Some occam-7t Basics

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)
\ /

Some occam-7 Basics

Communicating processes ...

A flavour of occam-= ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

Processes (CSP)

occam

Communicating Sequential

transputers

\

?7?7?

occam 2 1 Handel-C
occam 3 occam-1 «— JCSP (Java)
A\ /
CSP-n

CCS / m-calculus: mobile data,
channel-ends and processes

Communicating Sequential
Processes (CSP)

A mathematical theory for specifying and verifying
complex patterns of behaviour arising from
Interactions between concurrent objects.

CSP has a formal, and compositional, semantics
that is in line with our informal intuition about the

way things work.

Why CSP?

Encapsulates fundamental principles of communication.

Semantically defined in terms of structured mathematical
model.

Sufficiently expressive to enable reasoning about deadlock
and livelock.

Abstraction and refinement central to underlying theory.

Robust and commercially supported software
engineering tools exist for formal verification.

Why CSP?

CSP libraries available for Java (JCSP, CTJ).

Ultra-lightweight kernels™ have been developed yielding
sub-microsecond overheads for context switching,
process startup/shutdown, synchronized channel
communication and high-level shared-memory locks.

Easy to learn and easy to apply ...

* not yet available for JVMs (or Core JVMs!)

Why CSP?

After 5 hours teaching:
¢ exercises with 20-30 threads of control
¢ regular and irregular interactions
¢ appreciating and eliminating race hazards, deadlock, etc.

CSP is (parallel) architecture neutral:

¢ message-passing
¢ shared-memory

So, what is CSP?

CSP deals with processes, networks of processes and
various forms of synchronisation / communication
between processes.

A network of processes is also a process - so CSP
naturally accommodates layered network structures
(networks of networks).

We do not need to be mathematically sophisticated to
work with CSP. That sophistication is pre-engineered
into the model. We benefit from this simply by using it.

Processes ny-process

A process Is a component that encapsulates some data
structures and algorithms for manipulating that data.

Both its data and algorithms are private. The outside
world can neither see that data nor execute those
algorithms! [They are not objects.]

The algorithms are executed by the process in its own
thread (or threads) of control.

So, how does one process interact with another?

L
Processes | my-process |

The simplest form of interaction is synchronised message-
passing along channels.

The simplest forms of channel are zero-buffered and
point-to-point (i.e. wires).

But, we can have buffered channels (blocking/overwriting).
And any-1, 1-any and any-any channels.
And structured multi-way synchronisation (e.g. barriers) ...

And high-level (e.g. CREW) shared-memory locks ...

Synchronised Communication

A s B
Cc?x

A may write on ¢ at any time, but has to wait for a read.

B may read from c at any time, but has to wait for a write.

@)ua(c)) \E

Synchronised Communication

A s B
Cc?x

Only when both A and B are ready can the communication
proceed over the channel c.

@)ua(c)) \E

Some occam-7 Basics

Communicating processes ...

A flavour of occam-r ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

occam-m: Aspirations and Principles
= Simplicity

¢ There must be a consistent (denotational) semantics that matches
our intuitive understanding for Communicating Mobile Processes.

¢ There must be as direct a relationship as possible between the
formal theory and the implementation technologies to be used.

¢ Without the above link (e.g. using C++/pthreads or Java/monitors),
there will be too much uncertainty as to how well the systems we
build correspond to the theoretical design.
= Dynamics
¢ Theory and practice must be flexible enough to cope with process
mobility, location awareness, network growth and decay,
disconnect and re-connect and resource sharing.
= Performance

¢ Computational overheads for managing (millions of) evolving
processes must be sufficiently low so as not to be a show-stopper.

« Safety

¢ Massive concurrency — but no race hazards, deadlock, livelock or
process starvation.

occam-n

¢ Process, communication, networks (PAR)
¢ Choice between multiple events (ALT)

¢ Mobile data types

¢ Mobile channel types
¢ Mobile process types
¢ Performance

+ shared channels,
channel bundles, alias checking, no race hazards,

dynamic mermory, recursion, forking, no garbage,
protocol inheritance, extended rendezvous, process
priorities, ...

