
1-Feb-07 Copyright P.H.Welch 1

Replicators
(components and test-rigs)

ReplicatorsReplicators
(components and test(components and test--rigs)rigs)

Peter Welch Peter Welch ((p.h.welch@kent.ac.ukp.h.welch@kent.ac.uk))
Computing Laboratory, University of Kent at CanterburyComputing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)

1-Feb-07 Copyright P.H.Welch 2

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 3

Consider a process with an array of input channels:Consider a process with an array of input channels:

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33

And an internal data array, And an internal data array, xx, of the same type and size , of the same type and size
as the input channel array.as the input channel array.

The process needs to input one message from each input The process needs to input one message from each input
channel into the corresponding element of its data array.channel into the corresponding element of its data array.

1-Feb-07 Copyright P.H.Welch 4

These inputs are to be done These inputs are to be done in parallelin parallel::

xx

00
11

22

33

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

PARPAR
in[0]in[0] ? ? x[0]x[0]
in[1]in[1] ? ? x[1]x[1]
in[2]in[2] ? ? x[2]x[2]
in[3]in[3] ? ? x[3]

Golden Rule:Golden Rule:
when communications can when communications can
be done in parallel,be done in parallel, do them do them

in parallelin parallel..x[3]

1-Feb-07 Copyright P.H.Welch 5

These inputs are to be done These inputs are to be done in parallelin parallel::

xx

00
11

22

33

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

PARPAR
in[0]in[0] ? ? x[0]x[0]
in[1]in[1] ? ? x[1]x[1]
in[2]in[2] ? ? x[2]x[2]
in[3]in[3] ? ? x[3]

But what if there were 40
channels in the array? Or

400 … or 4000 … ?!!

But what if there were 40 But what if there were 40
channels in the array? Or channels in the array? Or

400 400 …… or 4000 or 4000 …… ?!!?!!x[3]

1-Feb-07 Copyright P.H.Welch 6

These inputs are to be done These inputs are to be done in parallelin parallel::

xx

00
11

22

33

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

This process gets replicatedThis process gets replicated

PAR i = 0 FOR 4PAR i = 0 FOR 4
in[i]in[i] ?? x[i]x[i]

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

1-Feb-07 Copyright P.H.Welch 7

These inputs are to be done These inputs are to be done in parallelin parallel::

xx

00
11

22

33

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

PARPAR
in[0]in[0] ? ? x[0]x[0]
in[1]in[1] ? ? x[1]x[1]
in[2]in[2] ? ? x[2]x[2]
in[3]in[3] ? ? x[3]x[3]

PAR i = 0 FOR 4PAR i = 0 FOR 4
in[i]in[i] ?? x[i]x[i] ≡≡

1-Feb-07 Copyright P.H.Welch 8

Just in case they really had to be done Just in case they really had to be done in sequencein sequence::

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

xx

00
11

22

33

This process gets replicated.This process gets replicated.

SEQ i = 0 FOR 4SEQ i = 0 FOR 4
in[i]in[i] ?? x[i]x[i]

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

1-Feb-07 Copyright P.H.Welch 9

Just in case they really had to be done Just in case they really had to be done in sequencein sequence::

xx

00
11

22

33

in[0]in[0]

in[1]in[1]

in[2]in[2]

in[3]in[3]

SEQSEQ
in[0]in[0] ? ? x[0]x[0]
in[1]in[1] ? ? x[1]x[1]
in[2]in[2] ? ? x[2]x[2]
in[3]in[3] ? ? x[3]x[3]

SEQ i = 0 FOR 4SEQ i = 0 FOR 4
in[i]in[i] ?? x[i]x[i] ≡≡

1-Feb-07 Copyright P.H.Welch 10

The replicated SEQ is like a very clean for-loop. The replicated The replicated SEQSEQ is like a very clean is like a very clean forfor--loop. loop.

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

SEQ i = start FOR countSEQ i = start FOR count

<process i><process i><process i>

In Java or C:In Java or C:

for (for (intint i = start; i < (start + count); i++) {i = start; i < (start + count); i++) {

}

<code i><code i><code i>

Must not change the value ofMust not change the value of ii, ,
startstart or or countcount

}

1-Feb-07 Copyright P.H.Welch 11

The replicated PAR has no correspondence in Java or C. The replicated The replicated PARPAR has no correspondence in Java or C. has no correspondence in Java or C.

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

PAR i = start FOR countPAR i = start FOR count

<process i><process i><process i>

In Java or C:In Java or C:

…… silencesilence

1-Feb-07 Copyright P.H.Welch 12

Applying the replicated PAR. Applying the replicated Applying the replicated PARPAR. .

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

PAR i = start FOR countPAR i = start FOR count

<process i><process i><process i>

The first example showed parallel replication of a The first example showed parallel replication of a primitiveprimitive
process (an input process).process (an input process).

But, earlier, weBut, earlier, we’’ve seen parallel composition of longve seen parallel composition of long--lived lived
structuredstructured processes (like continuously active processes (like continuously active ‘‘chipschips’’).).

The next example shows parallel replication of such a The next example shows parallel replication of such a
process to build a process to build a parallel sorting engineparallel sorting engine..

1-Feb-07 Copyright P.H.Welch 13

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 14

inin outoutsort.pumpsort.pump

UnsortedUnsorted items items
(grouped)(grouped)

SortedSorted items items
(grouped)(grouped)

8, 99, 42, 4, 6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255
…

8, 99, 42, 4, 6, 21, 55, 7, 8, 99, 42, 4, 6, 21, 55, 7, 255255,,
65, 92, 32, 54, 65, 92, 32, 54, 255255,,
111, 10, 5, 60, 48, 69, 7, 111, 10, 5, 60, 48, 69, 7, 255255
……

4, 6, 7, 8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7, 10, 48, 60, 69, 111, 255
…

4, 6, 7, 8, 21, 42, 55, 99, 4, 6, 7, 8, 21, 42, 55, 99, 255255,,
32, 54, 65, 92, 32, 54, 65, 92, 255255,,
5, 7, 10, 48, 60, 69, 111, 5, 7, 10, 48, 60, 69, 111, 255255
……

1-Feb-07 Copyright P.H.Welch 15

inin outoutsort.pumpsort.pump

8, 99, 42, 4, 6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255
…

8, 99, 42, 4, 6, 21, 55, 7, 8, 99, 42, 4, 6, 21, 55, 7, 255255,,
65, 92, 32, 54, 65, 92, 32, 54, 255255,,
111, 10, 5, 60, 48, 69, 7, 111, 10, 5, 60, 48, 69, 7, 255255
……

4, 6, 7, 8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7, 10, 48, 60, 69, 111, 255
…

4, 6, 7, 8, 21, 42, 55, 99, 4, 6, 7, 8, 21, 42, 55, 99, 255255,,
32, 54, 65, 92, 32, 54, 65, 92, 255255,,
5, 7, 10, 48, 60, 69, 111, 5, 7, 10, 48, 60, 69, 111, 255255
……

1-Feb-07 Copyright P.H.Welch 16

inin outoutsort.pumpsort.pump

8, 99, 42, 4, 6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255
…

8, 99, 42, 4, 6, 21, 55, 7, 8, 99, 42, 4, 6, 21, 55, 7, 255255,,
65, 92, 32, 54, 65, 92, 32, 54, 255255,,
111, 10, 5, 60, 48, 69, 7, 111, 10, 5, 60, 48, 69, 7, 255255
……

4, 6, 7, 8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7, 10, 48, 60, 69, 111, 255
…

4, 6, 7, 8, 21, 42, 55, 99, 4, 6, 7, 8, 21, 42, 55, 99, 255255,,
32, 54, 65, 92, 32, 54, 65, 92, 255255,,
5, 7, 10, 48, 60, 69, 111, 5, 7, 10, 48, 60, 69, 111, 255255
……

Note:Note: 255255 is used here to is used here to
mark the end of each group.mark the end of each group.

