
12-Jan-07 Copyright P.H.Welch 1

Some occam-π BasicsSome Some occamoccam--ππ BasicsBasics

Peter Welch Peter Welch ((p.h.welch@kent.ac.ukp.h.welch@kent.ac.uk))
Computing Laboratory, University of Kent at CanterburyComputing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)

12-Jan-07 Copyright P.H.Welch 2

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 3

CSP-πCSPCSP--ππ

occam-πoccamoccam--ππ JCSP (Java)JCSPJCSP (Java)(Java)occam 3occam 3occam 3

Handel-CHandelHandel--CCoccam 2.1occam 2.1occam 2.1

occamoccamoccam transputerstransputerstransputers

Communicating Sequential
Processes (CSP)

Communicating Sequential Communicating Sequential
Processes (CSP)Processes (CSP)

CCS / π-calculus: mobile data,
channel-ends and processes

CCS / CCS / ππ--calculus: calculus: mobile data, mobile data,
channelchannel--ends and processesends and processes??????

12-Jan-07 Copyright P.H.Welch 4

Communicating Sequential
Processes (CSP)

Communicating Sequential Communicating Sequential
Processes (CSP)Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
interactions between concurrent objects.

Claim

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the
way things work.

12-Jan-07 Copyright P.H.Welch 5

Why CSP?Why CSP?Why CSP?
� Encapsulates fundamental principles of communication.

� Semantically defined in terms of structured mathematical
model.

� Sufficiently expressive to enable reasoning about deadlock
and livelock.

� Abstraction and refinement central to underlying theory.

� Robust and commercially supported software
engineering tools exist for formal verification.

12-Jan-07 Copyright P.H.Welch 6

Why CSP?Why CSP?Why CSP?
� CSP libraries available for Java (JCSP, CTJ).

� Ultra-lightweight kernels have been developed yielding
sub-microsecond overheads for context switching,
process startup/shutdown, synchronized channel
communication and high-level shared-memory locks.

� Easy to learn and easy to apply …

* not yet available for JVMs (or Core JVMs!)

*

12-Jan-07 Copyright P.H.Welch 7

Why CSP?Why CSP?Why CSP?

� After 5 hours teaching:
� exercises with 20-30 threads of control
� regular and irregular interactions
� appreciating and eliminating race hazards, deadlock, etc.

� CSP is (parallel) architecture neutral:
� message-passing
� shared-memory

12-Jan-07 Copyright P.H.Welch 8

So, what is CSP?So, what is CSP?So, what is CSP?
CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is preThat sophistication is pre--engineered engineered
into the model.into the model. We benefit from this simply by using it.

12-Jan-07 Copyright P.H.Welch 9

ProcessesProcessesProcesses my.process

� A process is a component that encapsulates some data
structures and algorithms for manipulating that data.

� Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [They are not [They are not objectsobjects.].]

� The algorithms are executed by the process in its own
thread (or threads) of control.

� So, how does one process interact with another?

12-Jan-07 Copyright P.H.Welch 10

my.processProcessesProcessesProcesses
� The simplest form of interaction is synchronised message-

passing along channels.

� The simplest forms of channel are zero-buffered and
point-to-point (i.e. wireswires).

� But, we can have buffered channels (blockingblocking//overwritingoverwriting).

� And any-1, 1-any and any-any channels.

� And structured multistructured multi--way synchronisationway synchronisation (e.g. barriers) …

� And high-level (e.g. CREW) sharedshared--memorymemory lockslocks …

12-Jan-07 Copyright P.H.Welch 11

Synchronised CommunicationSynchronisedSynchronised CommunicationCommunication

(A (c) || B (c))(A (c) || B (c)) \\ {c}{c}

cAA BB

BB may readread from cc at any time, but has to wait for a writewrite.

c ? x

AA may writewrite on cc at any time, but has to wait for a readread.

c ! 42

12-Jan-07 Copyright P.H.Welch 12

Synchronised CommunicationSynchronisedSynchronised CommunicationCommunication

Only when both AA and BB are ready can the communication
proceed over the channel cc.

(A (c) || B (c))(A (c) || B (c)) \\ {c}{c}

BBAA c

c ? xc ! 42

12-Jan-07 Copyright P.H.Welch 13

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 14

�� SimplicitySimplicity
� There must be a consistent (denotational) semantics that matches

our intuitive understanding for Communicating Mobile ProcessesCommunicating Mobile Processes.
� There must be as direct a relationship as possible between the

formal theory and the implementation technologies to be used.
� Without the above link (e.g. using C++/pthreads or Java/monitors),

there will be too much uncertainty as to how well the systems we
build correspond to the theoretical design.

�� DynamicsDynamics
� Theory and practice must be flexible enough to cope with process

mobility, location awareness, network growth and decay,
disconnect and re-connect and resource sharing.

�� PerformancePerformance
� Computational overheads for managing (millions of) evolving

processes must be sufficiently low so as not to be a show-stopper.
�� SafetySafety

�� Massive concurrency Massive concurrency –– but no race hazards, deadlock, livelock or but no race hazards, deadlock, livelock or
process starvation.process starvation.

occam-π: Aspirations and Principlesoccamoccam--ππ:: Aspirations and PrinciplesAspirations and Principles

12-Jan-07 Copyright P.H.Welch 15

occam-πoccamoccam--ππ
� Process, communication, networksProcess, communication, networks (PARPAR)
� Choice between multiple eventsChoice between multiple events (ALTALT)
� Mobile data typesMobile data types
�� Mobile channel typesMobile channel types
�� Mobile process typesMobile process types
�� PerformancePerformance

channel bundles, alias checking, no race hazards,
dynamic memory, recursion, forking, no garbage,

protocol inheritance, extended rendezvous, process
priorities, …

channel bundles,channel bundles, alias checking, no race hazards, alias checking, no race hazards,
dynamic memory, recursion, forking, no garbage, dynamic memory, recursion, forking, no garbage,

protocol inheritance, extended rendezvous, process protocol inheritance, extended rendezvous, process
priorities, priorities, ……

+ shared channels,+ shared channels,+ shared channels,

12-Jan-07 Copyright P.H.Welch 16

Processes and Channel-EndsProcesses and ChannelProcesses and Channel--EndsEnds

integrateintegrate

outoutinin

COMPONENT

COMPONENT

COMPONENTx

y

z

.

.

.

x

x + y

x + y + z

.

.

.

PROC PROC integrateintegrate (CHAN INT (CHAN INT inin?, ?, outout!)!)

An occamoccam process may only use a channel parameter one-way
(either for input or for output). That direction is specified (?? or !!),
along with the structure of the messages carried – in this case,
simple INTINTs. The compiler checks that channel usage within the
body of the PROCPROC conforms to its declared direction.

12-Jan-07 Copyright P.H.Welch 17

Processes and Channel-EndsProcesses and ChannelProcesses and Channel--EndsEnds
x

x + y

x + y + z

.

.

.

integrateintegrate

outoutininx

y

z

.

.

.

COMPONENT

COMPONENT

COMPONENT

PROC PROC integrateintegrate (CHAN INT (CHAN INT inin?, ?, outout!)!)

:

INITIAL INT INITIAL INT total total IS 0:IS 0:
WHILE TRUEWHILE TRUE
INT INT xx::
SEQSEQ
in in ? ? xx
total total := := total total + + xx
out out ! ! total

serial serial
implementationimplementation

total
:

12-Jan-07 Copyright P.H.Welch 18

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel

killkill

x

x + y

x + y + z

.

.

.

integrate.killintegrate.kill

outoutininx

y

z

.

.

.

COMPONENT

COMPONENT

COMPONENT

serial serial
implementationimplementation

PROC PROC integrate.killintegrate.kill (CHAN INT (CHAN INT inin?, ?, outout!, !, killkill?)?)

::

INITIAL INT INITIAL INT total total IS 0:IS 0:
INITIAL BOOL INITIAL BOOL ok ok IS TRUE:IS TRUE:
... main loop... main loop

12-Jan-07 Copyright P.H.Welch 19

Choosing between Multiple EventsChoosing between Multiple EventsChoosing between Multiple Events

serial serial
implementationimplementation

WHILE WHILE ok ok ---- main loopmain loop
INT INT xx::
PRI ALTPRI ALT
kill kill ? ? xx
ok ok := FALSE:= FALSE

in in ? ? xx
SEQSEQ
total total := := total total + + xx
out out ! ! totaltotal

killkill

xx

x + yx + y

x + y + zx + y + z

..

