
Monitors
CS377 - Parallel Programming

Marc L. Smith

1

Monitors

2

Monitor structure:
monitor name {
 declarations of permanent (static) variables
 initialization code -- executes first
 procedures (methods)
}

Program structure:

 monitor1 ... monitorM

process1 ... processN

- processes interact indirectly by using  
 the same monitor
- processes call monitor procedures
- at most one call active in a monitor at a  
 time -- by definition
- explicit signaling using condition  
 variables
- monitor invariant: predicate about local  
 state that is true when no call is active

Condition Variables

3

cond cv; # queue of delayed processes; initially empty

wait(cv); # block on cv's queue AND release monitor lock

signal(cv); # awaken one process on cv's queue, if there is one

questions about signal:
 which one to awaken? default is oldest (FIFO queue)
 who executes next? the signaled process? or the signaler?

signaling disciplines:
 signal and continue (SC) -- signaler goes next; used in Java, Unix, Pthreads
 signal and wait (SW) -- signaled process goes next; used in Hoare's paper

SW is preemptive; SC is not

state diagram for synchronization in monitors: see next slide!

4

Condition variable queue

entry queue Executing in monitor
Call

SW

SW

ReturnMonitor free

WaitSC

State diagram for synchronization in monitors *

* MPD text, Figure 5.1, p. 209

5

We can implement semaphores using a monitor...

Let’s look at two examples

Semaphore Example 1

6

monitor Semaphore {
 int s = 0; ## s >= 0
 cond pos; # signaled when s > 0

 procedure Psem() {
 while (s == 0) wait(pos);
 s = s-1;
 }

 procedure Vsem() {
 s = s+1;
 signal(pos);
 }
}

Works for both
SC and SW

How?

Not FIFO for SC

Why?

Semaphore Example 2

7

monitor FIFOsemaphore {
 int s = 0; ## s >= 0
 cond pos; # signaled when s > 0

 procedure Psem() {
 if (s == 0)
 wait(pos);
 else
 s = s-1;
 }

 procedure Vsem() {
 if (empty(pos))
 s = s+1;
 else
 signal(pos);
 }
}

Uses passing the
condition

FIFO for both
SC and SW