1-Feb-07 Copyright P.H.Welch 17

inin outoutsort.pumpsort.pump

8, 99, 42, 4, 6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255
…

8, 99, 42, 4, 6, 21, 55, 7, 8, 99, 42, 4, 6, 21, 55, 7, 255255,,
65, 92, 32, 54, 65, 92, 32, 54, 255255,,
111, 10, 5, 60, 48, 69, 7, 111, 10, 5, 60, 48, 69, 7, 255255
……

4, 6, 7, 8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7, 10, 48, 60, 69, 111, 255
…

4, 6, 7, 8, 21, 42, 55, 99, 4, 6, 7, 8, 21, 42, 55, 99, 255255,,
32, 54, 65, 92, 32, 54, 65, 92, 255255,,
5, 7, 10, 48, 60, 69, 111, 5, 7, 10, 48, 60, 69, 111, 255255
……

For the efficient application of this device, we need a longFor the efficient application of this device, we need a long--
running source of groups of items that need sorting. We running source of groups of items that need sorting. We
also need to specify an upper limit on the size of groups.also need to specify an upper limit on the size of groups.

1-Feb-07 Copyright P.H.Welch 18

inin outoutsort.pumpsort.pump

8, 99, 42, 4, 6, 21, 55, 7, 255,
65, 92, 32, 54, 255,
111, 10, 5, 60, 48, 69, 7, 255
…

8, 99, 42, 4, 6, 21, 55, 7, 8, 99, 42, 4, 6, 21, 55, 7, 255255,,
65, 92, 32, 54, 65, 92, 32, 54, 255255,,
111, 10, 5, 60, 48, 69, 7, 111, 10, 5, 60, 48, 69, 7, 255255
……

4, 6, 7, 8, 21, 42, 55, 99, 255,
32, 54, 65, 92, 255,
5, 7, 10, 48, 60, 69, 111, 255
…

4, 6, 7, 8, 21, 42, 55, 99, 4, 6, 7, 8, 21, 42, 55, 99, 255255,,
32, 54, 65, 92, 32, 54, 65, 92, 255255,,
5, 7, 10, 48, 60, 69, 111, 5, 7, 10, 48, 60, 69, 111, 255255
……

An example is a simple image smoothing filter: each pixel An example is a simple image smoothing filter: each pixel
is replaced by the is replaced by the medianmedian value of its (value of its (99) neighbours.) neighbours.
Finding median values implies sorting. Each Finding median values implies sorting. Each nn--byby--mm
image generates (image generates (n*mn*m) groups of) groups of 99 numbers for sorting.numbers for sorting.

1-Feb-07 Copyright P.H.Welch 19

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

The The sort.pumpsort.pump is implemented as a is implemented as a pipelinepipeline of simpler of simpler
cellcell proccessesproccesses. . (We(We’’ll see what they do presently.)ll see what they do presently.)

To sort groups up to a maximum size of To sort groups up to a maximum size of maxmax, we need at , we need at
least (least (maxmax –– 11)) cellcells.s.

So, if So, if maxmax is is 1616, we need , we need 1515 cellcells s …… which means we which means we
need need 1414 internal channels internal channels …… which we have indexed which we have indexed
above from above from 00 through through 1313..

1-Feb-07 Copyright P.H.Welch 20

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

PROC PROC sort.pumpsort.pump (CHAN BYTE in?, out!)(CHAN BYTE in?, out!)

:

PAR p = 1 FOR maxPAR p = 1 FOR max--33
cell cell ((c[pc[p--1]?1]?,, c[pc[p]!]!))

[max[max--2]CHAN BYTE c:2]CHAN BYTE c:
PARPAR
cell cell ((in?in?,, c[0]!c[0]!))

cell cell ((c[maxc[max--3]?3]?,, out!out!))

1 cell1 cell

(max(max--3) 3)
cellscells

1 cell1 cell:

1-Feb-07 Copyright P.H.Welch 21

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

PROC PROC sort.pumpsort.pump (CHAN BYTE in?, out!)(CHAN BYTE in?, out!)

::

PAR p = 1 FOR maxPAR p = 1 FOR max--33
cell cell ((c[pc[p--1]?1]?,, c[pc[p]!]!))

[max[max--2]CHAN BYTE c:2]CHAN BYTE c:
PARPAR
cell cell ((in?in?,, c[0]!c[0]!))

cell cell ((c[maxc[max--3]?3]?,, out!out!))

So, we have So, we have
(max(max--1) cells 1) cells
altogether.altogether.

So, we can So, we can
sort groups up sort groups up

to size max.to size max.

1-Feb-07 Copyright P.H.Welch 22

cellcellinin outout

UnsortedUnsorted items items
(grouped)(grouped)

Slightly less Slightly less
unsortedunsorted items items

(grouped)(grouped)

All each All each cellcell has to do is drag heavy items backwards. In has to do is drag heavy items backwards. In
particular, as each group flows through, the particular, as each group flows through, the lastlast one out one out
must be the heaviest in the group.must be the heaviest in the group.

To do this, two To do this, two variablesvariables (or (or registersregisters) are needed: one to) are needed: one to
hold the hold the largestlargest item seen so far and one to hold the item seen so far and one to hold the
nextnext item to arrive.item to arrive.

1-Feb-07 Copyright P.H.Welch 23

cellcellinin outout

UnsortedUnsorted items items
(grouped)(grouped)

Slightly less Slightly less
unsortedunsorted items items

(grouped)(grouped)

The The cellcell inputs the first item of a group into inputs the first item of a group into largestlargest..

Then, it compares each Then, it compares each nextnext item against item against largestlargest, ,
outputting the smaller and keeping the larger.outputting the smaller and keeping the larger.

When the When the end.markerend.marker arrives, it just outputs the arrives, it just outputs the largestlargest
followed by that followed by that end.markerend.marker..

1-Feb-07 Copyright P.H.Welch 24

VAL BYTE VAL BYTE end.markerend.marker IS 255: IS 255: ---- assume > data itemsassume > data items

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker

BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

out ! out ! end.markerend.marker
:

cellcellinin outout

:

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)

::

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker

BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker

BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

1-Feb-07 Copyright P.H.Welch 25

VAL BYTE VAL BYTE end.markerend.marker IS 255: IS 255: ---- assume > data itemsassume > data items

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker
BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker
BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

out ! out ! end.markerend.marker
::

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)

::

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker
BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next

inin outout
cellcell

Note: this algorithm requires a potential data item (255) reserved for the
end.marker. This constraint can be removed – later.
Note: this algorithm requires a potential data item (Note: this algorithm requires a potential data item (255255) reserved for the) reserved for the
end.markerend.marker. This constraint can be removed . This constraint can be removed –– later.later.

