Replicators
(components and test-rigs)

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)
\ /

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

Consider a process with an array of input channels:

X
in[O]) 0
t] EY N 1
inf2] | 2
in[3] | A

And an internal data array, x, of the same type and size
as the input channel array.

The process needs to input one message from each input
channel into the corresponding element of its data array.

These inputs are to be done in parallel:

X
in[0)] , 0
infl] , 1
inf2] , 2
in[3] | 3
PAR
in[0] ? x[O0] Geolden Rele:
in[1] ? x[1] when communications can
in[2] ? x[2] be done in parallel, do them
in[3] ? x[3] in parallel.

These inputs are to be done in parallel:

in[O]
in[1]
in[2]
in[3]

Y ¥V V V¥V
WN = O

PAR
in[0]
in[1]
in[2]
in[3]

x[0] :
x[1] But what if there were 40

channels in the array? Or
x[2] 211
x[3] 400 ... or 4000 ... 21

N N) N

These inputs are to be done in parallel:

X
in[O] J 0
infl] , 1
inf2] , 2
in[3] || A

INT declaration

number of replications

These inputs are to be done in parallel:

X

in[O] > 0

in[ﬂ > 1

in[2] > 2

in[3] N 3

PAI?

PAIi(i_= 0 FOli(4 — :2%2% Z iEg%
in[i] ? x[i] o in[2] ? x[2]
in[3] ? x[3]

Just in case they really had to be done in sequence:

X
in[O] J 0
infl] , 1
inf2) , 2
in[3] || A

INT declaration

number of replications

Just in case they really had to be done in sequence:

X
in[O] > 0
in[ﬂ > 1
in[2] > 2
in[3] N 3
SEQ
_ in[0] ? x[0]
SEQ i = O FOR 4 _ -
in[i] ? x[i] = :2%% 3 iﬁg
in[3] ? x[3]

‘ The replicated SEQ is like a very clean for-loop. \

INT declaration

J number of replications
SEQ i = start FOR count

In Javaor C;

for (int 1 = start; i < (start + count); i++) {

<code 1>

Must not change the value of 1,
startor count

}

‘ The replicated PAR has no correspondence in Java or C. \

INT declaration

J number of replications
PAR 1 = start FOR count

<process 1>

Cndmvaorc:

Applying the replicated PAR.

INT declaration

| number of replications
PAR i = start FOR count €

I <process 1> I

The first example showed parallel replication of a primitive
process (an input process).

But, earlier, we've seen parallel composition of long-lived
structured processes (like continuously active ‘chips’).

The next example shows parallel replication of such a
process to build a parallel sorting engine.

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

in

Unsorted items
(grouped)

\

sort.pump out

Sorted items
(grouped)

7

8,99, 42, 4,6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255

4,6, 7,8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7,10, 48, 60, 69, 111, 255

in

—> sort.pump

\

7

8,99, 42, 4,6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255

4,6, 7,8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7,10, 48, 60, 69, 111, 255

in

—> sort.pump

\

7

8,99, 42, 4,6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255

4,6, 7,8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
S5, 7,10, 48, 60, 69, 111, 255

Note: 255 is used here to
mark the end of each group.

in

— sort.pump

out

8,99, 42, 4, 6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255

4,6, 7,8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
S5, 7,10, 48, 60, 69, 111, 255

For the efficient application of this device, we need a long-
running source of groups of items that need sorting. We
also need to specify an upper limit on the size of groups.

in
sort.pump out

8,99, 42, 4,6, 21, 55, 7, 255, | 4,6, 7, 8, 21, 42, 55, 99, 255,
65, 92, 32, 54, 255, 32, 54, 65, 92, 255,
111, 10, 5, 60, 48, 69, 7, 255 S, 7, 10, 48, 60, 69, 111, 255

An example is a simple image smoothing filter: each pixel
IS replaced by the median value of its (9) neighbours.
Finding median values implies sorting. Each n-by-m

Image generates (n*m) groups of 9 numbers for sorting.

in out

The sort.pump is implemented as a pipeline of simpler
cell proccesses. (We’'ll see what they do presently.)

To sort groups up to a maximum size of max, we need at
least (max — 1) cells.

