arrive.

The out! stream is not determined just by the In?
and inject? streams - it is non-deterministic.



Example — another Control Process

PROC scale (VAL INT s, CHAN INT in?, out!, inject?)
INT scale:
SEQ

scale = s

WHILE TRUE

PRI ALT

inject ? scale -- get new scale
SKIP

INT Xx: local declaration
in ? x - data

out ! scale*x -- scalle it up



Example — another Control Process

PROC scale (VAL INT s, CHAN INT in?, out!, inject?)

INITIAL INT scale IS s:
WHILE TRUE Initialising declaration
PRI ALT

inject ? scale -- get new scale
SKIP

INT x: local declaration
in ? x data

out ! scale*x -- scale it up




Example — a Real-Time Process

\e -
+a® in count O\ out
. e‘ e 3 —
et 2\ (period)

count (period, in?, out!)

Coping with the real world - making choices ...

count observes passing time and messages arriving
on in?. Every period microseconds, it outputs (on
out!) the number of messages received during the

previous period.



Example — a Real-Time Process

in count out
X —_—
? (period)

count (period, in?, out!)

D QOO T oD
W woN Pk
0001 O N O
O O Ww o1 O

The out! stream depends upon:

= When values arrived on the in? stream (the values
received are irrelevant).

The out! stream is not determined by the In?
stream values - it is non-deterministic.



Example — a Real-Time Process

PROC count (VAL INT period, CHAN INT in?, out!)
INITIAL INT seen IS O:

TIMER tim: .

i, in count out
INT timeout: : —
SEQ ? (period)

tim ? timeout
timeout := timeout PLUS period
WHILE TRUE
PRI ALT
tim ? AFTER timeout -- timeout
SEQ
out ! seen
seen := 0
timeout := timeout PLUS period
INT any:
in ? any -- data
seen := seen + 1



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and Kkills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Example — a Resettable Network

reset

@ D out
_er? 0 - -
s @ -
SUCC

numbers.reset

This is a resettable version of the numbers process.
If nothing Is sent down reset, it behaves as before.

But it may be reset to continue counting from any
number at any time.



Example — a Resettable Network

reset

0 a //)k\\ b

out

A

SUCC

numbers.reset

PROC numbers.reset (CHAN INT reset?, out!)

CHAN INT a, b, c, d:
PAR

prefix (0, d?, al!)
replace (a?, b!, reset?)
delta (b?, out!, c!)

succ (c?, d!)

parallel
Implementation



Example — a Resettable Network

reset l

out
numbers.reset >

PROC numbers.reset (CHAN INT reset?, out!)
INITIAL INT n IS O:
WHILE TRUE
SEQ
PRI ALT -- poll reset channel
reset ? n
SKIP
SKIP
SKIP
out ! n
n := n PLUS 1

serial
Implementation



Example — Resettable Integrator

reset l

in ) out
— mteg rate.reset —

PROC integrate.reset (CHAN INT in?, reset?, out!)
INITIAL INT total IS O:
WHILE TRUE

SEQ
PRI ALT
reset ? total
SKIP
INT x:
in ? x
total := total + X
out ! total

serial
Implementation



Example — Resettable Integrator

reset
in - a-»//i\\ b out
o’
d (o
prefix (0)
integrate.reset

PROC integrate.reset (CHAN INT iIn?, reset?, out!)
CHAN INT a, b, c, d:
PAR
plus (in?, d?, al)
replace (a?, b!, reset?)
delta (b?, out!, c!)
prefix (0, c?, d!)

parallel
Implementation



An Inertial Navigation Component

vel.resetl pos.resetl

acc.in pos

nav.1ld

vel

acc

acc. in: carries regular accelerometer samples;
vel .reset: velocity initialisation and corrections;
pos.reset: position initialisation and corrections;
pos/vel/acc: regular outputs.