1-Feb-07 Copyright P.H.Welch 26

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

max items max items
injected hereinjected here (max(max--1) 1)

lightest output lightest output
firstfirst (max(max--2) 2)

lightest output lightest output
firstfirst (max(max--(max(max--1)) 1))

lightest output lightest output
firstfirst

lightest output lightest output
firstfirst

Each Each cellcell holds back largest item it sees, so holds back largest item it sees, so ……

1-Feb-07 Copyright P.H.Welch 27

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

max items max items
injected hereinjected here (max(max--1) 1)

lightest output lightest output
firstfirst (max(max--2) 2)

lightest output lightest output
firstfirst (max(max--(max(max--1)) 1))

lightest output lightest output
firstfirst

lightest output lightest output
firstfirst

As the As the end.markerend.marker flows through, it pushes out the heaviest flows through, it pushes out the heaviest
item, which pushes out the next heaviest, etcitem, which pushes out the next heaviest, etc……

1-Feb-07 Copyright P.H.Welch 28

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

max items max items
injected hereinjected here (max(max--1) 1)

lightest output lightest output
firstfirst (max(max--2) 2)

lightest output lightest output
firstfirst (max(max--(max(max--1)) 1))

lightest output lightest output
firstfirst

lightest output lightest output
firstfirst

The group, therefore, flows out in ascending sorted order. The group, therefore, flows out in ascending sorted order. ☺☺

1-Feb-07 Copyright P.H.Welch 29

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

If the cells are implemented on separate pieces of silicon If the cells are implemented on separate pieces of silicon (i.e. (i.e.
we have a physically parallel engine)we have a physically parallel engine), the speed at which data , the speed at which data
flows through is the flows through is the slowestslowest of:of:

the speed at which data is offered;the speed at which data is offered;

the cycle speed for each cell;the cycle speed for each cell;

the interthe inter--cell communication speed.cell communication speed.
The speed is independent of the number of cells The speed is independent of the number of cells –– which means which means
that it is independent of the number of items being sorted. We that it is independent of the number of items being sorted. We
have an have an O(nO(n)) sorting engine: sorting engine: sort.pumpsort.pump. . ☺☺ ☺☺ ☺☺

1-Feb-07 Copyright P.H.Welch 30

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

In fact, In fact, sort.pumpsort.pump is a parallel version of is a parallel version of bubblebubble--sortsort, one of , one of
the simplest known sorting algorithms. Its performance on a the simplest known sorting algorithms. Its performance on a
serialserial processor is processor is O(nO(n*n)*n), which is poor compared to more , which is poor compared to more
complex sorts (such as complex sorts (such as quickquick--sortsort, which is , which is O(nO(n**log(nlog(n))))).).

If data is supplied in If data is supplied in O(nO(n)) time (as in the above, where the time (as in the above, where the
numbers are supplied numbers are supplied oneone--atat--aa--timetime), then a processing), then a processing
complexity of complexity of O(nO(n)) cannot be beat!cannot be beat!

Lesson:Lesson: when considering a when considering a parallelparallel design, dondesign, don’’t start from the t start from the
most efficient known most efficient known serialserial algorithm algorithm –– itit’’s probably optimised s probably optimised
the wrong way. the wrong way. Rethink Rethink –– look for the simplest approach.look for the simplest approach.

1-Feb-07 Copyright P.H.Welch 31

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]cellcell cellcell cellcell
inin outout…

Note:Note: the capacity of the capacity of sort.pumpsort.pump is is (2*max (2*max -- 2)2) items, each items, each
cellcell holding holding 2 2 of them.of them.

So, So, sort.pumpsort.pump can becan be processing (parts of) two or three processing (parts of) two or three
groups (up to groups (up to maxmax size) at the same time.size) at the same time.

It will only operate efficiently so long as there is a continuouIt will only operate efficiently so long as there is a continuous s
supply of groups to be sorted.supply of groups to be sorted.

For example, if only one group were pushed through, only half For example, if only one group were pushed through, only half
the the cellcells would ever be operating at the same time.s would ever be operating at the same time.

1-Feb-07 Copyright P.H.Welch 32

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 33

Component TestingComponent TestingComponent Testing

benchbench

keyboardkeyboard screenscreen errorerror

sort.pumpsort.pump

1)1) Place component (e.g. Place component (e.g. sort.pumpsort.pump) on) on benchbench..

1-Feb-07 Copyright P.H.Welch 34

Component TestingComponent TestingComponent Testing

benchbench

keyboardkeyboard screenscreen errorerror

1)1) Place component (e.g. Place component (e.g. sort.pumpsort.pump) on) on benchbench..

2)2) Design Design test.rigtest.rig through which we can interact meaningfully with through which we can interact meaningfully with
component.

sort.pumpsort.pump

1)1) Place component (e.g. Place component (e.g. sort.pumpsort.pump) on) on benchbench..

test.rigtest.rig

component.

1-Feb-07 Copyright P.H.Welch 35

Component TestingComponent TestingComponent Testing

benchbench

keyboardkeyboard screenscreen errorerrorkeyboardkeyboard screenscreen

sort.pumpsort.pump

test.rigtest.rig

1)1) Place component (e.g. Place component (e.g. sort.pumpsort.pump) on) on benchbench..

2)2) Design Design test.rigtest.rig through which we can interact meaningfully with through which we can interact meaningfully with
component.component.

3)3) Wire it up and start experimenting Wire it up and start experimenting …

1)1) Place component (e.g. Place component (e.g. sort.pumpsort.pump) on) on benchbench..

2)2) Design Design test.rigtest.rig through which we can interact meaningfully with through which we can interact meaningfully with
component.component.

…

1-Feb-07 Copyright P.H.Welch 36

Component TestingComponent TestingComponent Testing

benchbench

keyboardkeyboard screenscreen errorerror

sort.pumpsort.pump

keyboardkeyboard screenscreen

test.rigtest.rig

1)1) Place component (e.g. Place component (e.g. sort.pumpsort.pump) on) on benchbench..

2)2) Design Design test.rigtest.rig through which we can interact meaningfully with through which we can interact meaningfully with
component.component.

3)3) Wire it up and start experimenting Wire it up and start experimenting ……

1-Feb-07 Copyright P.H.Welch 37

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

bb

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

historyhistory

window (16, 2)window (16, 2) window (48, 2)window (48, 2)

screen.plexscreen.plexkeyboard.managekeyboard.manage

1-Feb-07 Copyright P.H.Welch 38

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

This process filters keyboard input for ‘bad’ characters
(e.g. control-chars, carriage-return), issuing an error report
for any found, and compresses / encodes ‘good’ characters
(e.g. visible-chars) for onward transmission.

This process filters keyboard input for This process filters keyboard input for ‘‘badbad’’ characterscharacters
(e.g. control(e.g. control--chars, carriagechars, carriage--return)return), issuing an error report , issuing an error report
for any found, and compressesfor any found, and compresses // encodes encodes ‘‘goodgood’’ characters characters
(e.g. visible(e.g. visible--chars)chars) for onward transmission.for onward transmission.

inin

outout

errorerror
keyboard.managekeyboard.manage

1-Feb-07 Copyright P.H.Welch 39

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

bb

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

historyhistory

window (16, 2)window (16, 2) window (48, 2)window (48, 2)

screen.plexscreen.plexkeyboard.managekeyboard.manage

1-Feb-07 Copyright P.H.Welch 40

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

This process
multiplexes an
array of input
streams to a
single output
stream.

This process This process
multiplexes an multiplexes an
array of input array of input
streams to a streams to a
single output single output
stream.stream.

screenscreen

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

screen.plexscreen.plex

1-Feb-07 Copyright P.H.Welch 41

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

bb

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

historyhistory

window (16, 2)window (16, 2) window (48, 2)window (48, 2)

screen.plexscreen.plexkeyboard.managekeyboard.manage

1-Feb-07 Copyright P.H.Welch 42

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

outout

inin
dumpdump

window (x, y)window (x, y)

This process is a
fixed-size delay line.
Each item input
pushes one item
out. It holds the last
max items received.
Every cycle, it
dumps its entire
holding array (with
screen position
control-chars). This
lets us see what’s in
the data stream.