..

. .

integrate.killintegrate.kill

outoutininxx

yy

zz

..

..

..

COMPONENT

COMPONENT

COMPONENT

12-Jan-07 Copyright P.H.Welch 20

Parallel Process NetworksParallel Process NetworksParallel Process Networks
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

integrateintegrate
00

PROC PROC integrateintegrate (CHAN INT (CHAN INT inin?, ?, outout!)!)

::

PARPAR
plusplus ((inin?, ?, cc?, ?, aa!)!)
deltadelta ((aa?, ?, outout!, !, bb!)!)
prefixprefix (0, (0, bb?, ?, cc!)!)

CHAN INT CHAN INT aa, , bb, , cc::

aa

bbcc

parallel parallel
implementationimplementation

COMPONENT
COMPONENT
COMPONENT

12-Jan-07 Copyright P.H.Welch 21

With an Added Kill ChannelWith an Added Kill ChannelWith an Added Kill Channel
x

x + y

x + y + z

.

.

.

x

y

z

.

.

.

outout
++

inin

00

aa

bbcc

dd

killkill

integrate.killintegrate.kill
COMPONENT
COMPONENT
COMPONENT

PARPAR
poisonpoison ((inin?, ?, killkill?, ?, dd!)!)
plusplus ((dd?, ?, cc?, ?, aa!)!)
deltadelta ((aa?, ?, outout!, !, bb!)!)
prefixprefix (0, (0, bb?, ?, cc!)!)

PROC PROC integrate.killintegrate.kill (CHAN INT (CHAN INT inin?, ?, out out !, !, killkill?)?)

::

CHAN INT CHAN INT aa, , bb, , c, dc, d::

parallel parallel
implementationimplementation

12-Jan-07 Copyright P.H.Welch 22

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 23

occamoccam--ππ

… from the top
(components, networks and communication)

12-Jan-07 Copyright P.H.Welch 24

aa

eebb
ddcc

PPP

PROCPROC P P ((CHANCHAN INTINT a!a!,, b?b?,,
CHANCHAN BOOLBOOL c?c?,,
CHANCHAN BYTEBYTE d!d!,, e!e!))

......
::

ddaa

ccbb

QQQPROCPROC Q Q ((CHANCHAN INTINT a?a?,, b!b!,, c?c?,,
CHANCHAN BOOLBOOL d!d!))

......
::

PROCPROC R R ((CHANCHAN BYTEBYTE a?a?,, b!b!))
......

:

bbaa RRR
:

12-Jan-07 Copyright P.H.Welch 25

cc

bbaa

dd

SSS

PROCPROC S S ((CHANCHAN INTINT a?a?,, b!b!,,
CHANCHAN BOOLBOOL c!c!,,
CHANCHAN INTINT d!d!))

......
::

bb

cc

TTT

aa
PROCPROC T T ((CHANCHAN BYTE BYTE a?a?,,

CHANCHAN BOOL BOOL b?b?,,
CHANCHAN BYTEBYTE c?c?))

......
::

12-Jan-07 Copyright P.H.Welch 26

PPP

QQQ RRR

RRR

SSS TTT

kk

mm

gg hh ii jj

ff

oo

ll

nn

12-Jan-07 Copyright P.H.Welch 27

PPP

QQQ RRR

RRR

SSS TTTff

mm

gg hh ii jj kk

nn

oo

ll

INTINT

BYTEBYTE

BOOLBOOL

INTINT

INTINT

INTINT

BOOLBOOL
BYTEBYTE

BYTEBYTE

BYTEBYTE

CHANCHAN INT INT ff, , gg, , hh, , mm::
CHANCHAN BOOL BOOL ii, , ll::
CHANCHAN BYTE BYTE jj, , kk, , nn, , oo::

12-Jan-07 Copyright P.H.Welch 28

QQQ RRR

RRR

SSS TTTff

mm

gg hh ii jj kk

nn

ooPPP

ll

PARPAR
PP ((f!f!, , m?m?, , i?i?, , j!j!, , o!o!))
QQ ((f?f?, , g!g!, , h?h?, , i!i!))
RR ((j?j?, , k!k!))
RR ((o?o?, , n!n!))
SS ((g?g?, , h!h!, , m!m!, , l!l!))
TT ((k?k?, , l?l?, , n?n?))

CHANCHAN INT INT ff, , gg, , hh, , mm::
CHANCHAN BOOL BOOL ii, , ll::
CHANCHAN BYTE BYTE jj, , kk, , nn, , oo::

Spot the Spot the
mistakemistake

??????

12-Jan-07 Copyright P.H.Welch 29

QQQ RRR

RRR

SSS TTT

kk

mm

gg hh ii jj

PARPAR
PP ((f!f!, , m?m?, , i?i?, , j!j!, , o!o!))
QQ ((f?f?, , g!g!, , h?h?, , i!i!))
RR ((j?j?, , k!k!))
RR ((o?o?, , n!n!))
SS ((g?g?, , h!h!, , m!m!, , l!l!))
TT ((k?k?, , l?l?, , n?n?))

CHANCHAN INT INT ff, , gg, , hh, , mm::
CHANCHAN BOOL BOOL ii, , ll::
CHANCHAN BYTE BYTE jj, , kk, , nn, , oo::

PicturePicture
& code& code
agreeagree

Bad Bad
wiringwiring

!!!!!!

ff

oo

ll

PPP

BOOLBOOL

INTINT

BOOLBOOL

INTINT

ll

nn

12-Jan-07 Copyright P.H.Welch 30

QQQ RRR

RRR

SSS TTT

kk

mm

gg hh ii jj

ff

nn

ooPPP

ll
BOOLBOOL

INTINT

BOOLBOOL

INTINT

PARPAR
PP ((f!f!, , m?m?, , i?i?, , j!j!, , o!o!))
QQ ((f?f?, , g!g!, , h?h?, , i!i!))
RR ((j?j?, , k!k!))
RR ((o?o?, , n!n!))
SS ((g?g?, , h!h!, , l!l!, , m!m!))
TT ((k?k?, , l?l?, , n?n?))

CHANCHAN INT INT ff, , gg, , hh, , mm::
CHANCHAN BOOL BOOL ii, , ll::
CHANCHAN BYTE BYTE jj, , kk, , nn, , oo::

PicturePicture
& code& code
agreeagree

Good Good
wiringwiring

!!!!!!

12-Jan-07 Copyright P.H.Welch 31

Synchronised Synchronised UnbufferedUnbuffered
CommunicationCommunication

cc
P0P0P0 P1P1P1

CHANCHAN INT INT cc::
PARPAR

P0P0 ((c!c!))
P1P1 ((c?c?))

12-Jan-07 Copyright P.H.Welch 32

PROCPROC P0 (P0 (CHANCHAN INT INT out!out!))
..
..
..
out ! valueout ! value
..
..
..

:

outoutP0P0P0

:

PROCPROC P1 (P1 (CHANCHAN INT INT in?in?))
..
..
..
in ? xin ? x
..
..
..

:

inin P1P1P1

:

12-Jan-07 Copyright P.H.Welch 33

Synchronised Synchronised UnbufferedUnbuffered
CommunicationCommunication

out ! valueout ! valueout ! value

� Output valuevalue down the channel outout

� This operation does not complete until the process at the
other end of the channel inputs the information

� Until that happens, the outputting process sleeps (possibly
forever!)

12-Jan-07 Copyright P.H.Welch 34

Synchronised Synchronised UnbufferedUnbuffered
CommunicationCommunication

in ? xin ? xin ? x

� Input the next piece of information from channel inin
into the variable xx

� This operation does not complete until the process at
the other end of the channel outputs the information

� Until that happens, the inputting process sleeps
(possibly forever!)

� The inputting process can set “timeouts” on these
inputs or choose between alternative inputs. [We will
do this later]

12-Jan-07 Copyright P.H.Welch 35

SynchronisedSynchronised UnbufferedUnbuffered
Communication Communication ((““RendezvousRendezvous””))

�� Unified concept of Unified concept of synchronisationsynchronisation and and unbufferedunbuffered
communicationcommunication..