So, if maxis 16, we need 15 cells ... which means we
need 14 internal channels ... which we have indexed
above from 0 through 13.

in

VAL INT max

IS 16:

> cell

c[0]

——>

cell

out

. =>4 cell

PROC sort.pump (CHAN BYTE in?, out!)
[max-2]CHAN BYTE c:

PAR

cell (in?, c[O]Y)

PAR p = 1 FOR max-3

cell (c[p-1]1?, c[p]lY)
cell (c[max-3]?, out!)

B cell

VAL INT max IS 16:

out

c[O0]

> cell ——25 cell —2—25 ... =223 cell

PROC sort.pump (CHAN BYTE in?, out!)
[max-2]CHAN BYTE c:
PAR So, we have

cell (in?, c[0]Y) (Zl?géle)tﬁglrls
PAR p = 1 FOR max-3 '
cell (c[p-11?. clplY)

cell (clnax-3]%. outh)’ @GN

) to size max.

in
)‘ cell | oL >

Slightly less
unsorted items
(grouped)

Unsorted items
(grouped)

All each cel Il has to do is drag heavy items backwards. In

particular, as each group flows through, the last one out
must be the heaviest in the group.

To do this, two variables (or registers) are needed: one to
hold the largest item seen so far and one to hold the
next item to arrive.

in out
cell >

Slightly less
unsorted items
(grouped)

Unsorted items
(grouped)

The cel Il inputs the first item of a group into largest.

Then, it compares each next item against largest,
outputting the smaller and keeping the larger.

When the end.marker arrives, it just outputs the largest
followed by that end .marker.

VAL BYTE end.marker IS 255: -- assume > data items
PROC cell (CHAN BYTE in?, out!)

WHILE TRUE)
BYTE largest: in cell out
SEQ

in ? largest
WHILE largest <> end.marker

BYTE next:
SEQ
in ? next
IF -- output smaller, keep larger
largest >= next
out ! next
TRUE -— i.e. largest < next
SEQ
out ! largest
largest := next

out ! end.marker

VAL BYTE end.marker IS 255: -- assume > data items

PROC cell (CHAN BYTE in?, out!)

WHILE TRUE
BYTE largest: =

in ? largest
WHILE largest <> end.marker
BYTE next:
SEQ
in ? next
IF -- output smaller, keep larger
largest >= next
out ! next
TRUE -- l.e. largest < next
SEQ
out ! largest
largest := next
out ! end.marker

Note: this algorithm requires a potential data item (255) reserved for the
end.marker. This constraint can be removed — later.

VAL INT max IS 16:

——>

max items

injected here (max-1)
lightest output
first

(max-2)
lightest output

first lightest output
first

Each cel I holds back largest item it sees, so ...

VAL INT max IS 16:

| Cl01,] cepp |cLil

max items

injected here (max-1)
lightest output
first

(max-2)
lightest output

first lightest output
first

As the end.marker flows through, it pushes out the heaviest
item, which pushes out the next heaviest, etc...

VAL INT max IS 16:

| IO} ceqn [CL1]

max items

injected here (max-1)
lightest output
first

(max-2)
lightest output

first lightest output
first

The group, therefore, flows out in ascending sorted order. ©

VAL INT max IS 16:

in
> cell ﬂ) cell ﬂ) S cell out)

If the cells are implemented on separate pieces of silicon (i.e.
we have a physically parallel engine), the speed at which data
flows through is the slowest of:

= the speed at which data is offered,;
= the cycle speed for each cell;

= the inter-cell communication speed.

The speed is independent of the number of cells — which means
that it is independent of the number of items being sorted. We
have an O(n) sorting engine: sort.pump. © © ©

VAL INT max IS 16:

in
> cell ﬂ) cell ﬂ) S cell out)

In fact, sort.pump is a parallel version of bubble-sort, one of
the simplest known sorting algorithms. Its performance on a
serial processor is O(n*n), which is poor compared to more
complex sorts (such as quick-sort, which is O(n*log(n))).

If data Is supplied in O(n) time (as in the above, where the
numbers are supplied one-at-a-time), then a processing
complexity of O(n) cannot be beat!

Lesson: when considering a parallel design, don’t start from the
most efficient known serial algorithm — it's probably optimised
the wrong way. Rethink — look for the simplest approach.

VAL INT max IS 16:

in
> cell ﬂ) cell ﬂ) S cell out)

Note: the capacity of sort.pump is (2*max - 2) items, each
cell holding 2 of them.

So, sort.pump can be processing (parts of) two or three
groups (up to max size) at the same time.

It will only operate efficiently so long as there is a continuous
supply of groups to be sorted.