This process is a This process is a
fixedfixed--size delay linesize delay line. .
Each item input Each item input
pushes one item pushes one item
out. It holds the last out. It holds the last
maxmax items received. items received.
Every cycle, it Every cycle, it
dumps its entire dumps its entire
holding array (with holding array (with
screen position screen position
controlcontrol--chars). This chars). This
lets us see whatlets us see what’’s in s in
the data stream.the data stream.

(x,(x, y)y) specifies coordinates specifies coordinates
defining the start position on the defining the start position on the
screen for the screen for the dumpdump items.items.

1-Feb-07 Copyright P.H.Welch 43

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

bb

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

historyhistory

window (16, 2)window (16, 2) window (48, 2)window (48, 2)

screen.plexscreen.plexkeyboard.managekeyboard.manage

1-Feb-07 Copyright P.H.Welch 44

Typical Test-Rig DesignTypical TestTypical Test--Rig DesignRig Design

inin

outout

historyhistory

This process lays out a history of the items received.
It uses the bottom two-thirds of the screen.
This process lays out a This process lays out a historyhistory of the items received. of the items received.
It uses the bottom twoIt uses the bottom two--thirds of the screen.thirds of the screen.

1-Feb-07 Copyright P.H.Welch 45

Design GuidelinesDesign GuidelinesDesign Guidelines

DonDon’’t try to cram too much functionality into any t try to cram too much functionality into any
process: process: One function One function ÙÙ One processOne process
Multiple functions Multiple functions ÙÙ Multiple processesMultiple processes
Each process is programmed from its own pointEach process is programmed from its own point--
ofof--view. Think of each process as an view. Think of each process as an
independent independent serialserial program, with a variety of program, with a variety of
input and output channels.input and output channels.
Concurrency then makes design simple!Concurrency then makes design simple! ☺ ☺ ☺
Try to build thatTry to build that test.rigtest.rig as a as a singlesingle serialserial
process and we will get a mess process and we will get a mess …… / / /

1-Feb-07 Copyright P.H.Welch 46

benchbench

keyboardkeyboard screenscreen errorerror

sort.pumpsort.pump

keyboardkeyboard screenscreen

test.rigtest.rig

PROC bench (CHAN BYTE keyboard?, screen!, error!)PROC bench (CHAN BYTE keyboard?, screen!, error!)
CHAN BYTE a, b:CHAN BYTE a, b:
PARPAR

sort.pumpsort.pump (a?, b!)(a?, b!)
test.rig (keyboard?, screen!, a!, b?)test.rig (keyboard?, screen!, a!, b?)

::

aa bb

1-Feb-07 Copyright P.H.Welch 47

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

bb

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

historyhistory

window (16, 2)window (16, 2) window (48, 2)window (48, 2)

screen.plexscreen.plexkeyboard.managekeyboard.manage

PROC test.rig (CHAN BYTE keyboard?, screen!, PROC test.rig (CHAN BYTE keyboard?, screen!, probe.outprobe.out!, !, probe.inprobe.in?)?)
CHAN BYTE a, b:CHAN BYTE a, b:
[4]CHAN BYTE m:[4]CHAN BYTE m:
PARPAR

keyboard.managekeyboard.manage (keyboard?, a!, m[0]!)(keyboard?, a!, m[0]!)
window (window (16, 2, a?,16, 2, a?, probe.outprobe.out!, m[1]!) !, m[1]!) ---- (16, 2) => top(16, 2) => top--leftleft
window (window (48, 248, 2, , probe.inprobe.in?, b!, m[2]!) ?, b!, m[2]!) ---- (48, 2) => top(48, 2) => top--rightright
history (b?, m[3]!)history (b?, m[3]!)
screen.plexscreen.plex (m?, out!)(m?, out!)

::

1-Feb-07 Copyright P.H.Welch 48

But But …… what if we want to what if we want to
see whatsee what’’s going on s going on

insideinside thethe sort.pumpsort.pump??

benchbench

keyboardkeyboard screenscreen errorerror

sort.pumpsort.pump

keyboardkeyboard screenscreen

test.rigtest.rig

1-Feb-07 Copyright P.H.Welch 49

As things stand, we canAs things stand, we can’’t t
see inside the see inside the cell cell

processes in the pump.processes in the pump.

benchbench

keyboardkeyboard screenscreen errorerror

sort.pumpsort.pump

keyboardkeyboard screenscreen

test.rigtest.rig

1-Feb-07 Copyright P.H.Welch 50

We need to wire up the We need to wire up the
cellcells to report their s to report their

changing states.changing states.

benchbench

keyboardkeyboard screenscreen errorerror

sort.pumpsort.pump

keyboardkeyboard screenscreen

test.rigtest.rig

benchbench

keyboardkeyboard screenscreen errorerrorkeyboardkeyboard screenscreen

test.rigtest.rig

…
sort.insidesort.inside

1-Feb-07 Copyright P.H.Welch 51

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]inin outout…cellcell cellcell cellcell

PROC PROC sort.pumpsort.pump (CHAN BYTE in?, out)(CHAN BYTE in?, out)

[max[max--2]CHAN BYTE c:2]CHAN BYTE c:
PARPAR

cell (in?, c[0]!)cell (in?, c[0]!)
PAR p = 1 FOR maxPAR p = 1 FOR max--33

cell (c[pcell (c[p--1]?, 1]?, c[pc[p]!)]!)
cell (c[maxcell (c[max--3]?, out!)3]?, out!)

::

1-Feb-07 Copyright P.H.Welch 52

VAL INT max IS 16:VAL INT max IS 16:

c[0]c[0] c[1]c[1] c[13]c[13]inin outout…r.cellr.cell r.cellr.cell r.cellr.cell

report[13]report[13]report[1]report[1]report[0]report[0]

PROC PROC sort.insidesort.inside (CHAN BYTE in?, out!,(CHAN BYTE in?, out!,
[]CHAN BYTE report![]CHAN BYTE report!))

[max[max--2]CHAN BYTE c:2]CHAN BYTE c:
PARPAR

reporting.cellreporting.cell (in?, (in?, report[0]!,report[0]!, c[0]!)c[0]!)
PAR p = 1 FOR maxPAR p = 1 FOR max--33

reporting.cellreporting.cell (c[p(c[p--1]?, 1]?, report[ireport[i]!,]!, c[pc[p]!)]!)
reporting.cellreporting.cell (c[max(c[max--3]?, 3]?, report[maxreport[max--3]!,3]!, out!)out!)

::

1-Feb-07 Copyright P.H.Welch 53

VAL BYTE VAL BYTE end.markerend.marker IS 255: IS 255: ---- assume > data itemsassume > data items

inin outout
cellcell

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker
BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

out ! out ! end.markerend.marker
::

1-Feb-07 Copyright P.H.Welch 54

VAL BYTE VAL BYTE end.markerend.marker IS 255: IS 255: ---- assume > data itemsassume > data items

PROC PROC reporting.cellreporting.cell (CHAN BYTE in?, report!, out!)(CHAN BYTE in?, report!, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

... report ! '~'; '~'... report ! '~'; '~'
in ? in ? largestlargest
... report ! '~'; ... report ! '~'; largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker
BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
... report ! next; ... report ! next; largestlargest
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

... report ! '~'; ... report ! '~'; largestlargest
out ! out ! end.markerend.marker

::

inin outout
r.cellr.cell

reportreport

1-Feb-07 Copyright P.H.Welch 55

benchbench

keyboardkeyboard screenscreen errorerrorkeyboardkeyboard screenscreen

test.rigtest.rig

…
sort.insidesort.inside

PROC bench (CHAN BYTE keyboard?, screen!, error!)PROC bench (CHAN BYTE keyboard?, screen!, error!)
CHAN BYTE a, b:CHAN BYTE a, b:
[max[max--1]CHAN BYTE report:1]CHAN BYTE report:
PARPAR

sort.pumpsort.pump (a?, report!, b!)(a?, report!, b!)
test.rig (keyboard?, screen!, a!, report?, b?)test.rig (keyboard?, screen!, a!, report?, b?)