An Inertial Navigation Component

vel.reset pos.reset

acc.in

. . pos
*l integrate.reset _.< > integrate.reset >

vel

O
N

acc

nav.ld

= acc.in: carries regular accelerometer samples;
2 vel .reset: velocity initialisation and corrections;
1 pos.reset: position initialisation and corrections;
s pos/vel/acc: regular outputs.



Half Inertial Navigation Component

reset
in y R out
. » integrate.reset
\ ‘
in.copy
half.nav.1d

Build It firom two
COMPONERTS

= in:I carries regular samples;

s in.copy: copy of the in stream,

= out: regular outputs (sample running sums);

s reset: running sum initialisation and corrections.



u

o

2

u

An Inertial Navigation Component

vel.reset

pos.reset

acc.in

half.nav.1d

nav.ld

half.nav.1d

pos

vel

acc

acc. in: carries regular accelerometer samples;
vel .reset: velocity initialisation and corrections;
pos.reset: position initialisation and corrections;

pOS/V&I/aCCZ I’egU|aI’ OUtpUtS Build it from two
COmpenents




Example - Integrator (again)

in out

2D
cﬁﬂ&GSk X +y
integrate X+Yy+72

PROC integrate (CHAN INT in?, out!)
INITIAL INT total IS O:

WHILE TRUE
INT x: serial
SEQ ) ot
h 2 x implementation

total := total + X
out ! total



With an Added Kill Channel

<
0\‘\?@»\%“\
¢

integrate.kill

Kl

out

Xty

X+Yy+z

PROC integrate.kill (CHAN INT in?, out!, kill?)

INITIAL INT total IS O:

INITIAL BOOL running IS TRUE:

main loop



With an Added Kill Channel

in out - X
o\@«
o® X+y
integrate.kill X+ + 2
kill
WHILE running -- main loop
PRI ALT
INT any:

kill ? any :
running := FALSE _ serial _
INT x: Implementation
in ? x
SEQ

total := total + x
out ! total



Example - Integrator (again)

out

> X

in

Xty

X+Yy+z

<OMPONENT integrate

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR

plus (in?, c?, al)
delta (a?, out!, b!)
prefix (0, b?, c!)

parallel
Implementation




With an Added Kill Channel

kill

integrate.kill

PROC integrate.kill (CHAN INT in?, out !, kill?)
CHAN INT a, b, c, d:
PAR

killer (in?, kill?, d})
plus (d?, c?, al!)
delta (a?, out!, b!)

prefix (0, b?, c!)

parallel
Implementation



With an Added Kill Channel

kill
integrate.kill

To shut down a network gracefully (without leaving some
processes stranded — i.e. deadlocked), we poison all the

components. The poison spreads through the normal
dataflow.

For integrate.kill, the killer process injects poison
upon receiving a kill signal, and then shuts down.



With an Added Kill Channel

kill
integrate.kill

This shutdown protocol generalises to work for any process
network — see the paper:

“Graceful Termination, Graceful Resetting”

... background reading




With an Added Kill Channel

kill

integrate.kill

The other processes check for poisonous input data — if found,
they pass it on and die.

The plus process must wait for the poison to return from the
feedback loop before dying.

The delta process only forwards the poison internally — unless
it really wants to bring down the next component!



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




A Memory Cell

request

out

PROC mem.cell (CHAN INT in?,
CHAN BOOL request?, CHAN INT out!)
-- WARNING: write before reading!
INT Xx:
WHILE TRUE
ALT
in ? x
SKIP
BOOL any:
request ? any
out ! X



Asynchronous Communication

request

A sends information to B.

A can send at any time (it will never be blocked by B not being ready
to receive).

B can receive data at any time but, first, it has to request some (it
will never be blocked by A not being able to send).

The memory cell acts as a common pool of information.



Asynchronous Communication

request
@

= We could relieve B from having to make requests by combining an
auto-prompter with the memory cell.

PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)
WHILE TRUE
INT x:

SEQ request ¢
request ! TRUE _)MIOL)
in ? X in

out ! X




Asynchronous Communication

request
A o

= We could relieve B from having to make requests by combining an
auto-prompter with the memory cell.

