Motivation: Concurrency for All
(Process Oriented Design)

Peter Welch (p.h.welch@kent.ac.uk)

Computing Laboratory, University of Kent at Canterbury

\

Co631 (Concurrency)

—

Motivation: Concurrency for All

Nature Is not serial ...
Components must compose ...
Nature Is concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

Nature is not organised as a
single thread of control:

|

joe.eatBreakfast ();

sue.washUp O:
joe.driveToWork ();
sue.phone (sally);

US.government.sue (bill);
sun.zap (office);

|

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

Ef ... hanite ... human ... astronomic ... ﬂ

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

Ef ... hanite ... human ... astronomic ... ﬂ

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

Ef ... hanite ... human ... astronomic ... ﬂ

Motivation and Applications

s Thesis

¢ Natural systems are robust, efficient, long-lived and
continuously evolving. We should take the hint!

¢ Look on concurrency as a core design mechanism — not
as something difficult, used only to boost performance.
= Some applications
¢ Hardware design and modelling.
¢ Static embedded systems and parallel supercomputing.

¢ Field-programmable embedded systems and dynamic
supercomputing (e.g. SETI-at-home).

¢ Dynamic distributed systems, eCommerce, operating
systems and games.

¢ Biological system and nanite modelling.

Motivation: Concurrency for All

Nature is not serial ...
Components must compose ...
Nature Is concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

Components?

Components must be composeable ...
. and they must compose simply!

Components?

Mind you, just because components compose ...

... doesn’t always mean that it makes sense ...

Components?

... to compose them ... @

*Image courtesy of Philips TASS <http://www.tass.philips.com/>

Components?

If we understand A and B separately, we must be
able to deduce simply their combined behaviour.

Semantics [A + B] = Semantics [A] + Semantics [B]

A and B must be composeable ... @

Composition?

Complex systems are composed from less complex
components ...

... Which are composed from simpler components ...

... Which are composed from simpler components ...
.. etc ...

... which are composed from simple components.

Composition?

Composition rules must be simple and yield no
surprises.

Whatever it is they encapsulate, components must
have interfaces that are clean, complete and explicit.

Hardware systems are forced (by physics/geometry)
to be built like this.

Software systems have no such constraints. We think
we can do better than nature ... and get into trouble.

Motivation: Concurrency for All

Nature is not serial ...
Components must compose ...
Nature IS concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

The Real World and Concurrency

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in
the system ... it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

This tradition is WRONG!

... which has (radical) implications on how we
should educate people for computer science ...

... and on how we apply what we have learnt ...

What we want from Parallelism

A powerful tool for simplifying the description of
systems.

Performance that spins out from the above, but is not
the primary focus.

A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

Multi-Pong

= Multi Pong

Right

MEW GAME RELEASE

left right ¥
: Multi-
scorer Pon
> - 2 A - h
- - o <
L :
keycontrol
collision
detect
hﬁﬁ“mﬁ_ﬁwﬁmﬁmﬁ_“+ﬁm“+ﬁ,“+ﬁ,“m,ﬁﬁ+,,“+ﬁ,m+ﬁmm+¢, canvas
control | > | flasher
| mouse |« >
new game| | freeze 1 M

Good News!

The good news is that we can worry about each process
on its own. A process interacts with its environment
through its channels. It does not interact directly
with other processes.

Some processes have serial implementations - these
are just like traditional serial programs.

Some processes have parallel implementations -
networks of sub-processes (think hardware).

Our skills for serial logic sit happily alongside our
new skills for concurrency - there is no conflict.
This will scale!

Motivation: Concurrency for All

Nature is not serial ...
Components must compose ...
Nature Is concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

Twenty Years Ago ...

“... improved understanding and architecture

independence were the goals of the design by

Inmos of the oeccarn multiprocessing language

and the Transputer. The goals were achieved
by implementation of the abstract ideas of

process algebra and with an efficiency that is
today almost unimaginable and certainly

unmatchable.”

C.A.R.Hoare, March 2004. ‘

2003 ...

We have been extending the classical (CSP)
occarm language with ideas of mobility and
dynamic network reconfiguration which are
taken from Milner’'s n-calculus (occam-1).