Processes and Channel-Ends

z © integrate

out

PROC integrate (CHAN INT in?, out!)

Xty

X+Yy+z

An oeccam process may only use a channel parameter one-way
(either for input or for output). That direction is specified (? or 1),
along with the structure of the messages carried — in this case,
simple INTs. The compiler checks that channel usage within the
body of the PROC conforms to its declared direction.

Processes and Channel-Ends

in out

2D
o\l\?@\ X+y
integrate X+y+z

PROC integrate (CHAN INT in?, out!)
INITIAL INT total IS O:

WHILE TRUE
SEo serial
in ? x implementation

total := total + Xx
out ! total

With an Added Kill Channel

in e out - X
2D
o\l\?@\ XY
integrate.kill X+y +27
Kill

PROC integrate.killl (CHAN INT in?, out!, kill?)
INITIAL INT total IS O:
INITIAL BOOL ok IS TRUE:

main loop

serial
implementation

Choosing between Multiple Events

. in out —
o\@«
y GQ\“? xry
integrate.kill X+y+2
kill
WHILE ok -- main loop
INT x:
PRI ALT
Kill ? x :
ok = FALSE serial
in ? X implementation
SEQ

total := total + Xx
out ! total

Parallel Process Networks

in

~OMPONENT integrate

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR
plus (in?, c?, al)
delta (a?, out!, b!)
prefix (0, b?, c!)

parallel
implementation

With an Added Kill Channel

kill

integrate.kill

PROC integrate.kill (CHAN INT in?, out !, kill?)
CHAN INT a, b, c, d:
PAR

poison (in?, kill?, d!)
plus (d?, c?, al)
delta (a?, out!, b!)

prefix (0, b?, c!)

parallel
implementation

Some occam-7 Basics

Communicating processes ...

A flavour of occam-= ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

OCCam-7c

... from the top
(components, networks and communication)

PROC P (CHAN
CHAN
CHAN

PROC Q (CHAN
CHAN

PROC R (CHAN

INT al!, b?,
BOOL c?,
BYTE d!, el)

INT a?, b!, c?,

BOOL d!)

BYTE a?, bl)

PROC S (CHAN
CHAN
CHAN

PROC T (CHAN
CHAN
CHAN

INT a?, bl!,
BOOL c!,
INT dY)

BYTE a?,
BOOL b?,
BYTE c?)

(S5

: Q ’ R
CBYTE)
g h] J k
INT D y y
BOOL
T E; C::::Li* Tr
m n
N [CBYTE)
P 2. R
CHAN INT ¥, g, h, m:
CHAN BOOL &, I:
CHAN BYTE j, k, n, o:

A 4

(5=

\ 4

o

CHAN INT ¥, g, h, m:
CHAN BOOL i,
CHAN BYTE j,

PAR
P (F!,
Q (F?,
R (7?7,
R (0?,
S (g7,
T (k?,

I:
kK, n, oO:

Spot the

mistake
?7?7?

A 4

O
0

(0] h] J k
BOOL BOOL
S (mj ‘ Qr T
INT | | n

INT P 0 : R

CHAN INT ¥, g, h, m:
CHAN BOOL &, I:
CHAN BYTE j, k, n, o:
PAR
P (F!, m?, 17,
Q (f?, g!, h?,
R (J?, k)
R (0?, n!)
S
T

Picture
& code
agree

Bad

wiring
I

(@?, h!, m!,
(k?, 1?7, n?)

A 4

Q
=
=T

(5=

\ 4

I

S

m

(T,

v

CHAN INT ¥, g, h, m:
CHAN BOOL 1,

i:
CHAN BYTE j, k, n, o:

PAR
P (F!,
Q (F2,
R (7,
R (0?,
S (g7,
T (k?,

Synchronised Unbuffered

Communication
PO | - 1 P1 |
CHAN INT c:
PAR
PO (c!)

P1 (c?)

PROC PO (CHAN INT out!)

out

(-)ut ! value PO

PROC P1 (CHAN INT in?)

Synchronised Unbuffered
Communication

out ! value

Output vallue down the channel out

This operation does not complete until the process at the
other end of the channel inputs the information

Until that happens, the outputting process sleeps (possibly
forever!)