= But if auto-prompter gets its first request in before A sends
anything, it will pick up garbage from the cell.

= Also, if B is not taking data, auto-prompter stores old (stale) data,
while the memory-cell holds anything new that arrives. This is
probably a bad thing. When B takes data, it wants the latest item
that A has sent.



4

Asynchronous Communication

. Yo & .
We could relieve B from\Sg /)O qake requests by combining an
auto-prompter with the me /6@ /cy

4 %

But if auto-prompter gets its first Qf;o O,/O’ n before A sends
anything, it will pick up garbage fro 0‘&\ @@
Y/

Q
Also, if B is not taking data, auto-promp O, 7® U (stale) data,
while the memory-cell holds anything new ™% This is

probably a bad thing. When B takes data, it G/) est item
that A has sent.



Regular Events

PROC clock (VAL INT cycle, CHAN BOOL tick!)
TIMER tim:

INT t: _ _
SEQ Run this at high
tim? t priority!!

WHILE TRUE
SEQ

:= t PLUS cycle
tim ? AFTER t
tick ! TRUE



ock (cycle

Run all these at
high priority

IEREgUIBIE A G felofu) el e eletzl flo)yy



Another Memory Cell

= The implementation of mem.cel | captured state
iInformation (the memory) with a variable. This is OK
for the demonstrated application (asynchronous
communication) ... but a bit of a cheat if we want to
model a variable.

= The following implementation retains state information
just by the topology (feedback loops) of the internal
connections. The internal components do not
themselves retain state. They give a design for
hardware implementation.



request

PROC mem.cell (CHAN INT in?,
CHAN BOOL request?, CHAN INT out!)
-— WARNING: write before reading!!!
CHAN INT a, b, c:
PAR
replace (c?, al!, in?)
sample (a?, b!, request?, out!)
INT any:
prefix (any, b?, cl)



PROC replace (CHAN INT in?, out!, inject?)

WHILE TRUE
PRI ALT
INT %, any:
inject ? X -- replace the
PAR -- next “in’
in ? any -- with the
out ! x -- “iInject’ value
INT x:
in ? X -- normally

out ! x -- just copy through



PROC sample (CHAN INT in?, out!,
CHAN BOOL request?, CHAN INT answer!)
WHILE TRUE
PRI ALT
BOOL any: request answer
request ? any

INT x: )
SEQ in out

E —> >—
in ? x \\\_’//
PAR
answer ! x -- duplicate
out ! x -- output
INT x:

in ? X -- normally
out ! x -- just copy through




video.out

request

PROC vid.cell (CHAN INT in?, CHAN INT video.out!,

CHAN BOOL request?, CHAN INT out!)
-- WARNING: write before reading or viewing!!!

CHAN INT a, b, c, d:

PAR
replace (c?, al!, in?)
delta (a?, video.out!, d!)
sample (d?, b!, request?, out!)

INT any:
prefix (any, b?, cl)



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Non-Deterministic Choice

ALT
<guard>

J\,

<process>

<guard>

<process>

J\\

<guard>

<process>

J\,

<guard>

<process>

guarded
processes




Non-Deterministic Choice

An ALT process executes as follows:

» if no guard is ready, the process is suspended until one,
or more, become ready;

» if one guard is ready, execute it and then execute the
process it was defending (end of ALT process);

= if more than one guard is ready, one Is arbitrarily
chosen and executes, followed by the process it was
defending (end of ALT process).

Note: only one of the guarded
processes is executed.




Deterministic Choice

A PRI ALT process executes as follows:

» if no guard is ready, the process is suspended until one,
or more, become ready;

» if one guard is ready, execute it and then execute the
process it was defending (end of PRI ALT process);

= if more than one guard is ready, the first one listed is
chosen and executes, followed by the process it was
defending (end of PRI ALT process).