We have found ways of implementing these
extensions that still involve significantly less
resource overhead than that imposed by the
higher level — but less structured, informal and
non-compositional —concurrency primitives of
existing languages (such as Java) or libraries
(such as POSIX threads).

2003 ...

We have been extending the classical (CSP)
occarm language with ideas of mobility and
dynamic network reconfiguration which are
taken from Milner’'s n-calculus (occam-1).

As a result, we can run applications with the
order of millions of concurrent processes on
modestly powered PCs. We have plans to
extend the system, without sacrifice of too
much efficiency and none of logic, to simple
clusters of workstations, wider networks such
as the Grid and small embedded devices.

2003 ...

In the interests of proveability, we have been
careful to preserve the distinction between the
original static point-to-point synchronised
communication of occam and the dynamic
asynchronous multiplexed communication of
n-calculus; in this, we have been prepared to
sacrifice the elegant sparsity of the z-calculus.

We conjecture that the extra complexity and
discipline introduced will make the task of
developing, proving and maintaining
concurrent and distributed programs easier.

Motivation: Concurrency for All

Nature is not serial ...
Components must compose ...
Nature Is concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

Java Monitors — Concerns

Easy to learn - but very difficult to apply ... safely ...

Monitor methods are tightly interdependent - their
semantics compose in complex ways ... the whole skill lies
In setting up and staying in control of these complex
Interactions ...

Threads have no structure ... there are no threads within
threads ...

Big problems when it comes to scaling up complexity ...

Objects Considered Harmful

Most objects are
dead - they have
no life of their own.

All methods have to
be invoked by an
external thread of
control - they have to
be caller oriented ...

... a somewhat curious
property of ‘object
oriented’ design.

count

state

ready

Objects Considered Harmful

The object is at the

mercy of any thread / x
that sees lit. C
Nothing can be done Q‘

to prevent method
Invocation ...

count

. even If the object IS
not in a fit state to service
it. The object is not in
control of its life.

state / \
ready
T~

Objects Considered Harmful

Each single thread of = ' v/
control snakes around =

objects in the system, _‘3’

bringing them to life r '1 ‘)
transiently as their / ‘

methods are executed.

-
Threads cut across object a d)‘

boundaries leaving

spaghetti-like trails, ‘ / |
paying no regard to the \ L2 J \

underlying structure.

Threads-n-Locks Considered Harmful

Each object is at the
mercy of any thread that
sees it. Nothing can be
done to prevent method
Invocation ... even If the
object is not in a fit state
to service it. The object

IS not in control of its life.

Big problems occur
when multiple threads
hit the same object.

)

S\
SV
,,-Q“

=)

L

Threads-n-Locks Considered Harmful

Errors in claiming/releasing

-
locks is probably the main '
reason our systems fail ... —F. /
—7
Too much locking and \/ ‘
we get deadlock ... /‘

Too little locking and
race hazards slowly
corrupt ...

Sorting this out requires
controlling all possible v J
Interleavings ... which is

exponential in the number
of threads ...

Threads-n-Locks Considered Harmful

<

Compare

this design
structure ...

left right Mult'-
) / scorer .\A Pong

\ 4
A
»
»
»
»
»
»

keycontrol

A

... against

this one | collision
: | : f detect

______ A . SN b, SN L. S—— = canvas

control | > | flasher
| mouse |« .
new game freeze ¥ '

... for example ...

Motivation: Concurrency for All

Nature is not serial ...
Components must compose ...
Nature Is concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

Modelling Bio-Mechanisms

= In-vivo © In-silico
¢ One of the UK ‘Grand Challenge’ areas.
¢ Move life-sciences from description to modelling / prediction.
¢ Example: the Nematode worm.
¢ Development: from fertilised cell to adult (with virtual experiments).
¢ Sensors and movement: reaction to stimuli.
¢ Interaction between organisms and other pieces of environment.

= Modelling technologies
¢ Communicating process networks — fundamentally good fit.
¢ Cope with growth /decay, combine/split (evolving topologies).
¢ Mobility and location/ neighbour awareness.
¢ Simplicity, dynamics, performance and safety.