Synchronised Unbuffered
Communication

in ? X

Input the next piece of information from channel in
Into the variable x

This operation does not complete until the process at
the other end of the channel outputs the information

Until that happens, the inputting process sleeps
(possibly forever!)

The inputting process can set “timeouts” on these
Inputs or choose between alternative inputs. [We will
do this later]

Synchronised Unbuffered
Communication (“ Rendezvous”)

= Unified concept of synchronisation and unbuffered
communication.

= Asynchronous and buffered communication are easy
to construct (later).

= Incoming communications are selectable.
» Hardware model: it is fast to implement.

» Hardware model: our intuition enables us to reason
about it (see the Legoland slides).

Some occam-7 Basics

Communicating processes ...

A flavour of occam-= ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

occam-7t

... from the bottom

Types

The precision of
the INT type depends
on the word-length of
the target processor
(e.g. 32 bits for the
Intel Pentium)

Primitive types

INT, BYTE, BOOL
INT16, INT32, INT64
REAL32, REAL64

Arrays types (indexed from 0)

Eégg][;g}[g] BYTE When the compiler
[IREALG4 or run-time _system
d can work it out,
\ we don’t have to
Record types specify array sizes.

(later ...)

+, _,
PLUS,
TIMES

, =, /, \ REALxx, REALxx — REALxx

, 2=, > BYTE, BYTE — BOOL

Operators

*, 7/, \

MINUS., INTxx, INTxx — INTxx

BYTE, BYTE — BYTE

PIECISIONS
mUSEH match

INTxx, INTxx — BOOL

REALxx, REALxx — BOOL types must

matech

*, ¥ —> BOOL

There Is strong typing for all expressions ...

Operators

A

PI,_US, MINUS. INTxx, INTxx > [INTxx

TIMES BYTE, BYTE — BYTE NB: this is
medUe

+, -, *, /,(\) REALxx, REALxx — REALxx

INTxx, INTxx — BOOL
<, <=, >=, > BYTE, BYTE — BOOL
REALxx, REALxx — BOOL

=, <> *, ¥ —> BOOL

There Is strong typing for all expressions ...

Expressions

No auto-coercion happens between types: if x is a
REAL32 and i IS an INT, then x + i isillegal ...

Where necessary, explicit casting between types
must be programmed: e.g. x + (REAL32 ROUND i) ...

To cast between types, use the target type name as
a prefix operator.

If rounding mode is significant, this must be specified
(ROUND or TRUNC) following the target type name (as above).

No precedence is defined between operators,
we must use brackets: e.g. a + (b*c) ...

Expressions

The operators +, -, * and 7/ trigger run-time errors if their
results overflow.

In Java and C, such errors are ignored.

Therefore, the operators + and * are non-associative
and we must use more brackets: e.g.a + (b + ©) ...

The INT operators PLUS, MINUS and TIMES wrap-around
(i.e. do not trigger run-time errors) if the results overflow.

The occam-7t PLUS, MINUS and TIMES are the same as
the Java/C +, - and *.

PLUS, MINUS and TIMES are mainly used for calculating
timeouts.

Operators

AND, OR BOOL, BOOL — BOOL
Boolean
Je)e)e
NOT BOOL — BOOL
AFTER INTxx, INTxx — BOOL HHE

COMmpeEeE

AFTER relates to > in the same way as pLus relates to +.

They both do arithmetic operations, but the former ignores
overflow. If (0 < t <= MOSTPOS INTxx), then (s PLUS t) IS
AFTER s, even If wrap-around occurs and (s PLUS t) IS < s.

There Is strong typing for all expressions ...

Operators

’ exclusive-or

INTxx, INTxx > INTxx
AVRVARS BYTE, BYTE — BYTE o
[wise

INTxx — INTxx logjc
BYTE — BYTE

INTxx, INTxx > INTxx
BYTE, BYTE — BYTE

left shift right shift

There Is strong typing for all expressions ...