Note: only one of the guarded
processes is executed.




Pre-Conditioned Guards

Any guard may be prefixed by a BOOL pre-condition:

<pre-condition> & <guard>

<process> .

7

When the ALT (or PRI ALT) starts execution, any pre-conditions
on the guards are evaluated.

If a pre-condition turns out to be FALSE, that guarded process

is not chosen for execution — even if the guard is (or becomes)
ready.



Pre-Conditioned Guards

Any guard may be prefixed by a BOOL pre-condition:

<pre-condition> & <guard> )

<process> .

S

For each execution of an ALT (or PRI ALT), any pre-conditions
only need evaluating once — no rechecks are necessatry.

A pre-condition is a BOOL expression, whose variables cannot
change whilst waiting for a guard to become ready. No other
process can change those variables (simply because this
process is observing them).



INT a:
BOOL timing:
SEQ
... set a and timing .
TIMER tim: \
INT time.out, Xx:
SEQ
tim ? time.out
time.out := time.out PLUS 1000

ALT
.o 7 x RUN-TIME DECISION:
out ! x
in.1l ? x listen out for the in.2 channel?
out ! x set the timeout?
(a=42) & In.2 ? x
out ! Xx

timing & tim ? AFTER time.out
out 1 -1



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Another (FIFO) Buffer Process

Recall that ...

LR TTEAT
OO

@cking FIFO buffer of ca@




Another (FIFO) Buffer Process

This Is a great and simple design ... for hardware ...

LR TTEAT
OO

... where buffered data can flow in parallel along the
pipeline ...




Another (FIFO) Buffer Process

This Is a great and simple design ... for hardware ...

)

... but not so good for software ... where each item of
buffered data must be copied (from process to process)

N times (where N is the size of the buffer).




Another (FIFO) Buffer Process

So let's do something better suited for software ... that
does not do all that copying. Let’s just have one process.

in

buffer

<€

request

out

buffer has a capacity of max (say). A process may send
data into the buffer until it is full. If it then tries to send
more, it will be blocked until the buffer gets emptier.

A process may extract data (by first making a request)
until the buffer is empty. If it then requests more, it will
be blocked until the buffer gets some data.



Within buffer, we declare an array (to hold up to max
items) and three control variables:

max—1
max—2
Number of
items currently
In the buffer
14
13
12
11
10
Index of the 9
next free slot 3
6
5
4
Index of the 3
oldest item in 2
the buffer 1
0

hold



If buffer receives another item:

max—1
max—2

Number of
items currently
N the buffer

=
NN

=
w

[HEN
N

[EEN
[EEN

Index of the
next free slot

Index of the
oldest item in
the buffer

=
OFRPNWMIUIIONOWOOO

hold



And, then, is requested for and delivers an item:

Number of
items currently
N the buffer

Index of the
next free slot

Index of the
oldest item in
the buffer

hold

max—1
max—2

ol
PN WS

=
OFRPNWMIUIIONOWOOO



And, then, receives another item :

max—1
max—2
Number of
items currently
In the buffer
14
13
12
11
10
Index of the 9
next free slot 3
6
5
4
Index of the 3
oldest item in 2
the buffer 1
0

hold



And another item :

max—1
max—2

Number of
items currently
N the buffer

=
NN

e
N W

[EEN
[EEN

Index of the
next free slot

Index of the
oldest item in
the buffer

=
OFRPNWMIUIIONOWOOO

hold



And, then, is requested for and delivers an item:

Number of
items currently
N the buffer

Index of the
next free slot

Index of the
oldest item in
the buffer

hold

max—1
max—2

ol
PN WS

=
OFRPNWMIUIIONOWOOO



PROC buffer (CHAN INT in?, CHAN BOOL request?, CHAN INT out!)
[max] INT hold:

INT lo, hi, size : -- size = hi — lo (modulo wrap-around)
SEQ
lo, hi, size :=0, 0, O
WHILE TRUE
ALT
(size < max) & in ? hold[hi]
SEQ
hi = (hi + 1)\max
size := size + 1
BOOL any: .
(size > 0) & request ? any Jojetes
SEQ wrap-around

out ! hold[lo]
lo := (lo + 1)\max
size := size -1



i request
— 0 5 buffer |
uffer —

[max] INT hold:

PROC buffer (CHAN INT in?, CHAN BOOL request?, CHAN INT out!)

hi — lo (modulo wrap-around)

INT lo, hi, size : -- slze =
SEQ
lo, hi, size :=0, 0, O
WHILE TRUE
ALT
(size < max) & in ? hold[hi]
SEQ
hi = (hi + 1)\max
size := size + 1
BOOL any:
(size > 0) & request ? any ——
SEQ
out ! hold[lo]
lo := (1o + 1)\max
size := size - 1

Note: the process
taking items from this
buffer has to make a
request ... because
output guards are not
supported ... despite
their semantic power.




PROC buffer (CHAN INT in?, CHAN INT out!)
[max] INT hold:

INT lo, hi, size : -- size = hi — lo (modulo wrap-around)
SEQ
lo, hi, size :=0, 0, O
WHILE TRUE
ALT
(size < max) & in ? hold[hi]
SEQ
hi := (hi + 1)\max
size := size + 1
(size > 0) & out ! hold[lo] - —
SEQ
lo := (lo + 1)\max
size := size -1
: 2Ir semantic power.




Output guards require an independent mediator to resolve
choices — because more than one process must make the
same choice. For example:

ALT

(@ )
jam eq)
35 X

Which communication should be done? Either is allowed.
Both processes must reach the same decision.

We know how to solve this ... but it costs!

By only allowing input guards, only one process is ever
iInvolved in any choice (i.e. if one process is ALTing, no

process communicating with it can be ALTIng).



To relieve the receiving process from the bother of making

the requests, we can install an auto-prompter alongside the
buffer:

req
in ——— out

> puffer prompt >
m— |

new.buffer

PROC prompt (CHAN BOOL request!, CHAN INT in?, out!)
WHILE TRUE

INT x:

SEQ request
request ! TRUE | prompt
in ? X in

out ! x




To relieve the receiving process from the bother of making

the requests, we can install an auto-prompter alongside the
buffer:

_ req
in ——— out

> buffer prompt >
m— |

new. buffer

Just as when used like this with the mem.cel I process,
prompt holds old (stale) data. Meanwhile, the buffer

holds anything new that arrives. This is a good thing this
time!

Whatever takes data from new.buffer wants the oldest
item put into it — it is, after all, a FIFO. © © ©



To relieve the receiving process from the bother of making

the requests, we can install an auto-prompter alongside the
buffer:

req
in ——— out

> buffer prompt >
m— |

new. buffer

The prompt process will be blocked making its first request
until something is put into the buffer.

It then extracts that item and offers it out. When (if) that is
taken, prompt again requests from buffer, which may or
may not have accumulated more items.



To relieve the receiving process from the bother of making

the requests, we can install an auto-prompter alongside the
buffer:

_ req
in ——— out

> buffer prompt >
m— |

new. buffer

An empty buffer always blocks a request from prompt,
leaving new.buffer not trying to out anything.

An non-empty buffer always gives prompt its oldest item,
which prompt then offers on out.

So, new.buffer is just a FIFO with capacity (max + 1).
And it has single input/output lines — no request is needed.