�� AsynchronousAsynchronous and and bufferedbuffered communication are easy communication are easy
to construct (later).to construct (later).

�� Incoming communications are Incoming communications are selectableselectable..

�� Hardware model:Hardware model: it is fast to implement.it is fast to implement.

�� Hardware model:Hardware model: our intuition enables us to reason our intuition enables us to reason
about it (see the about it (see the LegolandLegoland slides).slides).

12-Jan-07 Copyright P.H.Welch 36

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 37

occamoccam--ππ

... from the bottom

12-Jan-07 Copyright P.H.Welch 38

TypesTypesTypes

INTINT, , BYTEBYTE, , BOOLBOOL
INT16INT16, , INT32INT32, , INT64INT64
REAL32REAL32, , REAL64REAL64

Primitive typesPrimitive types

[100][100]INTINT
[32][32][8][32][32][8]BYTEBYTE
[][]REAL64REAL64

Arrays types (indexed from 0)Arrays types (indexed from 0)

Record typesRecord types

(later ...)(later ...)

The precision of
the INTINT type depends
on the word-length of
the target processor
(e.g. 32 bits for the

Intel Pentium)

When the compiler
or run-time system

can work it out,
we don’t have to

specify array sizes.

12-Jan-07 Copyright P.H.Welch 39

OperatorsOperatorsOperators

+, -, *, /, \
PLUS, MINUS,
TIMES

INTINTxxxx, , INTINTxxxx →→ INTINTxxxx
BYTEBYTE, , BYTEBYTE →→ BYTEBYTE

+, -, *, /, \ REALREALxxxx, , REALREALxxxx →→ REALREALxxxx

<, <=, >=, >
INTINTxxxx, , INTINTxxxx →→ BOOLBOOL
BYTEBYTE, , BYTEBYTE →→ BOOLBOOL
REALREALxxxx, , REALREALxxxx →→ BOOLBOOL

=, <> **, , ** →→ BOOLBOOL

types must types must
matchmatch

precisions precisions
must matchmust match

There is There is strong typingstrong typing for all expressions ...for all expressions ...

12-Jan-07 Copyright P.H.Welch 40

OperatorsOperatorsOperators

+, -, *, /, \
PLUS, MINUS,
TIMES

INTINTxxxx, , INTINTxxxx →→ INTINTxxxx
BYTEBYTE, , BYTEBYTE →→ BYTEBYTE

+, -, *, /, \ REALREALxxxx, , REALREALxxxx →→ REALREALxxxx

NB: this is NB: this is
modulomodulo

INTINTxxxx, , INTINTxxxx →→ BOOLBOOL
BYTEBYTE, , BYTEBYTE →→ BOOLBOOL
REALREALxxxx, , REALREALxxxx →→ BOOL

<, <=, >=, >

BOOL

**, , ** →→ BOOLBOOL=, <>

There is There is strong typingstrong typing for all expressions ...for all expressions ...

12-Jan-07 Copyright P.H.Welch 41

ExpressionsExpressionsExpressions

No No autoauto--coercioncoercion happens between types: ifhappens between types: if xx is ais a
REAL32REAL32 andand ii is anis an INTINT, then , then x + ix + i is illegal ...is illegal ...

Where necessary, explicit Where necessary, explicit castingcasting between types between types
must be programmed: e.g.must be programmed: e.g. x + (REAL32 ROUND i)x + (REAL32 ROUND i)

To cast between types, use the To cast between types, use the target type nametarget type name as as
a prefix operator.a prefix operator.

If If rounding moderounding mode is significant, this must be specified is significant, this must be specified
((ROUNDROUND or or TRUNCTRUNC) following the) following the target type nametarget type name (as above).(as above).

No No precedenceprecedence is defined between operators,is defined between operators,
we must use brackets: e.g.we must use brackets: e.g. a + (b*c)a + (b*c)

12-Jan-07 Copyright P.H.Welch 42

ExpressionsExpressionsExpressions

The operatorsThe operators ++, , --, , ** and and // trigger runtrigger run--time errors if their time errors if their
results overflow.results overflow.

In In JavaJava and and CC, such errors are ignored., such errors are ignored.

Therefore, the operatorsTherefore, the operators ++ and and ** are are nonnon--associativeassociative
and we must use more brackets: e.g. and we must use more brackets: e.g. a + (b + c)a + (b + c)

TheThe INTINT operators operators PLUSPLUS, , MINUSMINUS and and TIMESTIMES wrapwrap--aroundaround
(i.e. do not trigger run(i.e. do not trigger run--time errors) if the results overflow.time errors) if the results overflow.

The The occamoccam--ππ PLUSPLUS, , MINUSMINUS and and TIMESTIMES are the same as are the same as
thethe JavaJava//CC ++, , -- and and **..
PLUSPLUS, , MINUSMINUS and and TIMESTIMES are mainly used for calculating are mainly used for calculating
timeoutstimeouts..

12-Jan-07 Copyright P.H.Welch 43

OperatorsOperatorsOperators

BOOLBOOL, , BOOLBOOL →→ BOOLBOOL

BOOL BOOL →→ BOOLBOOL

BooleanBoolean
logiclogic

AND, OR

NOT

timetime
comparecompareINTINTxxxx, , INTINTxxxx →→ BOOLBOOLAFTER

AFTERAFTER relates to relates to >> in the same way as in the same way as PLUSPLUS relates to relates to ++..

They both do arithmetic operations, but the former ignores They both do arithmetic operations, but the former ignores
overflow. If (overflow. If (00 < < tt <= <= MOSTPOSMOSTPOS INTINTxxxx), then (), then (s PLUS ts PLUS t) is) is
AFTER sAFTER s, even if , even if wrapwrap--aroundaround occurs and (occurs and (s PLUS ts PLUS t) is) is < s< s..

There is There is strong typingstrong typing for all expressions ...for all expressions ...

12-Jan-07 Copyright P.H.Welch 44

OperatorsOperatorsOperators

/\, \/, >< INTINTxxxx, , INTINTxxxx →→ INTINTxxxx
BYTEBYTE, , BYTEBYTE →→ BYTEBYTE

~ INTINTxxxx →→ INTINTxxxx
BYTEBYTE →→ BYTEBYTE

bitwisebitwise
logiclogic

andand oror exclusiveexclusive--orornotnot

INTINTxxxx, , INTINTxxxx →→ INTINTxxxx
BYTEBYTE, , BYTEBYTE →→ BYTEBYTE

<<, >> bitwise bitwise
shiftsshifts

left shiftleft shift right shiftright shift

There is There is strong typingstrong typing for all expressions ...for all expressions ...

12-Jan-07 Copyright P.H.Welch 45

Values (named constants)Values (named constants)Values (named constants)

VALVAL INT INT maxmax ISIS 50:50:
VALVAL INT INT double.maxdouble.max ISIS 2*2*maxmax::

VALVAL BYTE BYTE letterletter ISIS 'A':'A':

VALVAL []BYTE []BYTE hellohello ISIS "Hello*c*n":"Hello*c*n":

VALVAL []INT []INT maskmask ISIS [#01, #02, #04, #08,[#01, #02, #04, #08,
#10, #20, #40, #80]:#10, #20, #40, #80]:

hexadecimalhexadecimal

special charsspecial chars

All All declarationsdeclarations end in a colon ...end in a colon ...

A declaration cannot be used A declaration cannot be used beforebefore it is made ...it is made ...

Character literals have type Character literals have type BYTEBYTE (their (their ASCIIASCII value) ...value) ...

String literals have type String literals have type []BYTE[]BYTE

12-Jan-07 Copyright P.H.Welch 46

Values (named constants)Values (named constants)Values (named constants)

VALVAL INT INT maxmax ISIS 50:50:
VALVAL INT INT double.maxdouble.max ISIS 2*2*maxmax::

VALVAL BYTE BYTE letterletter ISIS 'A':'A':

VALVAL []BYTE []BYTE hellohello ISIS "Hello*c*n":"Hello*c*n":

VALVAL []INT []INT maskmask ISIS [#01, #02, #04, #08,[#01, #02, #04, #08,
#10, #20, #40, #80]:#10, #20, #40, #80]:

special charsspecial chars

The compiler fills in the sizes of the The compiler fills in the sizes of the hellohello and and maskmask arrays arrays
for us. We could have done this ourselves (for us. We could have done this ourselves ([7]BYTE[7]BYTE and and
[8]INT[8]INT respectively). respectively).

hexadecimalhexadecimal

Declarations are aligned at the same level of indentation ...Declarations are aligned at the same level of indentation ...