Values (named constants)

VAL INT max IS 50:
VAL INT double.max IS 2*max:

VAL BYTE letter IS "A": special chars

VAL []BYTE hello IS "Hello*c*n": hexadecimal

VAL []INT mask IS [#01, #02, #04, #08,
#10, #20, #40, #80]:

All declarations end in a colon ...

A declaration cannot be used before it Is made ...

Character literals have type ByTE (their ASCII value) ...

String literals have type []BYTE ...

Values (named constants)

VAL INT max IS 50:
VAL INT double.max IS 2*max:

VAL BYTE letter IS "A": special chars

VAL [IBYTE hello IS "Hello*c*n": hexadecimal

VAL []INT mask IS [#01, #02, #04, #08,
#10, #20, #40, #80]:

The compiler fills in the sizes of the hello and mask arrays
for us. We could have done this ourselves ([718YTE and
[8] INT respectively).

Declarations are aligned at the same level of indentation ...

Long lines may be broken after commas, etc. ...

Variable Declarations

INT a, b:

[max] INT c: 50. integlers

[double.max]BYTE d:

Timer Declarations

Channel Declarations

[max<<2]CHAN INT q:

Process Abstractions

PROC foo (VAL []BYTE s, li"

VAL BOOL mode,

INT result,

CHAN INT 1n?, out!,
CHAN BYTE pause?)

foo (s, mode, result)

o ; pauseT \Lout

Process

0)6)(6)\V/

CHANnNel parameters — for
communicating with other processes ...

VALue (data) parameters — local

VAL <type> <id> ——
P constants within the PROC bodly ...

<type> <id> . reference (data) parameters — may be
i changed within the PROC body
(with effect on the invoking process) ...

Process Abstractions

PROC foo (VAL []BYTE s, li"

VAL BOOL mode,
INT result,

y foo (s, mode, result)
CHAN INT mn?, out!,

CHAN BYTE pause?)

. pauseT \Lout

Process

0)6)(6)\V/

We have just used the three dot notation as a place holder for the PROC

body. Code (including any local declarations) goes here. The three dots
are not part of eccam-n syntax!

Note that the PROC body is indented (two spaces) from its PROC header
and closing colon.

Some occam-7 Basics

Communicating processes ...

A flavour of occam-= ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

An OCCam-7t Process (Syntax)

Syntactically, an occam-r process consists of:

.. an optional sequence of declarations (e.g. values,
variables, timers, channels, procs, channel protocols*,
ports*, data types*, channel types*, process types*,
barriers?, ...)

.. a single executable process

All the declarations — and the executable — are aligned
at the same level of indentation.

* |later ...

Primitive Processes

Assignment -
a :=c[2] + b data types on ertherside: of

theassignment must match

Input (synchronising)

in ? a the data type being
communicated must match
the channel type

Output (synchronising)
out ! a + (2*b)

There are strong typing rules ...

Primitive Processes

What's the time?
tim ? t

where ...

TIMER tim:

Timeout (wait until specified time) INT t:

tim ? AFTER (t PLUS 3000)

Null (do nothing)
SKIP

Suspend (non-recoverable)
STOP

+ BARRI ER synchronisation, ...
(later)

A Brief History of Time

TIMER tim:
INT t:

What's the time?
tim ? t

occam-r time values are INTs delivered by TIMERs.
These values increment by one every microsecond
(for all current, 10/2006, implementations).

occam-r time values cycle through all INT values —
from the most negative (MOSTNEG INT), through zero (0),
to the most positive (MOSTPOS INT) and, then, back to the
most negative again. occam-m time starts at an
arbitrary INT value.

A Brief History of Time

2,147,483,647 —2,147,483,648

B 0

For 32-bit INTs incrementing every microsecond, occam-m
time values cycle every 72 minutes (roughly).

A Brief History of Time

2,147,483,647 —2,147,483,648

B 0

Note that occam-=n time values increment according to the
rules for PLUS (wrap-around).

A Brief History of Time

2,147,483,647 —2,147,483,648

B 0

So, (a AFTER b) is TRUE if and only if the distance from b
to a going clockwise — in the above diagram — is less than
the distance going anti-clockwise.