To relieve the receiving process from the bother of making

the requests, we can install an auto-prompter alongside the
buffer:

req
M > buffer |© | prompt out

ans
new.buffer

PROC new.buffer (CHAN INT in?, out!)
CHAN BOOL req:

CHAN INT ans:
PAR The capacity of new.buffer
buffer (in?, req?, ans!) Is (max + 1)

prompt (ans?, req!, out!)




in out

— d /" d — d (— "—= id =

new.buffer

N ,, J
e

M L' puffer |© | prompt out

T—
new. buffer

The top version is a more regular and simpler design. The
bottom is more efficient for software — less copying of data.



c[0] c[1] c[2]

— id

—— id — id |~ -

c[max-1]

id

out

new. buffer

.

fwavl—r
PROC new.buffer (CHAN INT
[max]CHAN INT c:
PAR
id (in?, c[0]!)
PAR i = 0 FOR max — 1

id (c[i]?, c[i+1]}Y)
id (c[max — 1]?, out!)

in?, out!)

y



Exercise:

i request
in <~
———> overflow.buffer — a

lerror

This Is the same as buffer, except that it does not block the source

when it is full. Instead, it outputs a signal on the (BooL) error line
and discards the incoming item.

This type of buffer is used in a real-time system if it is important
not to delay the source process if the receiver is slow and it Is
not crucial if we miss some items, so long as we know about it!



Exercise:

i request
_ ite.buffer | |
overwrice.nu er —

This Is the similar to overflow.buffer; It also does not block the
source when it is full. However, the incoming item (when full) is
not discarded but overwrites the oldest item in the buffer. No error
IS reported for this (though another version could easily do that).

This type of buffer is used Iin a real-time system if it is important
not to delay the source process if the receiver is slow and we
don’t mind losing old items when full. Whatever it holds, it
always holds the latest values received from the source.



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




The Replicated AL T

Consider a process with an array of input channels:

X
infol 0
1] Y N 1
inf2) 2
inf3] | 3

And an internal data array of the same type and size as
the input channel array.

The process needs to accept any message from any
Input channel, putting it into the corresponding element
of its data array.



The Replicated AL T

Consider a process with an array of input channels:

X
infol 0
1] Y N 1
inf2) 2
inf3] | 3

Before, we introduced the replicated PAR for this. We

knew that a message on one channel was accompanied
by a message on all channels.

This time, we don’t know the frequency (if any) with
which messages will arrive from any channel.



The Replicated AL T

We must await these inputs with an ALT:

X
in[0] | 0
infl) J 1
inf2] 2
ALT in[3] N 3
in[O] ? x[O]
... deal with it
in[1] ? x[1]
... deal with it _
in[2] ? x[2] But what i there were 40
... deal with it channels in the array? Or
in[3] ? x[3] 400 ... or 4000 ... 211

deal with it



The Replicated AL T

We must await these inputs with an ALT:

X
infol 0
in[1] N 1
Inf2) | 2
inf3] | 3

INT declaration

number of replrcations

i =
nfi] ? x[i] This guarded process
... deal with it gets replicated




The Replicated AL T

We must await these inputs with an ALT:

X
in[0] N 0
in[1] N 1
Inf2) | 2
ALT in[3] 5] 3
in[0] ? x[O]
-.. deal with It
in[1] ? x[1]
-.. deal with It
in[2] ? x[2]
-.. deal with It ALT 1 = 0 FOR 4
in[3] ? x[3] = in[i] ? x[i]

deal with i1t ... deal with It



A Simple Multiplexor

in[0] |
in[1]

>

0
plex =

in [ni—l]_)

This process just forwards any message It receives ...

... but prefixes the message with the index of the channel
on which it had been received ...

... which will allow subsequent de-multiplexing.



A Simple Multiplexor

in[ﬂ
in[ﬂ

>

L
plex =

in [n‘—l]_)

PROC plex ([JCHAN INT in?, CHAN INT out!)
WHILE TRUE

ALT @ = 0 FOR SIZE iIn? .
INT x: the array size
in[i] ? x

SEQ
out
out

This guarded process
gets replicated

X




A Matching De-Multiplexor

in

This process recovers input messages to their correct
output channels ... and assumes each message Is
prefixed by the correct target channel index ...

Each message must be a <index, data> pair, generated
by a plex process (with the same number of inputs as this
has outputs).