For example, if only one group were pushed through, only half
the cel Is would ever be operating at the same time.

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

Component Testing

bench T | |

keyboard [| screen J error

1) Place component (e.g. sort.pump) on bench.

Component Testing

test.rig

bench

keyboard [| screen J error

1) Place component (e.g. sort.pump) on bench.

2) Design test.rig through which we can interact meaningfully with
component.

1)
2)

3)

Component Testing

test.rig

bench

keyboard [| screen J error

Place component (e.g. sort.pump) on bench.

Design test. rig through which we can interact meaningfully with
component.

Wire it up and start experimenting ...

1)
2)

3)

Component Testing

——>| sort.pump \

bench

test.rig

keyboard [| screen

Place component (e.g. sort.pump) on bench.

Design test. rig through which we can interact meaningfully with

component.

Wire it up and start experimenting ...

ierror

Typical Test-Rig Design

A
probe.out

probe.in

window (16, 2)

|

A

test.rig a

window (48, 2)

keyboard.manage

l m[3]

m[2]

keyboard

screen.plex

screen

Typical Test-Rig Design

This process filters keyboard input for ‘bad’ characters
(e.g. control-chars, carriage-return), issuing an error report
for any found, and compresses/encodes ‘good’ characters
(e.g. visible-chars) for onward transmission.

Iout

keyboard.manage >

error
in]

Typical Test-Rig Design

A
probe.out

probe.in

window (16, 2)

|

A

test.rig a

window (48, 2)

keyboard.manage

l m[3]

m[2]

keyboard

screen.plex

screen

Typical Test-Rig Design

This process
multiplexes an
array of input

m[2]

streams to a lm[3] ¥
single output _ screen.plex
stream. m[0]

l screen

Typical Test-Rig Design

A
probe.out

probe.in

window (16, 2)

|

A

test.rig a

window (48, 2)

keyboard.manage

l m[3]

m[2]

keyboard

screen.plex

screen

Typical Test-Rig Design

out I

window (X, Yy)

A

dump

in

(%, y) specifies coordinates

defining the start position on the
screen for the dump items.

This process is a
fixed-size delay line.
Each item input
pushes one item
out. It holds the last
max items received.
Every cycle, it
dumps its entire
holding array (with
screen position
control-chars). This
lets us see what's in
the data stream.

Typical Test-Rig Design

A
probe.out

probe.in

window (16, 2)

|

A

test.rig a

window (48, 2)

keyboard.manage

l m[3]

m[2]

keyboard

screen.plex

screen

Typical Test-Rig Design

inl

history

l out

This process lays out a history of the items received.
It uses the bottom two-thirds of the screen.

Design Guidelines

Don’t try to cram too much functionality into any
process: One function < One process

Multiple functions < Multiple processes

Each process Is programmed from its own point-
of-view. Think of each process as an
independent serial program, with a variety of
iInput and output channels.

Concurrency then makes design simple! © © ©

Try to build that test.rig as a single serial
process and we willgetamess ... ® ® ®

—>| sort.pump \

test.rig

bench

keyboard [| screen J error

PROC bench (CHAN BYTE keyboard?, screen!, error!)
CHAN BYTE a, b:
PAR
sort.pump (a?, b!)
test.rig (keyboard?, screen!, al!, b?)

A
probe.out ‘ probe.in

v
window (16, 2) window (48, 2)
A b ¢
test.rig a history m[2]
ynzl ¥
keyboard.manage -aiai screen.plex

keyboard screen

PROC test.rig (CHAN BYTE keyboard?, screen!, probe.out!, probe.in?)
CHAN BYTE a, b:
[4]CHAN BYTE m:

PAR
keyboard.manage (keyboard?, a!, m[0]!)
window (16, 2, a?, probe.out!, m[1]!) -- (16, 2) => top-left
window (48, 2, probe.in?, b!, m[2]!) -- (48, 2) => top-right

history (b?, m[3]!)
screen.plex (m?, out!)

But ... what if we want to
see what's going on
inside the sort.pump?

bench

——> sort.pump \

test.rig

keyboard [| screen J error

As things stand, we can't

see inside the cell
processes in the pump.

bench

——> sort.pump \

test.rig

keyboard [| screen J error

We need to wire up the
cel ls to report their

changing states.

bench

—>{ sort.inside \

test.rig

keyboard [| screen J error

VAL INT max

IS 16:

in
> cell

c[0]

cell

PROC sort.pump (CHAN BYTE in?, out)

[max-2]CHAN BYTE c:

PAR

cell (in?, c[0]!)