= occam-Tt (and JCSP)

¢ Robust and lightweight — good theoretical support.
¢ ~10,000,000 processes with useful behaviour in useful time.
¢ Enough to make a start ...

Modelling Nannite-Assemblies

»= TUNA: Theory Underpinning Nanotech Assemblies

¢ Active nano-devices that manipulate the world at nano-scale to
have macroscopic effects (e.g. through assembling artifacts).

¢ Need vast numbers of them — but these can grow (exponentially).

¢ Need capabillities to design, program and control complex and
dynamic networks — build desired artifacts, not undesired ones.

¢ Need a theory of dynamic networks and emergent properties.

» Implementation Technologies
¢ Communicating process networks — fundamentally good fit.
¢ Cope with growth /decay, combine /split (evolving topologies).
¢ Mobility and location/ neighbour awareness.
¢ Simplicity, dynamics, performance and safety.

- occam-= (and JCSP)
¢ Robust and lightweight — good theoretical support.
¢ ~10,000,000 processes with useful behaviour in useful time.
¢ Enough to make a start ...

Funded ©©0© ...
York, Surrey and

Kent

Mobility and Location Awareness

= Classical communicating process applications
¢ Static network structures.
¢ Static memory/ silicon requirements (pre-allocated).
¢ Great for hardware design and software for embedded controllers.
¢ Consistent and rich underlying theory — CSP.

= Dynamic communicating processes — some questions
¢ Mutating topologies: how to keep them safe?
¢ Mobile channel-ends and processes: dual notions?
¢ Simple operational semantics: low overhead implementation? Yes.
¢ Process algebra: combine the best of CSP and the n-calculus? Yes.
¢ Refinement: for manageable system verification ... can we keep?

¢ Location awareness: how can mobile processes know where they
are, how can they find each other and link up?

¢ Programmability: at what level — individual processes or clusters?
¢ Overall behaviour: planned or emergent?

Location (Neighbourhood) Awareness

Location (Neighbourhood) Awareness

Location (Neighbourhood) Awareness

Location (Neighbourhood) Awareness

Mobility and Location Awareness

= The Matrix
¢ A network of (mostly passive) server processes.

¢ Responds to client requests from the mobile agents and,
occasionally, from neighbouring server nodes.

¢ Deadlock avoided (in the matrix) either by one-place buffered
server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.

¢ Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).
= The Agents
¢ Attached to one node of the Matrix at a time.
¢ Sense presence of other agents — on local or neighbouring nodes.

¢ Interact with other local agents — must use agent-specific protocol
to avoid deadlock. May decide to reproduce, split or move.

¢ Local (or global) sync barriers to maintain sense of time.

A Thesis and Hypothesis

= Thesis

¢ Natural systems are concurrent at all levels of scale. Central points of
control do not remain stable for long.

¢ Natural systems are robust, efficient, long-lived and continuously
evolving. We should take the hint!

¢ Natural mechanisms should map on to simple engineering principles
with low cost and high benefit. Concurrency is a natural mechanism.

¢ We should look on concurrency as a core design mechanism — not
as something difficult, used only to boost performance.

¢ Computer science took a wrong turn once. Concurrency should not
Introduce the algorithmic distortions and hazards evident in current
practice. It should hasten the construction, commisioning and
maintenance of systems.

= Hypothesis

¢ The wrong turn can be corrected and this correction is needed now.

Putting CSP into practice ...

P

http:/iwww.cs.ukc.ac.uk/projects/ofa/kroc/

Putting CSP into practice ...