::

aa bbreportreport

1-Feb-07 Copyright P.H.Welch 56

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

bb

m[1]m[1]

m[0]m[0]

m[2]m[2]

m[3]m[3]

historyhistory

window (16, 2)window (16, 2) window (48, 2)window (48, 2)

keyboard.managekeyboard.manage screen.plexscreen.plex

m[4]m[4]
m[5]m[5]

m[18]m[18]

…

report[]report[]

…

1-Feb-07 Copyright P.H.Welch 57

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

m[0]m[0]

m[1]m[1]

m[2]m[2]
m[3]m[3]

m[16]m[16]

keyboard.managekeyboard.manage screen.plexscreen.plex

historyhistory

…

report[]report[]

…

1-Feb-07 Copyright P.H.Welch 58

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

m[0]m[0]

m[2]m[2]

m[1]m[1]

keyboard.managekeyboard.manage screen.plexscreen.plex

historyhistory

report.plexreport.plex

report[]report[]

…

1-Feb-07 Copyright P.H.Welch 59

test.rigtest.rig

keyboardkeyboard screenscreen

probe.inprobe.inprobe.outprobe.out

aa

m[0]m[0]

m[2]m[2]

m[1]m[1]

keyboard.managekeyboard.manage screen.plexscreen.plex

historyhistory

report.plexreport.plex

report[]report[]

…

delay (2)delay (2)

1-Feb-07 Copyright P.H.Welch 60

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 61

Let’s simplify the logic within a cell process …LetLet’’s simplify the logic within a s simplify the logic within a cellcell process process ……

VAL BYTE VAL BYTE end.markerend.marker IS 255: IS 255: ---- assume > data itemsassume > data items

inin outout
cellcell

PROC cell (CHAN BYTE in?, out!)PROC cell (CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE

BYTE BYTE largestlargest::
SEQSEQ

in ? in ? largestlargest
WHILE WHILE largestlargest <> <> end.markerend.marker
BYTE next:BYTE next:
SEQSEQ

in ? nextin ? next
IF IF ---- output smaller, keep largeroutput smaller, keep larger

largest >= nextlargest >= next
out ! nextout ! next

TRUE TRUE ---- i.e.i.e. largest < nextlargest < next
SEQSEQ

out ! out ! largestlargest
largestlargest := next:= next

out ! out ! end.markerend.marker
:

Here is the serial logic
(a loop within a loop).
Here is the Here is the serialserial logic logic
(a loop within a loop).(a loop within a loop).

:

1-Feb-07 Copyright P.H.Welch 62

Let’s simplify the logic within a cell process …LetLet’’ss simplify the logic within a simplify the logic within a cellcell process process ……

outout

cellcell

inin

Here is the parallel logic …Here is the Here is the parallelparallel logic logic ……

1-Feb-07 Copyright P.H.Welch 63

Let’s simplify the logic within a cell process …LetLet’’ss simplify the logic within a simplify the logic within a cellcell process process ……

VAL BYTE VAL BYTE hihi IS IS 255255: : ---- assume > data itemsassume > data items
VAL BYTE VAL BYTE lolo IS IS 00: : ---- assume < data itemsassume < data items

inin

cellcell

tailtailtail
outout

loÆ hi lolo ÆÆ hi hi

hi Æ lohi hi ÆÆ lolololo

>

The largest (so far) is
trapped in the feedback loop.

The The largestlargest (so far) is (so far) is
trapped in the trapped in the feedback loopfeedback loop..Here is the parallel logic …Here is the Here is the parallelparallel logic logic ……

1-Feb-07 Copyright P.H.Welch 64

This process copies data through, substituting a for b …This process copies data through, substituting This process copies data through, substituting aa for for bb ……

aÆ b aa ÆÆ b b
outoutinin

PROC substitute (VAL BYTE a, b, CHAN BYTE in?, out!)PROC substitute (VAL BYTE a, b, CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE
BYTE x:BYTE x:
SEQSEQ
in ? xin ? x
IFIF
x = ax = a
out ! bout ! b

TRUETRUE
out ! xout ! x

::

1-Feb-07 Copyright P.H.Welch 65

And finally, let's simplify the logic within a cell process …And finally, let's simplify the logic within a And finally, let's simplify the logic within a cellcell process process ……

VAL BYTE VAL BYTE hihi IS IS 255255: : ---- assume > data itemsassume > data items
VAL BYTE VAL BYTE lolo IS IS 00: : ---- assume < data itemsassume < data items

inin

cellcell

tailtailtail
outout

loÆ hi lolo ÆÆ hi hi

hi Æ lohi hi ÆÆ lolololo

>

The largest (so far) is
trapped in the feedback loop.

The The largestlargest (so far) is (so far) is
trapped in the trapped in the feedback loopfeedback loop..Here is the parallel logic …Here is the Here is the parallelparallel logic logic ……

1-Feb-07 Copyright P.H.Welch 66

This is a primitive comparator …This is a primitive comparator This is a primitive comparator ……

PROC greater (CHAN BYTE in.0?, in.1?, small!, large!)PROC greater (CHAN BYTE in.0?, in.1?, small!, large!)
WHILE TRUEWHILE TRUE
BYTE x.0, x.1:BYTE x.0, x.1:
SEQSEQ
PARPAR
in.0 ? x.0in.0 ? x.0
in.1 ? x.1in.1 ? x.1

IFIF
x.0 < x.1x.0 < x.1
PARPAR
small ! x.0small ! x.0
large ! x.1large ! x.1

TRUETRUE
PARPAR
small ! x.1small ! x.1
large ! x.0large ! x.0

:

smallsmallin.0in.0

largelargein.1in.1

>

Hence, the asymmetric Hence, the asymmetric
design of its icon.design of its icon.

Note:Note: gtgt is symmetric on its is symmetric on its
input channels, but not on its input channels, but not on its

output channels!output channels!
:

1-Feb-07 Copyright P.H.Welch 67

Stateless ComponentsStateless ComponentsStateless Components

All the All the primitiveprimitive process components in the process components in the ‘‘LegolandLegoland’’
catalogue (catalogue (idid, , succsucc, , plusplus, , deltadelta, , prefixprefix, , tailtail, , ……))
plus the ones just presented (plus the ones just presented (substitutesubstitute, , greatergreater) are) are
statelessstateless..

This means they are mathematical functions. They transform This means they are mathematical functions. They transform
input values to output values without reference to past events: input values to output values without reference to past events:
the same inputs yield the same outputs. the same inputs yield the same outputs. They have no They have no
memory memory –– no state.no state.

Memory emerges when they are connected in circuits with Memory emerges when they are connected in circuits with
feedback loops (feedback loops (numbersnumbers, , integrateintegrate, , cellcell, , ……).).

Stateless components are trivial to reason about Stateless components are trivial to reason about –– we donwe don’’t t
have to think about loops! They are also easy to cast into have to think about loops! They are also easy to cast into
silicon silicon –– as, of course, are circuits built from them.as, of course, are circuits built from them.