PAR p = 1 FOR max-3

cell (c[p-11?, clplY)
cell (c[max-3]?, out!)

cell

out

VAL INT max IS 16:

in c[0] out

——>

report[O0] report[1l] report[13]

PROC sort.inside (CHAN BYTE in?, out!,
[1CHAN BYTE report!)
[max-2]CHAN BYTE c:
PAR
reporting.cell (in?, reportf0]!, c[0]})
PAR p = 1 FOR max-3
reporting.cell (c[p-1]?, report[i]!, c[pl!)
reporting.cell (c[max-3]?, report[max-3]!, out!)

VAL BYTE end.marker IS 255: -- assume > data items

PROC cell (CHAN BYTE in?, out!)

WHILE TRUE
BYTE largest: =

in ? largest
WHILE largest <> end.marker
BYTE next:
SEQ
in ? next
IF -- output smaller, keep larger
largest >= next
out ! next
TRUE -- i.e. largest < next
SEQ
out ! largest
largest := next
out ! end.marker

VAL BYTE end.marker IS 255: -- assume > data items

PROC reporting.cell (CHAN BYTE in?, report!, out!)

WHILE TRUE
BYTE largest:
SEQ

... Ureport ! *"~-%; °-~°

in ? largest

... report ! "~"; largest
WHILE largest <> end.marker

BYTE next:
SEQ
in ? next
... report ! next; largest
IF -- output smaller, keep larger
largest >= next
out ! next
TRUE -- l.e. largest < next
SEQ
out ! largest
largest := next

---. report ! "~"; largest
out ! end.marker

sort.inside

report

bench

test.rig

keyboard |

.iscreen

\Lerror

PROC bench (CHAN BYTE keyboard?, screen!, error!)

CHAN BYTE a, b:

[max-1]JCHAN BYTE report:

PAR

sort.pump (a?, report!, b!)

test.rig (keyboard?, screen!, al!, report?, b?)

report(]
A

probe.out probe.in

|

window (16, 2) @ @ @ window (48, 2)

18
] b~l

i history m[2]

| | ne=

\ 4
keyboard.manage ___4 screen.plex
m[0]
A
test.rig

keyboard screen
\ 4

report(]

A
probe.out e probe.in
il mﬂ16]
m[2]
history
! | mE2)
keyboard.manage screen.plex
" m[0]

test.rig

keyboard screen
\ 4

report[]

A
probe.out e probe.in
\ \ \ 4
report.plex
m[1] history
| mE22
keyboard.manage ___4 screen.plex
i m[O]

test.rig

keyboard screen
\ 4

report[]

A
probe.out probe.in
2
report.plex delay (2)
2
m[1] history
lm[Z]

keyboard.manage

m[0]

A

test.rig

keyboard

screen.plex

screen
\ 4

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

Let’s simplify the logic within a cell l process ...

VAL BYTE end.marker IS 255: -- assume > data items

PROC cell (CHAN BYTE in?, out!)
WHILE TRUE

BYTE largest: -

in ? largest
WHILE largest <> end.marker
BYTE next:
SEQ
in ? next
IF -- output smaller, keep larger
largest >= next
out ! next

TRUE -- i.e. largest < next
SEQ
out ! largest : : :
largest := next Here is the serial logic

out ! end.marker (a loop within a loop).

Let’s simplify the logic within a cell l process ...

cell

Here is the parallel logic ...

out

Let’s simplify the logic within a cell l process ...

VAL BYTE hi IS 255: -- assume > data items
VAL BYTE lo IS O: -- assume < data items

out

cell

The largest (so far) is
trapped in the feedback loop.

Here is the parallel logic ...

This process copies data through, substituting a for b ...

in out
a—->b >

PROC substitute (VAL BYTE a, b, CHAN BYTE in?, out!)
WHILE TRUE
BYTE Xx:
SEQ
in ? X
IF
X =a
out
TRUE
out ! x

(e

And finally, let's simplify the logic within a cell l process ...

VAL BYTE hi IS 255: -- assume > data items
VAL BYTE lo IS O: -- assume < data items

out

cell

The largest (so far) is
trapped in the feedback loop.

Here is the parallel logic ...

This is a primitive comparator ...