A Brief History of Time

247, A58 61T D A, N8B 648
p

r

q

B 0

Above, we have (g AFTER p), (r AFTER q) and (p AFTER r).
Think of p, g and r as 2, 4 and 9 on a 12-hour clock face and
ignore whether they represent am or pm.

A Brief History of Time

247, A58 61T D A, N8B 648
p

r

q

B 0

Above, we have (g AFTER p), (r AFTER q) and (p AFTER r).
Note that, using normal arithmetic, we have (g > p) and (r > q),
but not (p > r).

A Brief History of Time

2,147,483,647 —2,147,483,648

T

Therefore, so long as our timeout periods are less than 36 minutes

(i.e. half the time cycle) and we calculate absolute timeout values
using PLUS, the AFTER operator always gives the expected time

comparisons — even if the time wrap-around occurs.

A Brief History of Time

2,147,483,647 —2,147,483,648

B 0

Real-time systems tend to deal in microseconds or milliseconds,
so 36 minutes is a luxury! If we need to address longer timeouts,

some extra (simple) programming effort is required.

A Brief History of Time

2,147,483,647 —2,147,483,648

t PLUS period

SEQ

tim ? t

tim ? AFTER (t PLUS period)

12-Jan-07 Copyright P.H.Welch 62

A Brief History of Time

t PLUS period

SEQ

tim ? t

tim ? AFTER (t PLUS period)

12-Jan-07 Copyright P.H.Welch

A Brief History of Time

t PLUS period

T

SEQ
tim ? t
tim ? AFTER (t PLUS period)

12-Jan-07 Copyright P.H.Welch 64

Some occam-7 Basics

Communicating processes ...

A flavour of occam-= ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

Structured Processes (SEQ and PAR)

SEQ
\
Do these 4
> processes in the
sequence written
/
PAR
\
Do these 4

> processes in
parallel

Structured Processes (SEQ example)

X sSum

in out

Here is a machine with internal variables x and sum —
assume they are identical numeric types (e.g. INT).

Let’s assume the external channels carry the same type.

Consider the following fragment of code ...

Structured Processes (SEQ example)

X sum
in out
—
SEQ
- 2 sum Any change in the order
i ¢ X
ST 2= ST A 5 of these processes

out ! sum impacts the semantics ...

Structured Processes (PAR example)

Here is another machine with internal variables x.0,
x.1, a, b and ¢ — assume they are identical numeric

types (e.g. INT).
Let’s assume the external channels carry the same type.

Consider the following fragment of code ...

Structured Processes (PAR example)

PAR
in.0 ? x.0
in.l1 ? x.1
out ! a + b
c := a + (2*b)

The order in which these
processes run does not
matter ...

Structured Processes (PAR rules)

PAR

Change and observe
a variable in parallel

Input from a channel
in parallel

Output to a channel
in parallel

Parallel processes may not ...

Structured Processes (PAR rules)

PAR

Change and observe
a variable in parallel

Input from a channel
in parallel

Output to a channel
in parallel

The effect of these rules is that the processes cannot
Interfere with each other’s state. If they need to interact,
they must explicitly communicate.

Structured Processes (PAR rules)

PAR

Change and observe
a variable in parallel

Input from a channel
in parallel

Output to a channel
in parallel

No data race hazards are possible. The processes are
safe to be scheduled in any order (e.g. on a single-core
processor) or in parallel (e.g. on a multi-core processor).

©OO0OOOO

Structured Processes (1 F)

IF
<boolean>

<boolean>

The <boolean> conditions are
evaluated in sequence. Only

the process underneath the
first TRUE one is executed.

<boolean>

<boolean>

If all the tests are FALSE,
a run-time error Is raised.

Structured Processes (I F example)

IF
x>0
screen ! "p*
x <0
screen ! *n°*
TRUE
screen ! "2z°

The <boolean> conditions are
evaluated in sequence. Only

the process underneath the
first TRUE one is executed.

If all the tests are FALSE,
a run-time error Is raised.

Structured Processes (WH I LE)

WHILE <boolean>

Conventional

“‘While-leop”

If the <boolean> is TRUE, the indented process is
executed ... then ...

... the <boolean> is checked again ... if it is still TRUE,
the indented process is executed again ... then ...