1-Feb-07 Copyright P.H.Welch 68

Stateless ComponentsStateless ComponentsStateless Components

aÆ b aa ÆÆ b b
outoutinin

PROC substitute (VAL BYTE a, b, CHAN BYTE in?, out!)PROC substitute (VAL BYTE a, b, CHAN BYTE in?, out!)
WHILE TRUEWHILE TRUE
BYTE x:BYTE x:
SEQSEQ
in ? xin ? x
IFIF
x = ax = a
out ! bout ! b

TRUETRUE
out ! xout ! x

::

loop-free
logic

looploop--free free
logiclogic

1-Feb-07 Copyright P.H.Welch 69

Stateless ComponentsStateless ComponentsStateless Components

PROC greater (CHAN BYTE in.0?, in.1?, small!, large!)PROC greater (CHAN BYTE in.0?, in.1?, small!, large!)
WHILE TRUEWHILE TRUE
BYTE x.0, x.1:BYTE x.0, x.1:
SEQSEQ
PARPAR
in.0 ? x.0in.0 ? x.0
in.1 ? x.1in.1 ? x.1

IFIF
x.0 < x.1x.0 < x.1
PARPAR
small ! x.0small ! x.0
large ! x.1large ! x.1

TRUETRUE
PARPAR
small ! x.1small ! x.1
large ! x.0large ! x.0

::

smallsmallin.0in.0

largelargein.1in.1

>

loop-free
logic

looploop--free free
logiclogic

1-Feb-07 Copyright P.H.Welch 70

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 71

And Finally …And Finally And Finally ……

On a On a serialserial processor, processor, bubblebubble--sortsort takes takes O(nO(n22)) computation computation
time, where time, where nn is the number of items being sorted. Cleverer is the number of items being sorted. Cleverer
algorithms (such as algorithms (such as quickquick--sortsort or or shellshell--sortsort) take) take O(nO(n**log(nlog(n))))..

With With O(nO(n)) processing elements, the processing elements, the sortsort--pumppump takes takes O(nO(n))
computation time, with respect to each group of computation time, with respect to each group of nn items being items being
sorted. If we only present data serially (i.e. one item at a timsorted. If we only present data serially (i.e. one item at a time), e),
supply takes supply takes O(nO(n)) time time …… so so sortsort--pumppump cannot be beaten!cannot be beaten!
But we do need a continuous supply of groups.But we do need a continuous supply of groups.

QuestionQuestion:: with with O(nO(n22)) processing elements,processing elements, can we sort groups
of nn itemsitems in O(1)O(1) time? Of course, we will have to present data
in parallel (i.e. O(1)O(1) time) and have a continuous supply.

AnswerAnswer:: Yes. Yes. And itAnd it’’s easy!s easy!

1-Feb-07 Copyright P.H.Welch 72

sort.gridsort.gridsort.grid
in[]in[]

out[]out[]

sort.gridsort.grid

1-Feb-07 Copyright P.H.Welch 73

sort.gridsort.gridsort.grid

> > > > > >

> > > > >

>

>

>

>

> > > > > >

> > > > >

>

>

>

>

> > > > > >

> > > > >

>

>

>

>

……

in[]in[]

out[]out[]

1-Feb-07 Copyright P.H.Welch 74

If the comparators are implemented on separate pieces of If the comparators are implemented on separate pieces of
silicon silicon (i.e. we have a physically parallel engine)(i.e. we have a physically parallel engine), the speed at , the speed at
which data flows through is the which data flows through is the slowestslowest of:of:

the speed at which data is offered;the speed at which data is offered;

the cycle speed for each comparator;the cycle speed for each comparator;

the interthe inter--cell communication speed.cell communication speed.
The speed is independent of the number of comparators The speed is independent of the number of comparators ––
which means that it is independent of the number of items which means that it is independent of the number of items
being sorted.being sorted.
Each group of data Each group of data entersenters and and exitsexits the grid the grid in parallelin parallel. All . All
comparators operate comparators operate in parallelin parallel. After each . After each (unit time)(unit time) cycle, cycle,
a sorted group emerges. We have an a sorted group emerges. We have an O(1)O(1) sorting engine:sorting engine:

sort.gridsort.grid. . ☺☺ ☺☺ ☺☺

1-Feb-07 Copyright P.H.Welch 75

sort.gridsort.gridsort.grid

For groups up to size For groups up to size 1616, we need , we need 1616 rows of rows of ((gtgt)) comparators. comparators.
The The eveneven rows have rows have 88 each and the each and the oddodd rows have rows have 77..

Coding:Coding: to keep things easy, letto keep things easy, let’’s first program an s first program an eveneven--oddodd pair pair
of rows of rows ……

> > > > > >

> > > > >

>

>

>

>

in[]in[]

out[]out[]

1-Feb-07 Copyright P.H.Welch 76

even.oddeven.oddeven.odd

> > > > > >

> > > > >

>

>

>

>

in[]in[]

out[]out[]

1-Feb-07 Copyright P.H.Welch 77

even.oddeven.oddeven.odd
in[]in[]

> > > > > >> > > > > > > >> >

> > > > > > >> > > > > > >

out[]out[]
PROC PROC even.oddeven.odd ([([max]CHANmax]CHAN BYTE in?, out!)BYTE in?, out!)
[max[max--2]CHAN BYTE c:2]CHAN BYTE c:
PARPAR
gtgt (in[0]?, in[1]?, out[0]!, c[0]!)(in[0]?, in[1]?, out[0]!, c[0]!)
PAR i = 2 FOR (max/2) PAR i = 2 FOR (max/2) –– 2 STEP 22 STEP 2
gtgt ((in[iin[i]?, in[i+1]?, c[i]?, in[i+1]?, c[i--1]!, 1]!, c[ic[i]!)]!)

gtgt (in[max(in[max--2]?, in[max2]?, in[max--1]?, c[max1]?, c[max--3]!, out[max3]!, out[max--1]!)1]!)
PAR i = 1 FOR (max/2) PAR i = 1 FOR (max/2) –– 1 STEP 21 STEP 2
gtgt (c[i(c[i--1]?, 1]?, c[ic[i]?,]?, out[iout[i]!, out[i+1]!)]!, out[i+1]!)

::
See replicator STEP sizes (later) …See See replicatorreplicator STEP sizes (later) STEP sizes (later) ……

1-Feb-07 Copyright P.H.Welch 78

sort.gridsort.gridsort.grid
in[]in[]

out[]out[]

even.oddeven.odd

even.oddeven.odd

even.oddeven.odd

even.oddeven.odd

even.oddeven.odd

even.oddeven.odd

even.oddeven.odd

even.oddeven.odd

1-Feb-07 Copyright P.H.Welch 79

sort.gridsort.gridsort.grid
in[]in[]

out[]out[]

PROC PROC sort.gridsort.grid ([([max]CHANmax]CHAN BYTE in?, out!)BYTE in?, out!)
[(max/2)[(max/2)--1][max]CHAN BYTE c:1][max]CHAN BYTE c:
PARPAR
even.oddeven.odd (in?, c[0]!)(in?, c[0]!)
PAR i = 0 FOR (max/2) PAR i = 0 FOR (max/2) –– 22
even.oddeven.odd ((c[ic[i]?, c[i+1]!)]?, c[i+1]!)

even.oddeven.odd (c[(max/2)(c[(max/2)––2]?, out!)2]?, out!)
::

1-Feb-07 Copyright P.H.Welch 80

Exercise:Exercise:Exercise:

Build a testBuild a test--rig for rig for
sort.gridsort.grid …… ☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺

1-Feb-07 Copyright P.H.Welch 81

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 82

Summary of Replicators (SEQ, PAR)Summary of Summary of ReplicatorsReplicators ((SEQSEQ,, PARPAR))

++

One New Replicator (IF)One New Replicator (One New Replicator (IFIF))

1-Feb-07 Copyright P.H.Welch 83

The replicated SEQ is like a very clean for-loop. The replicated The replicated SEQSEQ is like a very clean is like a very clean forfor--loop. loop.