Long lines may be broken after commas, etc. ...Long lines may be broken after commas, etc. ...

12-Jan-07 Copyright P.H.Welch 47

Variable DeclarationsVariable DeclarationsVariable Declarations

INTINT a, b:a, b:
[[maxmax]INT]INT c:c:
[[double.maxdouble.max]]BYTEBYTE d:d:

two integerstwo integers

50 integers50 integers

100 integers100 integers

Timer DeclarationsTimer DeclarationsTimer Declarations
TIMERTIMER timtim::

one timerone timer

Channel DeclarationsChannel DeclarationsChannel Declarations

CHANCHAN BYTEBYTE p:p:
[[maxmax<<2]<<2]CHANCHAN INTINT q:q:

a single channela single channel

200 channels200 channels

12-Jan-07 Copyright P.H.Welch 48

Process AbstractionsProcess AbstractionsProcess Abstractions

foofoo (s, mode, result)(s, mode, result)

inin

outoutpausepause

process process
bodybody

PROCPROC foofoo ((VALVAL [][]BYTEBYTE s,s,
VALVAL BOOLBOOL mode,mode,
INTINT result,result,
CHANCHAN INTINT in?, out!,in?, out!,
CHANCHAN BYTEBYTE pause?pause?))

......
::

CHANnel parameters – for
communicating with other processes ...

CHANCHANnelnel parameters parameters –– forfor
communicating with other processes ...communicating with other processes ...

VALue (data) parameters – local
constants within the PROC body ...
VALVALueue (data) (data) parameters parameters –– local local

constants within the constants within the PROCPROC body ...body ...
VALVAL <type><type> <id><id>

<type><type> <id><id> reference (data) parameters – may be
changed within the PROC body

(with effect on the invoking process) ...

referencereference (data) (data) parameters parameters –– may be may be
changed within the changed within the PROCPROC bodybody

(with effect on the invoking process) ...(with effect on the invoking process) ...

12-Jan-07 Copyright P.H.Welch 49

Process AbstractionsProcess AbstractionsProcess Abstractions

foofoo (s, mode, result)(s, mode, result)

inin

outoutpausepause

process process
bodybody

PROCPROC foofoo ((VALVAL [][]BYTEBYTE s,s,
VALVAL BOOLBOOL mode,mode,
INTINT result,result,
CHANCHAN INTINT in?,in?, out!,out!,
CHANCHAN BYTEBYTE pause?pause?))

......
::

We have just used the three dot notation as a place holder for the PROC
body. Code (including any local declarations) goes here. The three dots
are not part of occam-π syntax!

We have just used the We have just used the three dot notationthree dot notation as a place holder foras a place holder for the the PROCPROC
body. Code (including any local declarations) goes here. The body. Code (including any local declarations) goes here. The three dots three dots
are not part of are not part of occamoccam--ππ syntax!syntax!

Note that the PROC body is indented (two spaces) from its PROC header
and closing colon.
Note thatNote that the the PROCPROC body is indented (two spaces) from its body is indented (two spaces) from its PROCPROC header header
and closing colon. and closing colon.

12-Jan-07 Copyright P.H.Welch 50

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 51

... an ... an optionaloptional sequence of declarations (e.g. values,sequence of declarations (e.g. values,
variables, timers, channels, variables, timers, channels, procsprocs,,variables, timers, channels, variables, timers, channels, procsprocs, , channel protocols*,channel protocols*,
ports*, data types*, channel types*, process types*,ports*, data types*, channel types*, process types*,
barriers*, ... barriers*, ...))

An An occamoccam--ππ Process Process (syntax)(syntax)

... a single executable process... a single executable process

Syntactically, an occamoccam--ππ process consists of:process consists of:

All the declarations All the declarations –– and the executable and the executable –– are aligned are aligned
at the same level of indentation.at the same level of indentation.

* later ...* later ...

12-Jan-07 Copyright P.H.Welch 52

Primitive ProcessesPrimitive Processes

AssignmentAssignment
a := c[2] + b data types on either side of data types on either side of

the assignment must matchthe assignment must matcha := c[2] + b

Input Input (synchronising)(synchronising)
in ? ain ? a

Output Output (synchronising)(synchronising)
out ! a + (2*b)out ! a + (2*b)

the data type being the data type being
communicated must match communicated must match

the channel typethe channel type

There are There are strong typingstrong typing rules ...rules ...

12-Jan-07 Copyright P.H.Welch 53

Primitive ProcessesPrimitive Processes

WhatWhat’’s the time?s the time?
timtim ? t

TIMERTIMER timtim::
INTINT tt::

where where ……? t

Timeout Timeout (wait until specified time)(wait until specified time)
timtim ? AFTER (t PLUS 3000)? AFTER (t PLUS 3000)

Null Null (do nothing)(do nothing)
SKIPSKIP

Suspend Suspend (non(non--recoverable)recoverable)
STOPSTOP

+ BARRIER synchronisation, ...
(later)
++ BARRIERBARRIER synchronisation, ...synchronisation, ...
(later)(later)

12-Jan-07 Copyright P.H.Welch 54

A Brief History of TimeA Brief History of Time

TIMERTIMER timtim::
INTINT tt::

WhatWhat’’s the time?s the time?
timtim ? t? t

occamoccam--ππ time values aretime values are INTINTss delivered bydelivered by TIMERTIMERss. .
These values increment by one every microsecondThese values increment by one every microsecond
(for all current, 10/2006, implementations).(for all current, 10/2006, implementations).

occamoccam--ππ time valuestime values cyclecycle through allthrough all INTINT values values ––
from the most negative (from the most negative (MOSTNEGMOSTNEG INTINT), through zero (), through zero (00),),
to the most positive (to the most positive (MOSTPOSMOSTPOS INTINT) and, then, back to the) and, then, back to the
most negative again. most negative again. occamoccam--ππ timetime startsstarts at anat an
arbitraryarbitrary INTINT value.value.

12-Jan-07 Copyright P.H.Welch 55

A Brief History of TimeA Brief History of Time
2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

For 32For 32--bitbit INTINTss incrementing every microsecond, incrementing every microsecond, occamoccam--ππ
time valuestime values cyclecycle everyevery 7272 minutes (roughly).minutes (roughly).

00

positive timepositive timepositive time negative timenegativenegative timetime

12-Jan-07 Copyright P.H.Welch 56

A Brief History of TimeA Brief History of Time
2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

positive timepositive timepositive time negative timenegativenegative timetime

00

Note thatNote that occamoccam--ππ time values increment according to the time values increment according to the
rules forrules for PLUSPLUS (wrap(wrap--around)around)..

12-Jan-07 Copyright P.H.Welch 57

A Brief History of TimeA Brief History of Time
2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

positive timepositive timepositive time negative timenegativenegative timetime

00

So, (So, (a AFTER ba AFTER b) is) is TRUETRUE if and only if the distance from if and only if the distance from bb
to to aa going going clockwiseclockwise –– in the above diagram in the above diagram –– is is less thanless than
the distance going the distance going antianti--clockwiseclockwise..

12-Jan-07 Copyright P.H.Welch 58

A Brief History of TimeA Brief History of Time

rr

Above, we have (Above, we have (q AFTER pq AFTER p), (), (r AFTER qr AFTER q) and () and (p AFTER rp AFTER r).).

pp

qq

2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

00

positive timepositive timepositive time negative timenegativenegative timetime

Think of Think of pp, , qq and and rr as as 22, , 44 and and 99 on a 12on a 12--hour clock face and hour clock face and
ignore whether they represent ignore whether they represent amam or or pmpm..