A Matching De-Multiplexor

in

PROC de.plex (CHAN INT in?, [JCHAN INT out!)
WHILE TRUE

INT ¥, X:

SEQ
in 21 «— This must be a
in ? X legal index of
out[i] ! x the out array!



Multiplexor Application (Example)

in[0] |
in[1] )
C
: plex
infn-1] J outfn-1]
machine.a machine.b

only a single wire
availlable between the
Wo machines ...




Multiplexor Application (Example)

in[0] |
in[1] )
: plex = > de.plex
infn-1] J outfn-1]
machine.a machine.b

If each message arriving at plex (and departing de.plex)
Is of type THING, then each message on the multiplexed
channel consists of a channel array index (type INT)

followed by a THING.



Multiplexor Application (Example)

in[0] |
in[1] )
plex = > de.plex
infn-1] J outfn-1]
machine.a machine.b

Message structures should be documented somewhere!



Multiplexor Application (Example)

in[ﬂ )
in[1]

>

in [ni—l]_)l

machine.a

plex

de.plex

out[rin-l]_)

machine.b

In our example, we were fortunate that the messages to be
multiplexed were type INT — the same as channel indices!

This lets us type the multiplexed channel: CHAN INT c:
Remembering that messages on ¢ have form: INT; INT



Multiplexor Application (Example)

in[ﬂ )
in[1]

>

in [ni—l]_)l

machine.a

plex

de.plex

out[rin-l]_)

machine.b

However, suppose that the messages to be multiplexed were

type REALGS ...

Now, messages on ¢ have form: INT; REAL64
How do we type the multiplexed channel: CHAN ??7? c:



Multiplexor Application (Example)

in[0] |
in[1] )
plex = > de.plex
infn-1] J outfn-1]
machine.a machine.b

occam-Tt iIntroduces the concept of PROTOCOL, which enables

rich message structures (containing possibly mixed types) to
be declared for individual channels.

The compiler enforces strict adherence — we gain safety and
auto-documentation (of those message structures).



Multiplexor Application (Example)

in[0] |
in[1] )
plex = > de.plex
infn-1] J outfn-1]
machine.a machine.b

We will return to this example in the chapter on message
PROTOCOLSs.



Choice and Non-Determinism

Non-determinism ...
The ALT and PRI ALT ...

Control and real-time ...
Resets and kills ...
Memory cells ...
Pre-conditioned guards ...

Serial FIFO (‘ring’) buffer ...
The replicated ALT ...

Nested ALTS ...




Nested ALTs and PRI ALTs

ALT

ALT
<guard 0> <guard 0>
<process 0> <process 0>
ALT
<guard 1> sguard 12
_ <process 1>
<process 1> =
<quard 2> <guard 2>
<process 2>
<process 2>
<guard 3> sguard 3>

<process 3>
<process 3>

The inner ALT disappears and its guarded processes align with
the guarded processes of the outer ALT.




Nested ALTs and PRI ALTs

PRI ALT

<guard 0> 2 ]

<guard 0>

<process 0>

<process 0>

ALT
< >
<guard 1> guard 1
_ <process 1>
<process 1> =
< >
<guard 2> guard 2
<process 2>
<process 2>
< >
<guard 3> guard 3

<process 3>
<process 3>

(;;1 ALT nested inside a PRI ALT gets prioritiseds




Nested ALTs and PRI ALTs

PRI ALT

<guard 0> 2 ]

<guard 0>

<process 0>

<process 0>

ALT
<guard 1> =<guard 1~
_ <process 1>
<process 1> =
<guard 2> =<guard 2>
<process 2>
<process 2>
< >
<guard 3> guard 3

<process 3>
<process 3>

W‘ is OK (an ALT can always be replaced by a PRI ALT)