PROC greater (CHAN BYTE in.0?, in.1?, small!, large!)
WHILE TRUE
BYTE x.0, x.1:
SEQ

PAR in.0 small
in.0 ? x.0 >K:
in.l ? x.1 in.1 large

IF
x.0 < x.1

PAR ‘
small ! x.0 Hence, the asymmetric
large ! x.1 design of its icon.

TRUE

PAR
small ! x.1
large ! x.0 Note: gt is symmetric on its

input channels, but not on its
output channels!

Stateless Components

All the primitive process components in the ‘Legoland’
catalogue (id, succ, plus, delta, prefix, tail, ..)
plus the ones just presented (substitute, greater) are
stateless.

This means they are mathematical functions. They transform
Input values to output values without reference to past events:
the same Inputs yield the same outputs. They have no
memory — no state.

Memory emerges when they are connected in circuits with
feedback loops (numbers, integrate, cell, ..).

Stateless components are trivial to reason about — we don'’t
have to think about loops! They are also easy to cast into
silicon — as, of course, are circuits built from them.

Stateless Components

in out
a—->b >

PROC substitute (VAL BYTE a, b, CHAN BYTE in?, out!)
WHILE TRUE
BYTE x:
SEQ
in ? X
IF
X = a
out !' b
TRUE
out ! X

loep-iree

logic

Stateless Components

PROC greater (CHAN BYTE in.0?, in.1?, small!, large!)
WHILE TRUE
BYTE x.0, x.1:
SEQ

PAR in.0 small
in.1 ? x.1 in.1 large
IF
x.0 < x.1
PAR
small ! x.0
large ! x.1
TRUE
PAR loep-iree
small ! x.1

logic

<
o

large

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

And Finally ...

On a serial processor, bubble-sort takes O(n?) computation
time, where n Is the number of items being sorted. Cleverer

algorithms (such as quick-sort or shell-sort) take O(n*log(n)).

With O(n) processing elements, the sort-pump takes O(n)
computation time, with respect to each group of n items being
sorted. If we only present data serially (i.e. one item at a time),
supply takes O(n) time ... so sort-pump cannot be beaten!

But we do need a continuous supply of groups.

Question: with O(n?) processing elements, can we sort groups
of nitems in O(1) time? Of course, we will have to present data
In parallel (i.e. O(1) time) and have a continuous supply.

Answer: Yes. And it's easy!

sort.grid

sort.grid

out[]
1-Feb-07 Copyright P.H.Welch 72

sort.grid
in[]
| | | |

il

| | I I I O IR O I B
> >
> >
> > > >
N N N

R A A

If the comparators are implemented on separate pieces of

silicon (i.e. we have a physically parallel engine), the speed at
which data flows through is the slowest of:

= the speed at which data is offered,;
»= the cycle speed for each comparator;

= the inter-cell communication speed.

The speed is independent of the number of comparators —
which means that it is independent of the number of items
being sorted.

Each group of data enters and exits the grid in parallel. All
comparators operate in parallel. After each (unit time) cycle,
a sorted group emerges. We have an O(1) sorting engine:

sort.grid. ©O0

sort.grid

For groups up to size 16, we need 16 rows of (gt) comparators.
The even rows have 8 each and the odd rows have 7.

Coding: to keep things easy, let’s first program an even-odd pair
of rows ...
in[]
| | | | | | | | | |

R 2 2 R

out[]

even.odd

in[]

BB

out[]

1-Feb-07 Copyright P.H.Welch 76

even.odd

in[]
| | | | | | | | | | | | | | | |

vy oovd vy by v vy by vy

PROC even.odd ([max]JCHAN BYTE in?, out!)

[max-2]CHAN BYTE c:

PAR
gt (in[0]?, in[1]?, out[O]!, c[O0]!)
PAR i = 2 FOR (max/2) — 2 STEP 2 —

gt (in[i]?, in[i+1]?, c[i-1]!, c[i]}) e

gt (in[max-2]?, in[max-1]?, c[max-3]!, out[max-1]!)
PAR i = 1 FOR (max/2) — 1 STEP 2 — —

gt (cl[i-1]?, c[i]?, out[i]!, out[i+l]})

See replicator STEP sizes (later) ...