~

http://www.cs.ukc.ac.uk/projects/ofal/jcsp/

2 CSP for Java (JCSP) 1.0-rc1 APl Specification - Netscape

File Edt “iew Go Communicator Help

=

v« 2 A BN 2 W $ &

Back Forward Reload Home Search Metzcape Frirt Security

@

Stom

th Bookmark.s \!{_ Lu:u:atiu:un:Ifile:.-".-".-"FI.-"phw.-"u:lev.-"iu:sp-u:lu:u:s.-"inde:-:.html

j ﬁv Wihat's Felated

Instart Message Wiehbd ail Members Connections Bizlournal Smartl pdate Mhtplace

CSP for Java Mt Package Class Tree Deprecated Index Help CSP far Java T
(JCS5P) 1.0-rcl PREV NEXT FRAMES NO FRAMES (JCSP) L.0-rcl
Al Classes
Packages CSP for Java™ (JCSP) 1.0-rc1 API SpECiﬁCﬂtiﬂH |
osp. awt
st lane = This docurnent is the spectfication for the JOSP core APT
Ay CneCal Channe] -l See:
Any2 OneChannel ' Descriotion
Any20neChannellnt =Sscmpion
Barrier
BlackHoleChannel Packages
glaclid;l cles el o ot This prowdes C5F extensions for all java awt components -- GUIL events and widget
—CEECWE 1E5p. 2% configuration tap to channel communications.
Card . This prowides classes and mterfaces corresponding to the fundamental prirtives of
_— csp.lan
One2 AryCallChannel LLoposlg CSP.
One2 AnyChanmel ; Thiz prowdes an azsortment of plug-and-play CEP components to wire together (wnth
One2.AnyChannellnt csp.plugNpla S

ject-cattying wires) and reuse.
Cne 2 OneCalChanne] _ . . -
e M |jesp.plugNplay.ints Thus promﬁes at assortment of plug-and-play CSP components to wire together (with
Oine? OneChannellnt int-carrying wires) and reuse.
Parallel jcsp.util This prowdes classes and mterfaces to custormise the semantics of Object channels.
PriParallel
Proca;ssli_[anager = jcsp.util.ints This prowides classes and interfaces to customize the semantics of int channels.

& ==

\Dacument: Done

Motivation: Concurrency for All

Nature is not serial ...
Components must compose ...
Nature Is concurrent ...

It was 20 years ago today ...
Objects considered harmful ...
Modelling complex systems ...

Blood clotting ...

Case Study: blood clotting

Haemostasis: we consider a greatly simplified model of the
formation of blood clots in response to damage in blood

vessels.

Platelets are passive quasi-cells carried in the bloodstream.
They become activated when a balance between chemical
suppressants and activators shift in favour of activation.

When activated, they become sticky ...

We are just going to model the clumping together of such
sticky activated platelets to form clots.

To learn and refine our modelling techniques, we shall start
with a simple one-dimensional model of a bloodstream.

Platelet Model (‘busy’ CA)

Space is represented as a pipeline of cell processes.
Activated (i.e. sticky) platelets are generated and injected
Into the pipeline at a user-determined randomised rate.
They move through the cells at speeds inversely
proportional to the size of the clot in which they become
embedded — these speeds are randomised slightly. Clots
that bump together stay together.

The cells do all the work and work all the time, even when
empty. Platelets/clots pass through them — at which times,
the cells compute part of their life-cycle.

Platelets/clots are not directly modelled as processes.

Platelet Model (‘busy’ CA)

gen le— wsus «—] cell " cell 1 cell |—— u« s s «——] hole
draw
keywatch - display >
screen

a

keyboard

Platelet Model (‘busy’ CA)

|
|
|
|

gen le— mnnun | cell 1 cell e cell |« unn] hole

draw

keywatch

v
2
(7))

=
Q
<

v

screen

a

keypoard » Phase 0

........... » Phase l

Platelet Model (‘busy’ CA)

|
|
|
|

gen le— mnnun | cell 1 cell e cell |« unn] hole

draw

keywatch

v
A 4

display

screen

a

keypoard » Phase 0

Platelet Model (‘busy’ CA)

gen le— mnnun | cell 1 cell e cell |« unn] hole

display state @ draw

keywatch

v
A 4

display

screen

a

keyboard

........... » Phase l

Platelet Model (‘busy’ CA)

— > > —

nnn | cell cell [——] cell | — unun
> —l

e | cell cell [q cell |e—— nnwn
— , —_—

e | cell cell cell |e— nuwn
LI I R R— cell _m cell ¢ § n &
—| —_—
nan | cell cell f——] cell EEE

|

_ cell L___T cell > wam

Platelet Model (‘busy’ CA)