12-Jan-07 Copyright P.H.Welch 59

A Brief History of TimeA Brief History of Time

Note that, using normal arithmetic, we have (Note that, using normal arithmetic, we have (q > pq > p) and () and (r > qr > q) ,) ,
but not (but not (p > rp > r).).

rr

Above, we have (Above, we have (q AFTER pq AFTER p), (), (r AFTER qr AFTER q) and () and (p AFTER rp AFTER r).).

pp

qq

2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

00

positive timepositive timepositive time negative timenegativenegative timetime

12-Jan-07 Copyright P.H.Welch 60

A Brief History of TimeA Brief History of Time
2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

positive timepositive timepositive time negative timenegativenegative timetime

00

Therefore, so long as ourTherefore, so long as our timeout periodstimeout periods are less thanare less than 3636 minutes minutes
(i.e. half the (i.e. half the time cycletime cycle) and we calculate) and we calculate absolute timeout valuesabsolute timeout values
usingusing PLUSPLUS, the, the AFTERAFTER operator always gives the expected time operator always gives the expected time
comparisons comparisons –– even if the time even if the time wrapwrap--aroundaround occurs.occurs.

12-Jan-07 Copyright P.H.Welch 61

A Brief History of TimeA Brief History of Time
2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

positive timepositive timepositive time negative timenegativenegative timetime

00

RealReal--time systems tend to deal in time systems tend to deal in microsecondsmicroseconds or or millisecondsmilliseconds, ,
soso 3636 minutes is a luxury! If we need to address longer timeouts, minutes is a luxury! If we need to address longer timeouts,
some extra (simple) programming effort is required.some extra (simple) programming effort is required.

12-Jan-07 Copyright P.H.Welch 62

A Brief History of TimeA Brief History of Time

t PLUS periodt PLUS period tt

2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

00

positive timepositive timepositive time negative timenegativenegative timetime

OK, providedOK, provided
periodperiod < 36 < 36

minutesminutes

SEQSEQ
timtim ? t? t
timtim ? AFTER (t PLUS period)? AFTER (t PLUS period)

12-Jan-07 Copyright P.H.Welch 63

A Brief History of TimeA Brief History of Time

t PLUS periodt PLUS period

tt

2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

00

positive timepositive timepositive time negative timenegativenegative timetime

OK, providedOK, provided
periodperiod < 36 < 36

minutesminutes

SEQSEQ
timtim ? t? t
timtim ? AFTER (t PLUS period)? AFTER (t PLUS period)

12-Jan-07 Copyright P.H.Welch 64

A Brief History of TimeA Brief History of Time

t PLUS periodt PLUS periodtt

2,147,483,6472,147,483,647 ––2,147,483,6482,147,483,648

negative timenegativenegative timetimepositive timepositive timepositive time

00

OK, providedOK, provided
periodperiod < 36 < 36

minutesminutes

SEQSEQ
timtim ? t? t
timtim ? AFTER (t PLUS period)? AFTER (t PLUS period)

12-Jan-07 Copyright P.H.Welch 65

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 66

Structured Processes (Structured Processes (SEQSEQ and and PARPAR))
SEQSEQ

Do these 4Do these 4
processes in the processes in the
sequence writtensequence written

PARPAR

Do these 4Do these 4
processes in processes in
parallelparallel

12-Jan-07 Copyright P.H.Welch 67

Structured Processes (Structured Processes (SEQSEQ example)example)

inin outout

xx sumsum

Here is a machine with internal Here is a machine with internal variablesvariables xx and and sumsum ––
assume they are identical numeric types (e.g. assume they are identical numeric types (e.g. INTINT).).

LetLet’’s assume the external channels carry the same type.s assume the external channels carry the same type.

Consider the following fragment of code ...Consider the following fragment of code ...

12-Jan-07 Copyright P.H.Welch 68

Structured Processes (Structured Processes (SEQSEQ example)example)

inin outout

xx sumsum

Any change in the order Any change in the order
of these processes of these processes

impacts the semantics ...impacts the semantics ...

SEQSEQ
in ? sumin ? sum
in ? xin ? x
sum := sum + xsum := sum + x
out ! sumout ! sum

12-Jan-07 Copyright P.H.Welch 69

Structured Processes (Structured Processes (PARPAR example)example)

outout

in.1in.1

in.0in.0 x.1x.1x.0x.0

ccbbaa

Here is another machineHere is another machine with internal with internal variablesvariables x.0x.0,,
x.1x.1, , aa, , bb and and cc –– assume they are identical numeric assume they are identical numeric
types (e.g. types (e.g. INTINT).).

LetLet’’s assume the external channels carry the same type.s assume the external channels carry the same type.

Consider the following fragment of code ...Consider the following fragment of code ...

12-Jan-07 Copyright P.H.Welch 70

Structured Processes (Structured Processes (PARPAR example)example)

outout

in.1in.1

in.0in.0 x.1x.1x.0x.0

ccbbaa

The order in which these The order in which these
processes run does not processes run does not

matter ...matter ...

PARPAR
in.0 ? x.0in.0 ? x.0
in.1 ? x.1in.1 ? x.1
out ! a + bout ! a + b
c := a + (2*b)c := a + (2*b)

12-Jan-07 Copyright P.H.Welch 71

Structured Processes (Structured Processes (PARPAR rules)rules)

PARPAR
Change and observe
a variable in parallel
Change and observeChange and observe
a variable in parallela variable in parallel

Input from a channel
in parallel

Input from a channelInput from a channel
in parallelin parallel

Output to a channel
in parallel

Output to a channelOutput to a channel
in parallelin parallel

Parallel processes may not ...Parallel processes may not ...Parallel processes may not ...

12-Jan-07 Copyright P.H.Welch 72

Structured Processes (Structured Processes (PARPAR rules)rules)

PARPAR
Change and observe
a variable in parallel
Change and observeChange and observe
a variable in parallela variable in parallel

Input from a channel
in parallel

Input from a channelInput from a channel
in parallelin parallel

Output to a channel
in parallel

Output to a channelOutput to a channel
in parallelin parallel

The effect of these rules is that the processes cannot The effect of these rules is that the processes cannot
interfere with each otherinterfere with each other’’s state. If they need to interact, s state. If they need to interact,
they must explicitly communicate.they must explicitly communicate.

12-Jan-07 Copyright P.H.Welch 73

Structured Processes (Structured Processes (PARPAR rules)rules)

PARPAR
Change and observe
a variable in parallel
Change and observeChange and observe
a variable in parallela variable in parallel

Input from a channel
in parallel

Input from a channelInput from a channel
in parallelin parallel

Output to a channel
in parallel

Output to a channelOutput to a channel
in parallelin parallel

No No data race hazardsdata race hazards are possible. The processes are are possible. The processes are
safe to be scheduled safe to be scheduled in any orderin any order (e.g. on a single(e.g. on a single--core core
processor) or processor) or in parallelin parallel (e.g. on a multi(e.g. on a multi--core processor).core processor).

☺☺ ☺☺ ☺☺ ☺☺ ☺☺ ☺☺

12-Jan-07 Copyright P.H.Welch 74

Structured Processes (Structured Processes (IFIF))
IFIF

<<booleanboolean>>

<<booleanboolean>>

<<booleanboolean>>

<<booleanboolean>>

TheThe <<booleanboolean>> conditions are conditions are
evaluated in sequence. Only evaluated in sequence. Only
the process underneath thethe process underneath the
first TRUETRUE one is executedone is executed..

If all the tests are FALSE,
a run-time error is raised.
IfIf all the tests arethe tests are FALSEFALSE,,
a runa run--time error is raised.time error is raised.

12-Jan-07 Copyright P.H.Welch 75

Structured Processes (Structured Processes (IFIF example)example)

TheThe <<booleanboolean>> conditions are conditions are
evaluated in sequence. Only evaluated in sequence. Only
the process underneath thethe process underneath the
first TRUETRUE one is executedone is executed..

IFIF
x > 0x > 0

screen ! 'pscreen ! 'p‘‘
x < 0x < 0

screen ! 'n'screen ! 'n'
TRUETRUE

screen ! 'z'

If all the tests are FALSE,
a run-time error is raised.
IfIf all the tests arethe tests are FALSEFALSE,,
a runa run--time error is raised.time error is raised.

screen ! 'z'

12-Jan-07 Copyright P.H.Welch 76

Structured Processes (Structured Processes (WHILEWHILE))
WHILEWHILE <boolean><boolean>

ConventionalConventional
““whilewhile--looploop””

If theIf the <<booleanboolean>> isis TRUETRUE, the indented process is , the indented process is
executed ... then ...executed ... then ...

... the ... the <<booleanboolean>> is checked again ... if it is still is checked again ... if it is still TRUETRUE, ,
the indented process is executed again ... then ...the indented process is executed again ... then ...