sort.grid

in[]

| | | | | | | | | | | | | | | |

Ve Vv VY vy Yy VY v vy
even.odd

\ 2 \ 2 v v \ 2 \ 2 \ 2 v Vv \ 2
even.odd

\ 2/ \ 2/ 2 2 \ 2/ \ 2/ 2 / \ 2 / \ 2 /
even.odd

\ 2/ \ 2/ \ 2/ v Vv 2/ v Vv \ 2 / \ 2 /
even.odd

\ 2 / \ 2 / \ 2 / \ 2/ \ 2/ \ 2 / \ 2 / \ 2 /
even.odd

\ 2 / \ 2 / \ 2 / \ 2/ \ 2/ \ 2 / \ 2 / \ 2 /
even.odd

\ 2 / \ 2 / \ 2 / \ 2 / \ 2/ \ 2 / \ 2 / \ 2 /
even.odd

\ 2 / \ 2 / \ 2 / \ 2/ \ 2 / \ 2 / \ 2 / \ 2 /
even.odd

\ 2 \ 2 / \ 2 / \ 2 / \ 2 \ 2 / \ 2 / \ 2

out[]

sort.grid

out[]

PROC sort.grid ([max]JCHAN BYTE in?, out!)
[(max/2)-1] [max]CHAN BYTE c:
PAR
even.odd (in?, c[0]})
PAR i = 0 FOR (max/2) — 2
even.odd (c[i]?, c[i+1]})
even.odd (c[(max/2)-2]?, out!)

1-Feb-07

Exercise:

L) 9000060

Copyright P.H.Welch

80

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

Summary of Replicators (SEQ, PAR)

One New Replicator (IF)

‘ The replicated SEQ is like a very clean for-loop. \

INT declaration

J number of replications
SEQ i = start FOR count

In Javaor C;

for (int 1 = start; i < (start + count); i++) {

<code 1>

Must not change the value of 1,
startor count

}

‘ The replicated PAR has no correspondence in Java or C. \

INT declaration

J number of replications
PAR 1 = start FOR count

<process 1>

Cndmvaorc:

Replicated 1 Fs

So far, we have seen the eccam-m process constructors
SEQ, PAR, IF and WHILE. (Still to come are ALT and CASE.)

We have seen how SeEQ and PAR can be replicated. So,
also, can the 1IF and (later) the ALT. Here is a replicated IF:

INT declaration

number of replications

This conditional-process
gets replicated

Replicated 1 Fs

So far, we have seen the eccam-m process constructors
SEQ, PAR, IF and WHILE. (Still to come are ALT and CASE.)

We have seen how SEQ and PAR can be replicated. So,
also, can the 1IF and (later) the ALT. Here is a replicated IF:

IF

x[0] = 42
index = 0

i x[1] = 42
IF1=0FOR 4 index == 1

x[1] = 42 = x[2] = 42
index := index := 2

X[3] = 42

index := 3

Replicated 1 Fs

This code searches the first 4 elements of the array x for the
value 42. The search is sequential, starting from element O
and proceeding upwards. If successful, the variable 1ndex is
set to the (first) index of the x array element equal to the

target. If unsuccessful, this code will crash!

IF

x[0] = 42
index := 0

i x[1] = 42
IF1=0FOR 14 index = 1

x[i] = 42 = x[2] = 42
index := 1 index := 2

X[3] = 42

index := 3

To avoid that crash, we need a final condition that catches the
flow of control should all the other conditions fail:

IF

x[0] = 42 : :
index := 0 To express this using an

x[1] = 42 1F-reolicator (which we
index := 1 need if we were searching

x[2] = 42 the through n elements,
index := 2 :

x[3] = 42 where n is known only at
index := 3 run-time), we need a

TRUE nested 1F ...
index := -1

where index is setto -1, an illegal array index, used here to
indicate that the search failed.

Nested | Fs

IF
<condition 0>

IF
<condition 0>

<process 0>

<process 0>

IF

. - — .
<condition 1> condition 1

<process 1>

<process 1>

— - " 2
<condition 2> condition 2

<process 2>

<process 2>

guy ~ gy S
<condition 3> condition 3

<process 3>

<process 3>

The inner IF disappears and its conditional processes align with
the conditional processes of the outer IF.

Nested | Fs

IF IF
<condition 0> <condition 0>

<process 0>

IFi=0FORN IE
<rep condition i> <rep condition 0>

<rep process i>

<process 0>

<rep process 0>

<condition 1>

<process 1>

<rep condition (n-1)>

<rep process (n-1)>

Nested IFs are mainly <condition 1>

useful ... when the inner or
outer is replicated.