PROC cell (BYTE my.visible.state, BOOL running, BARRIER draw,
CHAN CELL.CELL I1.1n?, l.out!, r.in?, r.out!)
--.-. local declarations /7 initialisation (phase 0)
WHILE running

SEQ
SYNC draw -- phase 1
-.- PAR-1/70 exchange of full/empty state
--- IF full,
- discover clump size (pass count through)
.- if head,

.- decide on move (non-deterministic choice)

.- if move, tell empty cell ahead

.- else receive decision on move from cell ahead
.- if not tail, pass decision back

.- if tail and move, become empty

... else if clump behind exists and moves, become full
SYNC draw -- phase 0

... Uupdate my.visible.state

Platelet Model (Visualisation)

Platelet Model (‘busy’ CA)

Performance: each cell has to work harder if full (carrying a
platelet). Also, clot sizes are recomputed every cycle — so
large clumps increase the cost. (2.4 GHz. P IV ‘mobile’).

Generate probability (n / 256) Cell cycle time (ns)
0 650
1 660
2 670
4 680
8 700
16 740
32 1070 (total jam)

Platelet Model (‘busy’ =» ‘lazy’ CA)

Scaling problem: every cell is active every cycle — regardless
of whether it contains a platelet. This works well for systems
with up to ~100K cells.

For TUNA, we will need to be working in 3D (say, ~10M cells),
modelling many different types of agent with much richer rules
of engagement.

These automata must become ‘lazy’, whereby only processes
with things to do remain in the computation.

Platelet Model (‘busy’ =» ‘lazy’ CA)

Logical problem: the rules for the different stages in the life
cycle of platelets, or clots, are coded into different cycles of
the cells. Each cell sees lots of different platelets — sometimes
bunched together as clots — and operates on them as they
pass through.

No process directly models the development of a single clot.

The following system addresses this. The cell processes are
pure servers, not enrolled on the time-synchronising barrier.
Their clients are clot processes, generated dynamically, that
are enrolled on the barrier and use that barrier to synchronise
access to the cell servers with their generator and the display.

The cell processes are only worked as clot boundaries pass
over them.

Platelet Model (‘busy’ =» ‘lazy’ CA)

To manage this, we need to move
barriers to FORKed processes. The

general solution is given by making
Their clie barriers MOB 1 LE.
are enrolled

access to the cell se

ynchronise
or and the display.

Barriers (mobile)

occam-r includes mobile barrier types: Declaration: initially b
IS undefined
MOBILE BARRIER b: <= ~_"

SEQ

b := MOBILE BARRIER <« @

logic involving SYNC b

Whenever a barrier is constructed, the process doing the
construction becomes enrolled.

Whenever a defined barrier variable is overwritten or goes out
of scope, the process holding it resigns.

Channels may carry MOBILE BARRIERSs as components of
their messages (occam-r PROTOCOLS).

Whenever a barrier is communicated (e.g. to a forked process),

the receiving process dynamically enrolls and the sending
process resigns (unless a CLONE is sent).

Forking Processes with Barriers

FORKING
X =>

occam-rxt view

Forking Processes with Barriers

FORKING
i QOO

occam-rxt view

gen

Platelet Model (‘lazy’ CA)

Platelet Model (‘lazy’ CA)

Platelet Model (‘lazy’ CA)

phase O

cell ﬁ!ﬁil draw

keywatch

keyboard

display

screen

Platelet Model (‘lazy’ CA)

keywatch - display

screen

keyboard

Platelet Model (‘lazy’ CA)

Platelet Model (‘lazy’ CA)

keywatch - display

screen

keyboard

Platelet Model (‘lazy’ CA)

keywatch - display

screen

keyboard

Platelet Model (‘lazy’ CA)

Platelet Model (‘lazy’ CA)

- <>
o e
keywatch — displ >
P T screen

Platelet Model (‘lazy’ CA)

LD <>
o e
keywatch — displ >
P T screen

Platelet Model (‘lazy’ CA)

Platelet Model (‘lazy’ CA)

Platelet Model (‘lazy’ CA)

eeeeee

Platelet Model (‘lazy’ CA)

Performance: a cell only works when a clot boundary
moves through. Run-time depends only on the number of
clots; the clot sizes are now irrelevant (2.4 GHz. P IV-M).