... etc. until ...

... the <boolean> Is checked again ... and turns out to be
FALSE ... in which case, this WHILE process terminates.

Structured Processes (WH I LE example)

Here is a complete process (a ‘chip’) that doubles the
values of the numbers flowing through it:

'_n) double Lt)

PROC double (CHAN INT in?, out!)
WHILE TRUE
INT Xx:

SEQ
in ? X
out ! 2*x

Structured Processes (PROC instance)

in
PROC foo (VAL []BYTE s, ‘1‘
VAL BOOL mode,
INT result, foo (s, mode, result)
CHAN INT 1n?, out!,
CHAN BYTE pause?) pause T \Lout

To create an instance, we must plug in correctly typed
arguments — for example:

foo (“'Goodbye World*c*n', TRUE, solution,
gfi]?, g[i+1]!, my.pause?)

VAL parameters must be passed expressions of the correct type. An
expression could be a simple variable or literal.

Structured Processes (PROC instance)

in
PROC foo (VAL []BYTE s, ‘1‘
VAL BOOL mode,
INT result, foo (s, mode, result)
CHAN INT 1n?, out!,
CHAN BYTE pause?) pause T \Lout

To create an instance, we must plug in correctly typed
arguments — for example:

foo (“'Goodbye World*c*n', TRUE, solution,
gf1]?, q[i+1]!, my.pause?)

Reference parameters must be passed variables of the correct type.
Changes to those parameters by the instanced process will be apparent in
those variables when (if) the process instance terminates.

Structured Processes (PROC instance)

in
PROC foo (VAL []BYTE s, ‘1‘
VAL BOOL mode,
INT result, foo (s, mode, result)
CHAN INT 1n?, out!,
CHAN BYTE pause?) pause T \Lout

To create an instance, we must plug in correctly typed
arguments — for example:

foo (“'Goodbye World*c*n', TRUE, solution,
gfi]?, g[i+1]!, my.pause?)

Channel parameters must be passed the correct ends (? or !) of correctly
typed channels.

Structured Processes (PROC instance)

Process instances used in SEQuence with other processes
are sometimes referred to as procedures. For example:

INT answer:
SEQ
out.string (""The answer is ", 0, screen!)
... calculate answer
out.int (answer, 0, screen!)
out.string (""*c*n", 0, screen!)

The processes out.string and out. int are from the basic utilities
library (**course. 11b") supporting this course. They output their given
string (respectively integer) as ASCII text to their channel parameter and
terminate. Their middle parameter is a minimum fieldwidth.

Structured Processes (PROC instance)

Process instances used in PARallel with other processes are

are sometimes referred to as components (or just processes).
For example:

—+—>{ double }|—— double }|——| double

octople

PROC octople (CHAN INT in?, out!)
CHAN INT a, b:

PAR
double (in?, al!) This component scales by 8 the
double (a?, b!) numbers flowing through it ...

double (b?, out!)

Some occam-7 Basics

Communicating processes ...

A flavour of occam-= ...
Networks and communication ...
Types, channels, processes ...
Primitive processes ...

Structured processes ...

‘Legoland’ ...

‘Legoland’ Catalog

i - out in out
An,E id M/ —— succ |—
in 0 i out.0
i out . >
in.1 ou>t-1
in out in tai I OUt»

=Q

black.hole

‘Legoland’ Catalog

q q
r r
S S
in out
P I succ P25 Pl
q q+1
r r+l
S s+1

‘Legoland’ Catalog

a
b
C
d

‘Legoland’ Catalog

»w = O T

i out.O
p N e
—
e
q out.l1l

0w S o o

‘Legoland’ Catalog

p n
q in out P
r 0
S r
p 0
0 in - out
. — tarl —
S t

‘Legoland’ Catalog

‘Legoland’ Catalog

This Is a catalog of fine-grained processes — think
of them as pieces of hardware (e.g. chips).

They process data (INTs) flowing through them.

They are presented not because we suggest
working at such fine levels of granularity ...

... they are presented in order to build up fluency
In working with parallel logic.

‘Legoland’ Catalog

Parallel logic should become just as easy to
manage as serial logic.