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

SEQ i = start FOR countSEQ i = start FOR count

<process i><process i><process i>

In Java or C:In Java or C:

for (for (intint i = start; i < (start + count); i++) {i = start; i < (start + count); i++) {

}

<code i><code i><code i>

Must not change the value ofMust not change the value of ii, ,
startstart or or countcount

}

1-Feb-07 Copyright P.H.Welch 84

The replicated PAR has no correspondence in Java or C. The replicated The replicated PARPAR has no correspondence in Java or C. has no correspondence in Java or C.

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

PAR i = start FOR countPAR i = start FOR count

<process i><process i><process i>

In Java or C:In Java or C:

…… silencesilence

1-Feb-07 Copyright P.H.Welch 85

So far, we have seen the So far, we have seen the occamoccam--ππ process constructors process constructors
SEQSEQ,, PARPAR,, IFIF andand WHILEWHILE. (Still to come are . (Still to come are ALTALT and and CASECASE.)

Replicated IFsReplicated Replicated IFIFss

.)

We have seen how We have seen how SEQSEQ andand PARPAR can be can be replicatedreplicated. So, . So,
also, can the also, can the IFIF and (later) the and (later) the ALTALT. Here is a . Here is a replicatedreplicated IFIF::

This This conditionalconditional--processprocess
gets replicatedgets replicated

IF i = 0 FOR 4IF i = 0 FOR 4
x[ix[i] = 42] = 42

index := i index := i

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

1-Feb-07 Copyright P.H.Welch 86

So far, we have seen the So far, we have seen the occamoccam--ππ process constructors process constructors
SEQSEQ,, PARPAR,, IFIF andand WHILEWHILE. (Still to come are . (Still to come are ALTALT and and CASECASE.)

Replicated IFsReplicated Replicated IFIFss

.)

We have seen how We have seen how SEQSEQ andand PARPAR can be can be replicatedreplicated. So, . So,
also, can the also, can the IFIF and (later) the and (later) the ALTALT. Here is a . Here is a replicatedreplicated IFIF::

IFIF
x[0] = 42x[0] = 42

index := 0index := 0
x[1] = 42x[1] = 42

index := 1index := 1
x[2] = 42x[2] = 42

index := 2index := 2
x[3] = 42x[3] = 42

index := 3 index := 3

IF i = 0 FOR 4IF i = 0 FOR 4
x[ix[i] = 42] = 42

index := i index := i
≡≡

1-Feb-07 Copyright P.H.Welch 87

This code searches the first This code searches the first 44 elements of the array elements of the array xx for the for the
value value 4242. The search is . The search is sequentialsequential, starting from element , starting from element 00
and proceeding upwards. If successful, the variable and proceeding upwards. If successful, the variable indexindex is is
set to the (first) index of the set to the (first) index of the xx array element equal to the equal to the
target. If unsuccessful, this code will crash!

Replicated IFsReplicated Replicated IFIFss

target. If unsuccessful, this code will crash!

IFIF
x[0] = 42x[0] = 42

index := 0index := 0
x[1] = 42x[1] = 42

index := 1index := 1
x[2] = 42x[2] = 42

index := 2index := 2
x[3] = 42x[3] = 42

index := 3 index := 3

IF i = 0 FOR 4IF i = 0 FOR 4
x[ix[i] = 42] = 42

index := i index := i
≡≡

1-Feb-07 Copyright P.H.Welch 88

To avoid that crash, we need a final condition that catches the To avoid that crash, we need a final condition that catches the
flow of control should all the other conditions fail:flow of control should all the other conditions fail:

IFIF
x[0] = 42x[0] = 42

index := 0index := 0
x[1] = 42x[1] = 42

index := 1index := 1
x[2] = 42x[2] = 42

index := 2index := 2
x[3] = 42x[3] = 42

index := 3index := 3
TRUETRUE

index := index := --11

To express this using an
IFIF--replicatorreplicator (which we

need if we were searching
the through n elements,
where n is known only at

run-time), we need a
nested IFIF ...

where where indexindex is setis set to --11, an illegal array indexillegal array index, used here to
indicate that the search failedsearch failed.

1-Feb-07 Copyright P.H.Welch 89

≡≡

IFIF
<condition 0><condition 0>

IFIF
<condition 1><condition 1>

<condition 2><condition 2>

<condition 3><condition 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

IFIF
<condition 0><condition 0>

<condition 1><condition 1>

<condition 2><condition 2>

<condition 3><condition 3>

<process 0><process 0>

<process 3><process 3>

<process 1><process 1>

<process 2><process 2>

Nested IFsNested Nested IFIFss

The innerThe inner IFIF disappears and its disappears and its conditional processesconditional processes align with align with
the the conditional processesconditional processes of the outerof the outer IFIF..

1-Feb-07 Copyright P.H.Welch 90

≡≡

IFIF
<condition 0><condition 0>

IF i = 0 FOR nIF i = 0 FOR n
<rep condition i><rep condition i>

<condition 1><condition 1>

<process 0><process 0>

<rep process i><rep process i>

<process 1><process 1>

IFIF
<condition 0><condition 0>

IFIF
<rep condition 0><rep condition 0>

<rep condition (n<rep condition (n--1)>1)>

<condition 1><condition 1>

<process 0><process 0>

<process 1><process 1>

<rep process 0><rep process 0>

<rep process (n<rep process (n--1)>1)>

......

NestedNested IFIFss are mainly are mainly
useful useful …… when the inner or when the inner or

outer is replicated.outer is replicated.

Nested IFsNested Nested IFIFss

1-Feb-07 Copyright P.H.Welch 91

NestedNested IFIFss are mainly are mainly
useful useful …… when the inner or when the inner or

outer is replicated.outer is replicated.

They enable us toThey enable us to IFIF
between between sequencedsequenced and and

individualindividual conditions.conditions.

≡≡

IFIF
<condition 0><condition 0>

IF i = 0 FOR nIF i = 0 FOR n
<rep condition i><rep condition i>

<condition 1><condition 1>

<process 0><process 0>

<rep process i><rep process i>

<process 1><process 1>

IFIF
<condition 0><condition 0>

<rep condition 0><rep condition 0>

<rep condition (n<rep condition (n--1)>1)>

<condition 1><condition 1>

<process 0><process 0>

<process 1><process 1>

<rep process 0><rep process 0>

<rep process (n<rep process (n--1)>1)>

......

Nested IFsNested Nested IFIFss

1-Feb-07 Copyright P.H.Welch 92

Replicated IFsReplicated Replicated IFIFss

IFIF
x[0] = 42x[0] = 42

index := 0index := 0
x[1] = 42x[1] = 42

index := 1index := 1
x[2] = 42x[2] = 42

index := 2index := 2
x[3] = 42x[3] = 42

index := 3index := 3
TRUETRUE

index := index := --11

IFIF
IF i = 0 FOR 4IF i = 0 FOR 4

x[ix[i] = 42] = 42
index := iindex := i

TRUETRUE
index := index := --11

≡≡

where where indexindex is setis set to --11, an illegal array indexillegal array index, used here to
indicate that the search failedsearch failed.