... etc. until etc. until ...

... the ... the <<booleanboolean>> is checked again ... and turns out to be is checked again ... and turns out to be
FALSEFALSE ... in which case, this ... in which case, this WHILEWHILE process terminates.process terminates.

12-Jan-07 Copyright P.H.Welch 77

PROC double (CHAN INT in?, out!)PROC double (CHAN INT in?, out!)
WHILEWHILE TRUETRUE

INT x:INT x:
SEQSEQ

in ? xin ? x
out ! 2*xout ! 2*x

::

inin outout
doubledouble

Structured Processes (Structured Processes (WHILEWHILE example)example)

Here is a complete process (a Here is a complete process (a ‘‘chipchip’’) that doubles the) that doubles the
values of the numbers flowing through it:values of the numbers flowing through it:

runs fo
rever ..

.

☺☺
☺

runs fo
rever ..

.

☺☺
☺

12-Jan-07 Copyright P.H.Welch 78

Structured Processes (Structured Processes (PROCPROC instanceinstance))

foofoo (s, mode, result)(s, mode, result)

inin

outoutpausepause

PROCPROC foofoo ((VALVAL [][]BYTEBYTE s,s,
VALVAL BOOLBOOL mode,mode,
INTINT result,result,
CHANCHAN INTINT in?,in?, out!,out!,
CHANCHAN BYTEBYTE pause?pause?))

......
::

To create an instance, we must plug in correctly typed To create an instance, we must plug in correctly typed
arguments arguments –– for example:for example:

foofoo (("Goodbye World*c*n""Goodbye World*c*n",, TRUETRUE,, solutionsolution,,
q[iq[i]?]?,, q[i+1]!q[i+1]!,, my.pausemy.pause??))

VAL parameters must be passed expressions of the correct type. An
expression could be a simple variable or literal.
VALVAL parameters must be passed parameters must be passed expressionsexpressions of the correct type. An of the correct type. An
expression could be a simple expression could be a simple variablevariable or or literalliteral..

12-Jan-07 Copyright P.H.Welch 79

Structured Processes (Structured Processes (PROCPROC instanceinstance))

foofoo (s, mode, result)(s, mode, result)

inin

outoutpausepause

PROCPROC foofoo ((VALVAL [][]BYTEBYTE s,s,
VALVAL BOOLBOOL mode,mode,
INTINT result,result,
CHANCHAN INTINT in?,in?, out!,out!,
CHANCHAN BYTEBYTE pause?pause?))

......
::

To create an instance, we must plug in correctly typed To create an instance, we must plug in correctly typed
arguments arguments –– for example:for example:

foofoo (("Goodbye World*c*n""Goodbye World*c*n",, TRUETRUE,, solutionsolution,,
q[iq[i]?]?,, q[i+1]!q[i+1]!,, my.pausemy.pause??))

Reference parameters must be passed variables of the correct type.
Changes to those parameters by the instanced process will be apparent in
those variables when (if) the process instance terminates.

ReferenceReference parameters must be passed parameters must be passed variablesvariables of the correct type. of the correct type.
Changes to those parameters by the instanced process will be appChanges to those parameters by the instanced process will be apparent in arent in
those those variablesvariables when (if) the process instance terminates.when (if) the process instance terminates.

12-Jan-07 Copyright P.H.Welch 80

Structured Processes (Structured Processes (PROCPROC instanceinstance))

foofoo (s, mode, result)(s, mode, result)

inin

outoutpausepause

PROCPROC foofoo ((VALVAL [][]BYTEBYTE s,s,
VALVAL BOOLBOOL mode,mode,
INTINT result,result,
CHANCHAN INTINT in?,in?, out!,out!,
CHANCHAN BYTEBYTE pause?pause?))

......
::

To create an instance, we must plug in correctly typed To create an instance, we must plug in correctly typed
arguments arguments –– for example:for example:

foofoo (("Goodbye World*c*n""Goodbye World*c*n",, TRUETRUE,, solutionsolution,,
q[iq[i]?]?,, q[i+1]!q[i+1]!,, my.pausemy.pause??))

Channel parameters must be passed the correct ends (? or !) of correctly
typed channels.
ChannelChannel parameters must be passed the correct ends (parameters must be passed the correct ends (?? or or !!) of correctly) of correctly
typed typed channelschannels. .

12-Jan-07 Copyright P.H.Welch 81

Structured Processes (Structured Processes (PROCPROC instanceinstance))

Process instances used in Process instances used in SEQSEQuenceuence with other processes with other processes
are sometimes referred to as are sometimes referred to as proceduresprocedures. For example:. For example:

INT answer:INT answer:
SEQSEQ

out.stringout.string ("The answer is ", 0, screen!)("The answer is ", 0, screen!)
... calculate answer... calculate answer
out.intout.int (answer, 0, screen!)(answer, 0, screen!)
out.stringout.string ("*c*n", 0, screen!)("*c*n", 0, screen!)

The processes out.string and out.int are from the basic utilities
library ("course.lib") supporting this course. They output their given
string (respectively integer) as ASCII text to their channel parameter and
terminate. Their middle parameter is a minimum fieldwidth.

The processes The processes out.stringout.string and and out.intout.int are from the basic utilities are from the basic utilities
library (library ("course.lib""course.lib") supporting this course. They output their given) supporting this course. They output their given
stringstring (respectively (respectively integerinteger) as ASCII text to their) as ASCII text to their channelchannel parameter and parameter and
terminate. Their middle parameter is a minimum terminate. Their middle parameter is a minimum fieldwidthfieldwidth..

12-Jan-07 Copyright P.H.Welch 82

Structured Processes (Structured Processes (PROCPROC instanceinstance))

Process instances used in Process instances used in PARPARallelallel with other processes are with other processes are
areare sometimes referred to as sometimes referred to as componentscomponents (or just (or just processesprocesses).).
For example:For example:

inin outout
doubledouble doubledouble doubledouble

octopleoctople

aa bb

PROC PROC octopleoctople (CHAN INT in?, out!)(CHAN INT in?, out!)
CHAN INT a, b:CHAN INT a, b:
PARPAR

double (in?, a!)double (in?, a!)
double (a?, b!)double (a?, b!)
double (b?, out!)double (b?, out!)

:

This component scales by 8 the This component scales by 8 the
numbers flowing through it ...numbers flowing through it ...

:

12-Jan-07 Copyright P.H.Welch 83

Some occam-π BasicsSomeSome occamoccam--ππ BasicsBasics
Communicating processes ...Communicating processes ...

A flavour of A flavour of occamoccam--ππ ……

Networks and communication Networks and communication ……

Types, channels, processesTypes, channels, processes ……

Primitive processes Primitive processes ……

Structured processes Structured processes ……

‘‘LegolandLegoland’’ ……

12-Jan-07 Copyright P.H.Welch 84

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog
in out

succsucc

in out
tailtail

in
out.0

out.1

black.hole

in

nn
in out

ididin out

++
in.0

in.1

out

12-Jan-07 Copyright P.H.Welch 85

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog

ididin outpp

qq

rr

ss

. . .

pp

qq

rr

ss

.

in out
succsuccpp

qq

rr

ss

. . .

p + 1p + 1

q + 1q + 1

r + 1r + 1

s + 1s + 1

.

12-Jan-07 Copyright P.H.Welch 86

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog
aa

bb

cc

dd

.

++
in.0

in.1

out

pp

qq

rr

ss

.

a + pa + p

b + qb + q

c + rc + r

d + sd + s

.

12-Jan-07 Copyright P.H.Welch 87

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog

pp

qq

rr

ss

.

pp

qq

rr

ss

. in
out.0

out.1

pp

qq

rr

ss

.

12-Jan-07 Copyright P.H.Welch 88

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog

pp

qq

rr

ss

. . .

nn

pp

qq

rr

. . .

nn
in out

.

pp

qq

rr

ss

. . .

qq

r r

ss

tt

. . .

in out
tailtail

.

12-Jan-07 Copyright P.H.Welch 89

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog

pp

qq

rr

ss

.
black.hole

in

12-Jan-07 Copyright P.H.Welch 90

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog
This is a catalog of fine-grained processes – think
of them as pieces of hardware (e.g. chips).
ThisThis is a catalog of fineis a catalog of fine--grained processes grained processes –– think think
of them as pieces of hardware (e.g. chips).of them as pieces of hardware (e.g. chips).

They process data (INTs) flowing through them.They process data (They process data (INTINTss) flowing through them.) flowing through them.

They are presented not because we suggest
working at such fine levels of granularity …
They are presented not because we suggest They are presented not because we suggest
working at such fine levels of granularity working at such fine levels of granularity ……

… they are presented in order to build up fluency
in working with parallel logic.
…… they are presented in order to build up fluency they are presented in order to build up fluency
in working with parallel logic.in working with parallel logic.

12-Jan-07 Copyright P.H.Welch 91

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog
Parallel logic should become just as easy to
manage as serial logic.
Parallel logic should become just as easy to Parallel logic should become just as easy to
manage as serial logic.manage as serial logic.

This is not the traditionally held view …This is not the traditionally held view This is not the traditionally held view ……

… but that tradition is wrong.…… but that tradition is but that tradition is wrongwrong..

Let’s look at some occam-π code for these
processes …
LetLet’’s look at some s look at some occamoccam--ππ code for thesecode for these
processes processes ……

12-Jan-07 Copyright P.H.Welch 92

PROC id (CHAN INT in?, out!)PROC id (CHAN INT in?, out!)
WHILE TRUEWHILE TRUE

INT x:INT x:
SEQSEQ

in ? xin ? x
out ! xout ! x

:

ididin out

:

PROC PROC succsucc (CHAN INT in?, out!)(CHAN INT in?, out!)
WHILE TRUEWHILE TRUE

INT x:INT x:
SEQSEQ

in ? xin ? x
out ! x + 1out ! x + 1

:

in out
succsucc

:

PROC black.hole (CHAN INT in?)PROC black.hole (CHAN INT in?)
WHILE TRUEWHILE TRUE

INT x:INT x:
in ? xin ? x

:

in

:

12-Jan-07 Copyright P.H.Welch 93

PROC plus (CHAN INT in.0?, in.1?, out!)PROC plus (CHAN INT in.0?, in.1?, out!)
WHILE TRUEWHILE TRUE

INT x.0, x.1:INT x.0, x.1:
SEQSEQ

PARPAR
in.0 ? x.0in.0 ? x.0
in.1 ? x.1in.1 ? x.1

out ! x.0 + x.1out ! x.0 + x.1
::

++
in.0

in.1

out

Note the parallel input Note the parallel input ……

PROC delta (CHAN INT in?, out.0!, out.1!)PROC delta (CHAN INT in?, out.0!, out.1!)
WHILE TRUEWHILE TRUE

INT x:INT x:
SEQSEQ

in ? xin ? x
PARPAR
out.0 ! xout.0 ! x
out.1 ! xout.1 ! x

::

in
out.0

out.1

Note the parallel output Note the parallel output ……

12-Jan-07 Copyright P.H.Welch 94

PROC prefix (VAL INT n,PROC prefix (VAL INT n,
CHAN INT in?, out!)CHAN INT in?, out!)

SEQSEQ
out ! nout ! n
id (in, out)id (in, out)

:

nn
in out

:

PROC tail (CHAN INT in?, out!)PROC tail (CHAN INT in?, out!)
SEQSEQ

INT any:INT any:
in ? anyin ? any
id (in, out)id (in, out)

::

in out
tailtail

scope of scope of ‘‘anyany’’

12-Jan-07 Copyright P.H.Welch 95

nn tailtailTheorem:Theorem:

idid idid≡≡

idid idididid

idid idididid

Theorem:Theorem:

is a blocking is a blocking FIFOFIFO buffer of capacity 6buffer of capacity 6

12-Jan-07 Copyright P.H.Welch 96

Good News!Good News!Good News!
The good news is that we can The good news is that we can ‘‘seesee’’ this semantic this semantic
equivalence with just one glance.equivalence with just one glance.

[CLAIM][CLAIM] CSPCSP semantics cleanly reflects our semantics cleanly reflects our
intuitive feel for interacting systems.intuitive feel for interacting systems.

This quickly builds up confidence This quickly builds up confidence ……

WotWot -- no chickens ?!!no chickens ?!!

Try Try GoogleGoogleinging for this for this ……

12-Jan-07 Copyright P.H.Welch 97

Good News!Good News!Good News!
LetLet’’s build some simple circuits from these catalog s build some simple circuits from these catalog
components.components.

Can you see what they do … ?

And how to describe them in And how to describe them in occamoccam--ππ … ?

12-Jan-07 Copyright P.H.Welch 98

succsucc

00

numbersnumbers

out 00

11

22

33

.

integrateintegrate

out
++

00

in pp

p + qp + q

p + q + rp + q + r

p + q + r + sp + q + r + s

. . .

pp

qq

rr

ss

.

pairspairs

out
tailtail

++in
pp

qq

rr

ss

. . .

q + pq + p

r + qr + q

s + rs + r

t + st + s

.

12-Jan-07 Copyright P.H.Welch 99

PROC numbers (CHAN INT out!)PROC numbers (CHAN INT out!)
CHAN INT a, b, c:CHAN INT a, b, c:
PARPAR

delta (a?, out!, b!)delta (a?, out!, b!)
succsucc (b?, c!)(b?, c!)
prefix (0, c?, a!)prefix (0, c?, a!)

:

succsucc

00

numbersnumbers

out
a

b
c

:

PROC integrate (CHAN INT in?, out!)PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:CHAN INT a, b, c:
PARPAR

delta (a?, out!, b!)delta (a?, out!, b!)
prefix (0, b?, c!)prefix (0, b?, c!)
plus (in?, c?, a!)plus (in?, c?, a!)

: integrateintegrate

out++

00

in a

b
c

:

PROC pairs (CHAN INT in?, out!)PROC pairs (CHAN INT in?, out!)
CHAN INT a, b, c:CHAN INT a, b, c:
PARPAR

delta (in?, a!, c!)delta (in?, a!, c!)
tail (a?, b!)tail (a?, b!)
plus (b?, c?, out!)plus (b?, c?, out!)

:
pairspairs

out

tailtail

++in

a

c

b

:

12-Jan-07 Copyright P.H.Welch 100

succsucc

00

numbersnumbers

out
a

b
c

Note: this pushes numbers out Note: this pushes numbers out
so long as the receiver is willing so long as the receiver is willing
to take it.to take it.

integrateintegrate

out++

00

in a

b
c

Note: this outputs one number Note: this outputs one number
for every input it gets.for every input it gets.

pairspairs
out

tailtail

++in

a

c

bNote: this needs two inputs Note: this needs two inputs
before producing one output. before producing one output.
Thereafter, it produces one Thereafter, it produces one
number for every input it gets.number for every input it gets.

12-Jan-07 Copyright P.H.Welch 101

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog
Of course, these components also happen to have
simple sequential implementations …
Of course, these components also happen to have Of course, these components also happen to have
simple simple sequentialsequential implementations implementations ……

The parallel ones just shown were just to build fluency in
CSP concurrency.
The The parallelparallel ones just shown were just to build fluency in ones just shown were just to build fluency in
CSP concurrency.CSP concurrency.

CSP (and occam-π) enables parallel and sequential
logic to be built with equal ease.
CSP (and CSP (and occamoccam--ππ) enables parallel and sequential) enables parallel and sequential
logic to be built with equal ease.logic to be built with equal ease.

In practice, sometimes parallel and sometimes
sequential logic will be most appropriate – just choose
the simplest.

In practice, sometimes parallel and sometimes In practice, sometimes parallel and sometimes
sequential logic will be most appropriate sequential logic will be most appropriate –– just choose just choose
the simplestthe simplest..

Parallel logic is not, by nature, especially difficult.Parallel logic is not, Parallel logic is not, by natureby nature, especially difficult., especially difficult.

12-Jan-07 Copyright P.H.Welch 102

Sequential VersionSequential VersionSequential Version

0, 1, 2, 3, . . . 0, 1, 2, 3, . . .

out
numbers

PROC numbers (CHAN INT out!)PROC numbers (CHAN INT out!)
INT n:INT n:
SEQSEQ

n := 0n := 0
WHILE TRUEWHILE TRUE

SEQSEQ
out ! nout ! n
n := n + 1n := n + 1

::

12-Jan-07 Copyright P.H.Welch 103

Sequential VersionSequential VersionSequential Version

outin
integrate

p, p + q, p + q + r, p + q + r + s, . . .p, p + q, p + q + r, p + q + r + s, . . .p, q, r, s, . . .p, q, r, s, . . .

PROC integrate (CHAN INT in?, out!)PROC integrate (CHAN INT in?, out!)
INT total:INT total:
SEQSEQ

total := 0total := 0
WHILE TRUEWHILE TRUE

INT x:INT x:
SEQSEQ

in ? xin ? x
total := total + xtotal := total + x
out ! totalout ! total

::

Note: each declaration
is as local as possible

12-Jan-07 Copyright P.H.Welch 104

‘Legoland’ Catalog‘‘LegolandLegoland’’ CatalogCatalog
Let’s build some more circuits from the components just
constructed (either the sequential or parallel versions).
LetLet’’s build some more circuits from the components just s build some more circuits from the components just
constructed (either the sequential or parallel versions).constructed (either the sequential or parallel versions).

If we build using the parallel ones, we have layered
networks – circuits within circuits.
If we build using the parallel ones, we have If we build using the parallel ones, we have layeredlayered
networks networks –– circuits within circuits.circuits within circuits.

No problem!No problem!No problem!

12-Jan-07 Copyright P.H.Welch 105

0

1

1

2

3

5

8

. . .

pairspairs

00

fibonaccifibonacci

outout

111

2

3

5

8

13

. . .

squaressquares

outout
numbersnumbers integrateintegrate pairspairs

0

1

2

3

4

5

. . .

0

1

3

6

10

15

. . .

1

4

9

16

25

36

. . .

12-Jan-07 Copyright P.H.Welch 106

PROC PROC fibonaccifibonacci (CHAN INT out!)(CHAN INT out!)
CHAN INT a, b, c, d:CHAN INT a, b, c, d:
PARPAR
delta (a?, b!, out!)delta (a?, b!, out!)
pairs (b?, c!)pairs (b?, c!)
prefix (0, d?, a!)prefix (0, d?, a!)
prefix (1, c?, d!)prefix (1, c?, d!)

:

pairspairs

00

fibonaccifibonacci

aa

out

bbcc

11 dd

:

squaressquares

aa

outbb

numbersnumbers

pairspairs

integrateintegrate

PROC squares (CHAN INT out!)PROC squares (CHAN INT out!)
CHAN INT a, b:CHAN INT a, b:
PARPAR
numbers (a!)numbers (a!)
integrate (a?, b!)integrate (a?, b!)
pairs (b?, out!)pairs (b?, out!)

::

12-Jan-07 Copyright P.H.Welch 107

Note: the two numbers needed byNote: the two numbers needed by
PairsIntPairsInt to get started are to get started are
provided by the twoprovided by the two PrefixIntPrefixIntss. .
Thereafter, only one number Thereafter, only one number
circulates on the feedback loop. If circulates on the feedback loop. If
only oneonly one PrefixIntPrefixInt had been in had been in
the circuit, deadlock would have the circuit, deadlock would have
happened (with each process happened (with each process
waiting trying to input).

pairspairs

00

fibonaccifibonacci

aa

out

bbcc

11 dd

waiting trying to input).

Note: the traffic on individual channels:Note: the traffic on individual channels:

<a> = [0, 1, 1, 2, 3, 5, 8, 13, 21, ...]<a> = [0, 1, 1, 2, 3, 5, 8, 13, 21, ...]
<out> = [0, 1, 1, 2, 3, 5, 8, 13, 21, ...]<out> = [0, 1, 1, 2, 3, 5, 8, 13, 21, ...]
 = [0, 1, 1, 2, 3, 5, 8, 13, 21, ...] = [0, 1, 1, 2, 3, 5, 8, 13, 21, ...]
<c> = [1, 2, 3, 5, 8, 13, 21, 34, 55, ...]<c> = [1, 2, 3, 5, 8, 13, 21, 34, 55, ...]
<d> = [1, 1, 2, 3, 5, 8, 13, 21, 34, ...]<d> = [1, 1, 2, 3, 5, 8, 13, 21, 34, ...]

12-Jan-07 Copyright P.H.Welch 108

squaressquares

aa

outbb

numbersnumbers

pairspairs

integrateintegrate

Note: the traffic on individual channels:Note: the traffic on individual channels:
<a> = [0, 1, 2, 3, 4, 5, 6, 7, 8, ...]<a> = [0, 1, 2, 3, 4, 5, 6, 7, 8, ...]
 = [0, 1, 3, 6, 10, 15, 21, 28, 36, ...] = [0, 1, 3, 6, 10, 15, 21, 28, 36, ...]
<out> = [1, 4, 9, 16, 25, 36, 49, 64, 81, ...]<out> = [1, 4, 9, 16, 25, 36, 49, 64, 81, ...]

12-Jan-07 Copyright P.H.Welch 109

Note:Note: use of channel arrayuse of channel array At this level, we have a network of At this level, we have a network of
55 communicating processes.communicating processes.

demo

c[0] c[2]
c[3]

out

c[1]

numbers fibonacci

squares

times

lay.out

PROC demo (CHAN BYTE out!)PROC demo (CHAN BYTE out!)
[4]CHAN INT c:[4]CHAN INT c:
PARPAR
numbers(c[0]!)numbers(c[0]!)
squares(c[1]!)squares(c[1]!)
fibonaccifibonacci (c[2]!)(c[2]!)
times (c[3]!)times (c[3]!)
lay.out (c?, out!)lay.out (c?, out!)

::

In fact,In fact, 28 28 processes are involved:processes are involved: 18 18 nonnon--terminating ones andterminating ones and
10 10 lowlow--level transients (repeatedly starting up and shutting down level transients (repeatedly starting up and shutting down
for parallel input and output).for parallel input and output). BUT we donBUT we don’’t need to know that to t need to know that to
reason at this level reason at this level …… ☺☺ ☺☺ ☺☺

12-Jan-07 Copyright P.H.Welch 110

Note:Note: use of channel arrayuse of channel array At this level, we have a network of At this level, we have a network of
55 communicating processes.communicating processes.

demo

c[0] c[2]
c[3]

out

c[1]

numbers fibonacci

squares

times

lay.out

PROC demo (CHAN BYTE out!)PROC demo (CHAN BYTE out!)
[4]CHAN INT c:[4]CHAN INT c:
PARPAR
numbers(c[0]!)numbers(c[0]!)
squares(c[1]!)squares(c[1]!)
fibonaccifibonacci (c[2]!)(c[2]!)
times (c[3]!)times (c[3]!)
lay.out (c?, out!)lay.out (c?, out!)

::

Fortunately, CSP semantics are compositional Fortunately, CSP semantics are compositional –– which means that which means that
we only have to reason at each layer of the network in order to we only have to reason at each layer of the network in order to
design, understand, code, and maintain it.design, understand, code, and maintain it.

	Some occam- Basics
	Some occam- Basics
	Communicating Sequential Processes (CSP)
	Why CSP?
	Why CSP?
	Why CSP?
	So, what is CSP?
	Processes
	Processes
	Some occam- Basics
	occam-: Aspirations and Principles
	occam-
	Processes and Channel-Ends
	Processes and Channel-Ends
	With an Added Kill Channel
	Choosing between Multiple Events
	Parallel Process Networks
	With an Added Kill Channel
	Some occam- Basics
	occam-
	Synchronised Unbuffered Communication
	Synchronised Unbuffered Communication
	Synchronised Unbuffered Communication
	Some occam- Basics
	occam-
	Variable Declarations
	Some occam- Basics
	An occam- Process (syntax)
	Primitive Processes
	Primitive Processes
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	Some occam- Basics
	Structured Processes (SEQ and PAR)
	Structured Processes (SEQ example)
	Structured Processes (SEQ example)
	Structured Processes (PAR example)
	Structured Processes (PAR example)
	Structured Processes (PAR rules)
	Structured Processes (PAR rules)
	Structured Processes (PAR rules)
	Structured Processes (IF)
	Structured Processes (IF example)
	Structured Processes (WHILE)
	Structured Processes (WHILE example)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Some occam- Basics
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	Good News!
	Good News!
	‘Legoland’ Catalog
	‘Legoland’ Catalog