This is not the traditionally held view ...

... but that tradition IS wrong.

00000

Let’s look at some occam=7 code for these
pProcesses ...

PROC id (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ
in ? X
out ! x

PROC succ (CHAN INT in?, out!)
WHILE TRUE
INT x:
SEQ
in ? X
out ! x + 1

PROC black.hole (CHAN INT in?)
WHILE TRUE
INT x:
in ? x

in id out
in out

— B SUCC ag——

PROC plus (CHAN INT in.0?, in.1?, out!)
WHILE TRUE
INT x.0, x.1: :
SEQ out
PAR .
in.0 ? x.0
in.1 ? x.1

out ! x.0 + x.1
) Note the parall@

PROC delta (CHAN INT in?, out.0!, out.1l!)

WHILE TRUE
INT x: _ out.O
s T I
in @ out. 1
out.0 ! X

out.1l ! x :
Note the parallel output ...

PROC prefix (VAL INT n,

CHAN INT in?, out!)
SEQ N out

—
out ! n
id (in, out)

PROC tail (CHAN INT in?, out!)

SEQ i,
INT any: in - out
in ? any — tanl —
id (in, out)

scope of ‘any’

12-Jan-07

@cking FIFO buffer of capacity 6 >

Copyright P.H.Welch

95

Good News!

The good news is that we can ‘see’ this semantic
equivalence with just one glance.

[CLAIM] €SP semantics cleanly reflects our
Intuitive feel for interacting systems.

This quickly builds up confidence ...

Wot - no chickens ?!!

> :
—
= Try Googleing for this ...

Good News!

Let’s build some simple circuits from these catalog
components.

Can you see what they do ... ?

@@@O@@

And how to describe them In occam=-1 .

@@@@@O

in

out

numbers

w N = O

out

Integrate

~ P
p+q
prq+r
p+q+r+s

q+p
out

pairs

= r+q
S+r

t+s

PROC numbers (CHAN INT out!)
CHAN INT a, b, c:
PAR
delta (a?, out!, bl)
succ (b?, cl)
prefix (0, c?, al!)

PROC integrate (CHAN INT in?, out!)
CHAN INT a, b, c:
PAR

out

b

C succ

numbers

delta (a?, out!, bl)
prefix (0, b?, cl)
plus (in?, c?, al)

PROC pairs (CHAN INT in?, out!)
CHAN INT a, b, c:

PAR
delta (in?, al!, cl) :
tail (a?, bl) In

plus (b?, c?, out!)

integrate

out

out

Note: this pushes numbers out
so long as the receiver is willing
to take it.

Note: this outputs one number
for every input it gets.

Note: this needs two inputs
before producing one output.
Thereafter, it produces one
number for every input it gets.

out

numbers

integrate

o

out

pairs

out

‘Legoland’ Catalog

Of course, these components also happen to have
simple sequential iImplementations ...

The parallel ones just shown were just to build fluency in
CSP concurrency.

CSP (and eccam-=) enables parallel and sequential
logic to be built with equal ease.

In practice, sometimes parallel and sometimes
sequential logic will be most appropriate — just choose
the simplest.

Parallel logic is not, by nature, especially difficult.

Sequential Version

out
numbers >

PROC numbers (CHAN INT out!)
INT n:
SEQ
n :=0
WHILE TRUE
SEQ
out ! n
n:=n+1

0 1 2 3 ...

Sequential Version

N _ out
—_—> Integrate >

p, g, 1S ... P, P+Q, P+qQ+r, prq+r+s, ...

PROC integrate (CHAN INT in?, out!)

INT total:
SEQ
total =0 Note: each declaration
WHILE TRUE is as local as possible
INT x: <— \\\\~_‘
SEQ
in ? X

total := total + X
out ! total

‘Legoland’ Catalog

Let’s build some more circuits from the components just
constructed (either the sequential or parallel versions).

If we build using the parallel ones, we have layered
networks — circuits within circuits.