1-Feb-07 Copyright P.H.Welch 93

Bounded Linear Search (occam-π)Bounded Linear Search (Bounded Linear Search (occamoccam--ππ))
The The ‘‘bounded linear searchbounded linear search’’ is the only common use for a is the only common use for a
replicatedreplicated IFIF –– but it is a good one!but it is a good one!

Problem:Problem: find the index of the first element of some array, find the index of the first element of some array,
xx, that matches , that matches some.conditionsome.condition()()::

IFIF
IF i = 0 FOR SIZE xIF i = 0 FOR SIZE x

some.conditionsome.condition ((x[ix[i])])
... we found it at index i... we found it at index i

TRUETRUE
... we didn... we didn’’t find itt find it

number of replicationsnumber of replicationsnumber of replications

first valuefirst valuefirst value

Note: the above code searches (potentially) the whole array. Note: the above code searches (potentially) the whole array.
We can restrict the search by setting We can restrict the search by setting firstfirst and and replicatereplicate values values
(of the (of the replicatedreplicated IFIF) appropriately.) appropriately.

1-Feb-07 Copyright P.H.Welch 94

Bounded Linear Search (Java / C)Bounded Linear Search (Bounded Linear Search (JavaJava // CC))
Problem:Problem: find the index of the first element of some array, find the index of the first element of some array,
xx, that matches , that matches some.conditionsome.condition()()::

{{ intint i = 0;i = 0;
boolbool found = false; found = false;
forfor (i = 0; i < (i = 0; i < x.lengthx.length; i++) {; i++) {

ifif ((someConditionsomeCondition ((xx[i[i])) {])) {
found = true;found = true;
break;break;

}}
}}
if if (found) {(found) {

... we found it at index i... we found it at index i
} } elseelse {{

... we didn... we didn’’t find itt find it
}}

}}

1-Feb-07 Copyright P.H.Welch 95

Bounded Linear Search (Java / C)Bounded Linear Search (Bounded Linear Search (JavaJava // CC))
Problem:Problem: find the index of the first element of some array, find the index of the first element of some array,
xx, that matches , that matches some.conditionsome.condition()()::

Actually, this can be expressed in almost a compact form Actually, this can be expressed in almost a compact form
as in as in occamoccam--ππ ... but we need to resort to a ... but we need to resort to a labelled block labelled block
withwith nonnon--local breaklocal break--outout::

BLS: {BLS: {
forfor ((intint i = 0; i < i = 0; i < x.lengthx.length; i++) {; i++) {

ifif ((someConditionsomeCondition ((xx[i[i])) {])) {
... we found it at index i... we found it at index i
break break BLSBLS;;

}}
}}
... we didn... we didn’’t find itt find it

}}

1-Feb-07 Copyright P.H.Welch 96

Replicators (components and test-rigs)ReplicatorsReplicators (components and test(components and test--rigs)rigs)

Replicated Replicated PARPAR and and SEQSEQ

The The SORTSORT PUMPPUMP ……

Component testing Component testing ……

Stateless components Stateless components ……

The The SORTSORT GRIDGRID ……

Replicated Replicated IFIF ……

ReplicatorReplicator STEPSTEP sizes ……

1-Feb-07 Copyright P.H.Welch 97

Replicator STEP SizesReplicator Replicator STEPSTEP SizesSizes
Normally,Normally, the the replicatorreplicator control value increments by control value increments by 11 for for
each replicated instance.each replicated instance.

However,However, we may define an arbitrary we may define an arbitrary STEPSTEP size for this size for this
increment:increment:

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

<rep><rep> i = start FOR count STEP sizei = start FOR count STEP size

<process i><process i><process i>

incrementincrementincrement

MayMay not change the value ofnot change the value of ii, ,
startstart, , countcount or or sizesize

1-Feb-07 Copyright P.H.Welch 98

Replicator STEP SizesReplicator Replicator STEPSTEP SizesSizes
The The <rep><rep> constructor is one from: constructor is one from: SEQSEQ, PARPAR, IFIF and (later)
ALTALT..

The The startstart, , countcount and and sizesize may be any may be any INTINT expressions. expressions.
The values of The values of ii and and any variablesany variables in in startstart, , countcount and and
sizesize cannot be changed by the replicated process.cannot be changed by the replicated process.

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

<rep><rep> i = start FOR count STEP sizei = start FOR count STEP size

<process i><process i><process i>

incrementincrementincrement

MayMay not change the value ofnot change the value of ii, ,
startstart, , countcount or or sizesize

1-Feb-07 Copyright P.H.Welch 99

Summary: a replicated SEQ is a very clean for-loop. Summary: a replicated Summary: a replicated SEQSEQ is a very clean is a very clean forfor--loop. loop.

SEQ i = start FOR count STEP sizeSEQ i = start FOR count STEP size

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

incrementincrementincrement

<process i><process i><process i>

{ { intint i = start;i = start;
for (for (intint ii = 0; ii < count; ii++) {ii = 0; ii < count; ii++) {

i += size;i += size;
}}

}}

<code i><code i><code i>

In Java or C:In Java or C:

MustMust not usenot use iiii

MustMust not change the value ofnot change the value of ii, ,
startstart, , countcount or or sizesize

1-Feb-07 Copyright P.H.Welch 100

The replicated PAR has no correspondence in Java or C. The replicated The replicated PARPAR has no correspondence in Java or C. has no correspondence in Java or C.

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

incrementincrementincrement
PAR i = start FOR count STEP sizePAR i = start FOR count STEP size

<process i><process i><process i>

In Java or C:In Java or C:

…… silencesilence

1-Feb-07 Copyright P.H.Welch 101

The replicated IF gives a ‘Bounded Linear Search’The replicated The replicated IFIF gives a gives a ‘‘Bounded Linear SearchBounded Linear Search’’

IF i = start FOR count STEP sizeIF i = start FOR count STEP size
IFIF

INT declarationINT declarationINT declaration

number of replicationsnumber of replicationsnumber of replications
first valuefirst valuefirst value

incrementincrementincrement

<condition i><condition i><condition i>

this is what this is what
gets replicatedgets replicated

<found-process i><found<found--process i>process i>

TRUETRUE

<not-found-process><not<not--foundfound--process>process>

Unless we know that the search will succeed, we must nest Unless we know that the search will succeed, we must nest
the the replicatedreplicated IFIF inside a plain inside a plain IFIF to catch any failure.to catch any failure.

1-Feb-07 Copyright P.H.Welch 102

‘Stepping and Bounded Linear Search’ (Java / C)‘‘Stepping and Bounded Linear SearchStepping and Bounded Linear Search’’ ((Java / C)Java / C)

BLS: {BLS: {
intint i = start;i = start;
forfor ((intint ii = 0; ii < count; ii++) {ii = 0; ii < count; ii++) {

ifif () {() {

break break BLSBLS;;
}}
i += size;i += size;

}}

}}

<condition i><condition i><condition i>

<found-code i><found<found--code i>code i>

<not-found-code><not<not--foundfound--code>code>

The expression and The expression and code code must notmust not
use use iiii and and must notmust not change the value of change the value of ii,, startstart, , countcount oror sizesize..

<condition i><condition i><condition i> <found-code i><found<found--code i>code i>

	Replicators(components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicators (components and test-rigs)
	Replicated IFs
	Replicated IFs
	Replicated IFs
	Nested IFs
	Nested IFs
	Nested IFs
	Replicated IFs
	Bounded Linear Search (occam-)
	Bounded Linear Search (Java / C)
	Bounded Linear Search (Java / C)
	Replicators (components and test-rigs)
	Replicator STEP Sizes
	Replicator STEP Sizes