<process 1>

Nested | Fs

IF
<condition 0>

IF
<condition 0>

<process 0>

IF i =0FOR N
<rep condition i>

<process 0>

<rep condition 0>

<rep process 0>

<rep process i>

<condition 1>

<process 1> <rep condition (n-1)>

<rep process (n-1)>

<condition 1>

They enable us to IF

between sequenced and
individual conditions.

<process 1>

Replicated 1 Fs

IF
x[0] = 42
index := 0 IE
x[1] = 42 IF i =
index := 1 x[i]
x[2] = 42 n
index = 2 TRUE
x[3] = 42 index := -1
index := 3
TRUE
index := -1

where index is setto -1, an illegal array index, used here to
indicate that the search failed.

Bounded Linear Search (occam-r)

The ‘bounded linear search’ is the only common use for a
replicated IF — but it is a good one!

Problem: find the index of the first element of some array,
X, that matches some.condition():

IE . first value

IF 1 = 0 FOR SIZE x . .
some.condition (x[i]) number of replications
we found it at index 1

TRUE
we didnt find it

Note: the above code searches (potentially) the whole array.

We can restrict the search by setting first and replicate values
(of the replicated IF) appropriately.

Bounded Linear Search (Java / C)

Problem: find the index of the first element of some array,
X, that matches some.condition():

{ int i = 0;
bool found = false;
for (i = 0; i < x.length; i++) {
if (someCondition (X[i])) {
found = true;
break;
}

}
if (found) {

... we found it at index
} else {

<. Wwe didn’t find it
),

}

Bounded Linear Search (Java / C)

Problem: find the index of the first element of some array,
X, that matches some.condition():

Actually, this can be expressed in almost a compact form
as in eccam-= ... but we need to resort to a labelled block

with non-local break-out:

BLS: {
for (int i = 0; 1 < x.length; i++) {
iIT (someCondition (x[i1])) {
--- we found it at index i
break BLS;
+

b
we didn’t find it

Replicators (components and test-rigs)

Replicated PAR and SEQ ...
The SORT PUMP ...

Component testing ...

Stateless components ...

The SORT GRID ...
Replicated IF ...

Replicator STEP sizes ...

Replicator STEP Sizes

Normally, the replicator control value increments by 1 for
each replicated instance.

However, we may define an arbitrary STEP size for this
Increment:

INT declaration

number of replications

P 1ncrement

<rep> 1 = start FOR count STEP size

I <process 1> I
May not change the value of 1,
start, countorsize

Replicator STEP Sizes

The <rep> constructor is one from: SEQ, PAR, IF and (later)
ALT.

The start, count and size may be any INT expressions.
The values of 1 and any variables in start, count and
size cannot be changed by the replicated process.

INT declaration

number of replications

P 1ncrement

<rep> 1 = start FOR count STEP size ™

I <process 1> I
May not change the value of 1,
start, countorsize

Summary: a replicated SEQ is a very clean for-loop.

INT declaration

number of replications

P increment
SEQ i = start FOR count STEP size

{ int i = start;
for (int ii = 0; @i < count; ii++) {

I += size;
¥ Must not change the value of i,
¥ start, countorsize

The replicated PAR has no correspondence in Java or C.

INT declaration

number of replications

P Increment
PAR i = start FOR count STEP size ~

In Javaor C;

The replicated IF gives a ‘Bounded Linear Search’

INT declaration

number of replications

P Increment
IF i = start FOR count STEP size =

<condition i>‘

this is what

TRUE gets replicated

Enot—found—processi

Unless we know that the search will succeed, we must nest
the replicated IF inside a plain IF to catch any failure.

‘Stepping and Bounded Linear Search’ (Java/C)

BLS: {
int 1 = start;
for (int 1i = 0; 11 < count; Mi++) {
if (<condition i>|) {

I <found-code 1> I

break BLS;
s
i += size;

}

I<not—found—code>.
+

The <condition i> |expression and !<found—code i>I code must not
use 11 and must not change the value of 1, start, count or size.

	Replicators(components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicated IFs
	Replicated IFs
	Replicated IFs
	Nested IFs
	Nested IFs
	Nested IFs
	Replicated IFs
	Bounded Linear Search (occam-)
	Bounded Linear Search (Java / C)
	Bounded Linear Search (Java / C)
	Replicators (components and test-rigs)
	Replicator STEP Sizes
	Replicator STEP Sizes