00000

No problem!

out
1
2
3
5
8 fibonaccli
13
0 0
1 1 out
numbersTintegrate - pairs
3 6
squares
4 10
5 15

o o1 LW Nk =, O

16
25
36

PROC fibonacci (CHAN INT out!)
CHAN INT a, b, c, d:
PAR
delta (a?, b!, out!)
pairs (b?, c!)
prefix (0, d?, al)
prefix (1, c?, d!)

PROC squares (CHAN INT out!)
CHAN INT a, b:
PAR
numbers (al)
integrate (a?, b!)
pairs (b?, out!)

out
o _
d a
C pairs b
fibonacci
sguares
numbers

a

“—> integrate

b

>

out

pairs

Note: the two numbers needed by

Pairsintto get started are
provided by the two Prefixints.
Thereafter, only one number
circulates on the feedback loop. If c
only one PrefixInt had been in

C

airs

out

b
fibonacci

the circuit, deadlock would have
happened (with each process
waiting trying to input).

Note: the traffic on individual channels:

<a> =1[0, 1, 1, 2, 3, 5,
<out> = [0, 1, 1, 2, 3, 5,
 =10, 1, 1, 2, 3, 5,
<c> =11, 2, 3, 5, 8, 13,
<d> =11, 1, 2, 3, 5, 8,

= N

Wk 00 00 00

13,
13,
13,
34,
21,

21,
21,
21,
55,
34,

[
[
[
el e e e

Note: the traffic on individual channels:
4,

<a>
<h>
<out>

numbers

a

—

Integrate

b

squares

)

out

pairs

[0- 1-
[0- 1-
[1- 4,

2,
3,

3,

5: 6:]
6, 10, 15, 21, 28, 36, ...]
1

7, 8, ...

9, 16, 25, 36, 49, 64, 81, ...

At this level, we have a network of
5 communicating processes.

O channel array.

PROC demo (CHAN BYTE out!)
[4]CHAN INT c:

1bonacc times

PAR
numbers(c[0]!)
squares(c[1]Y)
fibonacci (c[2]})
times (c[3]!)
lay.out (c?, out!)

cl[2]

c[3]

demo

l out

In fact, 28 processes are involved: 18 non-terminating ones and
10 low-level transients (repeatedly starting up and shutting down
for parallel input and output). BUT we don’t need to know that to
reason at this level ... © © ©

O channel array.

At this level, we have a network of
5 communicating processes.

PROC demo (CHAN BYTE out!)

[4]CHAN INT c:

PAR
numbers(c[0]!)
squares(c[1]Y)
fibonacci (c[2]})
times (c[3]!)
lay.out (c?, out!)

1bonacc

c[2]

times

c[3]

demo

l out

Fortunately, CSP semantics are compositional — which means that
we only have to reason at each layer of the network in order to

design, understand, code, and maintain it.

	Some occam- Basics
	Some occam- Basics
	Communicating Sequential Processes (CSP)
	Why CSP?
	Why CSP?
	Why CSP?
	So, what is CSP?
	Processes
	Processes
	Some occam- Basics
	occam-: Aspirations and Principles
	occam-
	Processes and Channel-Ends
	Processes and Channel-Ends
	With an Added Kill Channel
	Choosing between Multiple Events
	Parallel Process Networks
	With an Added Kill Channel
	Some occam- Basics
	occam-
	Synchronised Unbuffered Communication
	Synchronised Unbuffered Communication
	Synchronised Unbuffered Communication
	Some occam- Basics
	occam-
	Variable Declarations
	Some occam- Basics
	An occam- Process (syntax)
	Primitive Processes
	Primitive Processes
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	A Brief History of Time
	Some occam- Basics
	Structured Processes (SEQ and PAR)
	Structured Processes (SEQ example)
	Structured Processes (SEQ example)
	Structured Processes (PAR example)
	Structured Processes (PAR example)
	Structured Processes (PAR rules)
	Structured Processes (PAR rules)
	Structured Processes (PAR rules)
	Structured Processes (IF)
	Structured Processes (IF example)
	Structured Processes (WHILE)
	Structured Processes (WHILE example)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Structured Processes (PROC instance)
	Some occam- Basics
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	‘Legoland’ Catalog
	Good News!
	Good News!
	‘Legoland’ Catalog
	‘Legoland’ Catalog