Nested ALTs and PRI ALTs
ALT

<guard 0>

o o
PRI ALT
< >
<guard 1> guard 1
<process 1> aé <process 1>
<guard 2>

<guard 2>

<process 2>

<process 2>

<guard 3>

cprocess &
( A PRI ALT nested inside an ALT is illegal ... s




Nested ALTs and PRI ALTs
ALT

<guard 0>

PRI ALT
<guard 1> <guard 1>
<process 1> aé <process 1>
<guard 2>

<guard 2>

<process 2>

<process 2>

<guard 3>

cprocess &
‘\/ (a PRI ALT cannot always be replaced by an ALT) >




Nested ALTs and PRI ALTs

ALT
<guard 0>

<process 0>

ALT §# = 0 FOR n
<rep guard iI>

<rep process i>

<guard 1>

<process 1>

Nested ALTs are mainly

useful ... when the inner or
outer is replicated.

ALT

<guard 0>

<process 0>

ALT
<rep guard 0>

<rep process 0>

<rep guard (n-1)>

<rep process (n-1)>

<guard 1>

<process 1>




Nested ALTs and PRI ALTs

ALT
<guard 0>

<process 0>

ALT §# = 0 FOR n
<rep guard iI>

<rep process i>

<guard 1>

<process 1>

They enable us to ALT

between arrays of guards
and individuals.

ALT
<guard 0>

<process 0>

<rep guard 0>

<rep process 0>

érep guard (n-1)>

<rep process (n-1)>

<guard 1>

<process 1>




PRI ALT

tim ? AFTER timeout
... deal with It

BOOL any:
pause ? any
pause ? any

ALT @ = O FOR SIZE a?
INT Xx:
afi] ? x
... deal with it

ALTing between an array
of channel inputs, a single
channel input and a single
timeout.




ALT
ALT @ = 0 FOR SIZE a?
INT Xx:
afi] ? x
ALTing between two ... deal with it
63 OfQUD ALT i = 0 FOR SIZE b?
INT X:
b[i] ? X

... deal with It



ALT 1 = O FOR SIZE a?

ALTing betweenaé AL':'N#'_ )=(_0 FOR SIZE a[i]?
array of guards. ali1G] 2 x

... deal with it



	Choice and Non-Determinism
	Choice and Non-Determinism
	Deterministic Processes (CSP)
	Non-Deterministic Processes (CSP)
	A Control Process
	A Control Process
	A Control Process
	Another Control Process
	Another Control Process
	Another Control Process
	A Real-Time Process
	A Real-Time Process
	A Real-Time Process
	Non-Deterministic Processes
	Choice and Non-Determinism
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Non-Deterministic Choice
	Deterministic Choice
	Deterministic Choice
	Example – Polling a Channel
	Choice and Non-Determinism
	Example – a Control Process
	Example – a Control Process
	Example – a Control Process
	Example – a Control Process
	Locals + Guarded Processes
	Example – another Control Process
	Example – another Control Process
	Example – another Control Process
	Example – another Control Process
	Example – a Real-Time Process
	Example – a Real-Time Process
	Example – a Real-Time Process
	Choice and Non-Determinism
	Example – Resettable Integrator
	Example – Resettable Integrator
	An Inertial Navigation Component
	An Inertial Navigation Component
	Half Inertial Navigation Component
	An Inertial Navigation Component
	Example – Integrator (again)
	With an Added Kill Channel
	With an Added Kill Channel
	Example – Integrator (again)
	With an Added Kill Channel
	With an Added Kill Channel
	With an Added Kill Channel
	With an Added Kill Channel
	Choice and Non-Determinism
	Choice and Non-Determinism
	Non-Deterministic Choice
	Non-Deterministic Choice
	Deterministic Choice
	Pre-Conditioned Guards
	Pre-Conditioned Guards
	Choice and Non-Determinism
	Choice and Non-Determinism
	The Replicated ALT
	The Replicated ALT
	The Replicated ALT
	The Replicated ALT
	The Replicated ALT
	A Simple Multiplexor
	A Simple Multiplexor
	A Matching De-Multiplexor
	A Matching De-Multiplexor
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Choice and Non-Determinism
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs
	Nested ALTs and PRI ALTs