Generate probability (n / 256) ‘Busy’ (ns) ‘Lazy’ (ns)

0 650 0
1 660 38
2 670 12

4 680 14
8 700 16

16 740 18

32 1070 (total jam) | O (total jam)

Clot Freqguency by Position by Size

2000 clots, probability 1/256

frequency
10000
10000
1000
1000
100
100
10
10

III'I

1

100

6

clot size
’ v 4
reporting position

Clot Freqguency by Position by Size

2000 clots, probability 2/256

frequency
10000
10000
1000
1000
100
100
10
10
1
1
0
100

6

clot size
. .. 4
reporting position

Clot Freqguency by Position by Size

2000 clots, probability 3/256

frequency
10000
10000
1000
1000
100
100
10
10
1
1
0
100

6

clot size
. .. 4
reporting position

Clot Freqguency by Position by Size

2000 clots, probability 4/256

frequency
10000
10000
1000
1000
100
100
10
10
1
1
1000€

. .. 40
reporting posﬂmﬁr "

Clot Freqguency by Position by Size

2000 clots, probability 5/256

frequency
10000
10000 /
= 1000
1000
100
100
10
10
Ty 1
1
0
1000¢€

. .. 40
repomnngSMO# "

Clot Freqguency by Position by Size

2000 clots, probability 6/256

frequency
10000
10000 y
o 1000
1000 ;
100
100
10
10
- 1
1 —f""'ﬂw
0
10000

. .. 40
repomnngSMO# "

Clot Freqguency by Position by Size

2000 clots, probability 7/256

frequency
10000
10000
1000
1000
100
100
10
10
1
1
1000€

. .. 40
reporting pOSItIO# "

Clot Freqguency by Position by Size

2000 clots, probability 8/256

frequency
10000
10000
1000
1000
100
100
10
10
1
1
1000€

. .. 40
reporting pOSItIO# "

Clot Freqguency by Position by Size

2000 clots, probability 9/256

frequency
10000
10000 -
1000
1000 3
100
100
10
10
- 1
1 —
0
10000

. .. 40
repomnngSMO# "

Maximum Clot Size by Position

10000 1 | T | | 1 | T |

1000

100

Y

maximum clot-size

1/256
2/256
3/256
4/256
5/256
6/256

7/256 ———
|

10

8/256
| 9/256

| | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
reporting position

3-D Bloodstream

3-D Bloodstream

3-D Bloodstream

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

m Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

= Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

= Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

3-D Bloodstream

m Visualization Toolkit - Win320penGL #1

3-D Bloodstream

M Visualization Toolkit - Win320penGL #1

	Motivation: Concurrency for All (Process Oriented Design)
	Motivation: Concurrency for All
	Nature is not organised as a single thread of control:
	Motivation and Applications
	Motivation: Concurrency for All
	Components?
	Components?
	Components?
	Components?
	Composition?
	Composition?
	Motivation: Concurrency for All
	This tradition is WRONG!
	What we want from Parallelism
	Multi-Pong
	Multi-Pong
	Good News!
	Motivation: Concurrency for All
	Twenty Years Ago …
	2003 …
	2003 …
	2003 …
	Motivation: Concurrency for All
	Java Monitors – Concerns
	Multi-Pong
	Motivation: Concurrency for All
	Modelling Bio-Mechanisms
	Modelling Nannite-Assemblies
	Mobility and Location Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Mobility and Location Awareness
	A Thesis and Hypothesis
	Putting CSP into practice …
	Putting CSP into practice …
	Motivation: Concurrency for All
	Case Study: blood clotting
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (Visualisation)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’  ‘lazy’ CA)
	Platelet Model (‘busy’  ‘lazy’ CA)
	Platelet Model (‘busy’  ‘lazy’ CA)
	Barriers (mobile)
	Forking Processes with Barriers
	Forking Processes with Barriers
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Maximum Clot Size by Position
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream

