
31-Oct-06 Copyright P.H.Welch 1

Motivation: Concurrency for All
(Process Oriented Design)

Motivation: Concurrency for All Motivation: Concurrency for All
(Process Oriented Design)(Process Oriented Design)

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)

31-Oct-06 Copyright P.H.Welch 2

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 3

Nature is not organised as a
single thread of control:

Nature is not organised as a Nature is not organised as a
single thread of control:single thread of control:

joe.eatBreakfastjoe.eatBreakfast ();();
sue.washUpsue.washUp ();();
joe.driveToWorkjoe.driveToWork ();();
sue.phone (sally);sue.phone (sally);
US.government.sue (bill);US.government.sue (bill);
sun.zap (office);

???

sun.zap (office);

31-Oct-06 Copyright P.H.Welch 4

Nature has very large numbers of independent
agents, interacting with each other in regular
and chaotic patterns, at all levels of scale:

… nanite … human … astronomic ...

31-Oct-06 Copyright P.H.Welch 5

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

… nanite … human … astronomic ...

31-Oct-06 Copyright P.H.Welch 6

… nanite … human … astronomic ...

The networks are dynamic: growing, decaying
and mutating internal topology (in response to
environmental pressure and self-motivation):

31-Oct-06 Copyright P.H.Welch 7

Motivation and ApplicationsMotivation and ApplicationsMotivation and Applications
ThesisThesis

Natural systems are robust, efficient, long-lived and
continuously evolving. We should take the hint!We should take the hint!
Look on concurrency as a core design mechanismcore design mechanism – not
as something difficult, used only to boost performance.

Some applicationsSome applications
Hardware design and modelling.
Static embedded systems and parallel supercomputing.
Field-programmable embedded systems and dynamic
supercomputing (e.g. SETI-at-home).
Dynamic distributed systems, eCommerce, operating
systems and games.
Biological system and nanite modelling.

31-Oct-06 Copyright P.H.Welch 8

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 9

Components?Components?Components?

Components must be composeable …
… and they must compose simply!

31-Oct-06 Copyright P.H.Welch 10

Components?Components?Components?

Mind you, just because components compose …

… doesn’t always mean that it makes sense …

31-Oct-06 Copyright P.H.Welch 11

Components?Components?Components?

…… toto compose them compose them ……

*Image courtesy of Philips TASS <*Image courtesy of Philips TASS <http://http://www.tass.philips.comwww.tass.philips.com/>/>

*

31-Oct-06 Copyright P.H.Welch 12

If we understand A and B separately, we must be
able to deduce simply their combined behaviour.

Components?Components?Components?

plug togetherplug together no surprisesno surprises

Semantics [A + B] = Semantics [A] + Semantics [B]

A and B must be composeable …

31-Oct-06 Copyright P.H.Welch 13

Composition?Composition?Composition?
Complex systems are composed from less complex
components …

… which are composed from simpler components …

… which are composed from simpler components …

… etc …

… which are composed from simple components.

31-Oct-06 Copyright P.H.Welch 14

Composition?Composition?Composition?
Composition rules must be simple and yield no
surprises.

Whatever it is they encapsulate, components must
have interfaces that are clean, complete and explicit.

Hardware systems are forced (by physics/geometry)
to be built like this.

Software systems have no such constraints. We think
we can do better than nature … and get into trouble.

31-Oct-06 Copyright P.H.Welch 15

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 16

The Real World and ConcurrencyThe Real World and ConcurrencyThe Real World and Concurrency

Computer systems - to be of use in this world - need to
model that part of the world for which it is to be used.

If that modeling can reflect the natural concurrency in
the system … it should be simpler.

Yet concurrency is thought to be an advanced topic,
harder than serial computing (which therefore needs
to be mastered first).

31-Oct-06 Copyright P.H.Welch 17

This tradition is WRONG!This tradition is WRONG!This tradition is WRONG!

… which has (radical) implications on how we
should educate people for computer science …

… and on how we apply what we have learnt …

31-Oct-06 Copyright P.H.Welch 18

What we want from ParallelismWhat we want from ParallelismWhat we want from Parallelism
A powerful tool for simplifying the description of
systems.

Performance that spins out from the above, but is not
the primary focus.

A model of concurrency that is mathematically clean,
yields no engineering surprises and scales well with
system complexity.

31-Oct-06 Copyright P.H.Welch 19

Multi-PongMultiMulti--PongPong

31-Oct-06 Copyright P.H.Welch 20

collision
detect

control

...

scorer

left right

keycontrol

mouse

flasher

new game freeze

canvas

Multi-
Pong
MultiMulti--
PongPong

31-Oct-06 Copyright P.H.Welch 21

Good News!Good News!Good News!
The good news is that we can worry about each process
on its own. A process interacts with its environment
through its channels. It does not interact directlydirectly
with other processes.

Some processes have serial implementations - these
are just like traditional serial programs.

Some processes have parallel implementations -
networks of sub-processes (think hardware).

Our skills for serial logic sit happily alongside our
new skills for concurrency - there is no conflict.
This willwill scale!

31-Oct-06 Copyright P.H.Welch 22

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 23

Twenty Years Ago …Twenty Years Ago Twenty Years Ago ……

“…“… improved understanding and architecture improved understanding and architecture
independence were the goals of the design by independence were the goals of the design by
Inmos of the Inmos of the occamoccam multiprocessing language multiprocessing language
and the and the TransputerTransputer. The goals were achieved . The goals were achieved

by implementation of the abstract ideas of by implementation of the abstract ideas of
process algebraprocess algebra and with an efficiency that is and with an efficiency that is

today almost unimaginable and certainly today almost unimaginable and certainly
unmatchable.unmatchable.””

C.A.R.Hoare, March 2004.C.A.R.HoareC.A.R.Hoare, March 2004., March 2004.

31-Oct-06 Copyright P.H.Welch 24

2003 …2003 2003 ……
We have been extending the classical (We have been extending the classical (CSPCSP))
occamoccam language with ideas of mobility and language with ideas of mobility and

dynamic network reconfiguration which are dynamic network reconfiguration which are
taken from Milnertaken from Milner’’s s ππ--calculuscalculus ((occamoccam--ππ).).

We have found ways of implementing these We have found ways of implementing these
extensions that still involve significantly less extensions that still involve significantly less
resource overhead than that imposed by the resource overhead than that imposed by the

higher level higher level –– but less structured, informal and but less structured, informal and
nonnon--compositional compositional –– concurrency primitives of concurrency primitives of
existing languages (such as existing languages (such as JavaJava) or libraries) or libraries

(such as (such as POSIXPOSIX threads).threads).

31-Oct-06 Copyright P.H.Welch 25

2003 …2003 2003 ……
We have been extending the classical (We have been extending the classical (CSPCSP))
occamoccam language with ideas of mobility and language with ideas of mobility and

dynamic network reconfiguration which are dynamic network reconfiguration which are
taken from Milnertaken from Milner’’s s ππ--calculuscalculus ((occamoccam--ππ).).

As a result, we can run applications with the As a result, we can run applications with the
order of order of millionsmillions of concurrent processes on of concurrent processes on

modestly powered PCs. We have plans to modestly powered PCs. We have plans to
extend the system, without sacrifice of too extend the system, without sacrifice of too

much efficiency and none of logic, to simple much efficiency and none of logic, to simple
clusters of workstations, wider networks such clusters of workstations, wider networks such

as the Grid and small embedded devices.as the Grid and small embedded devices.

31-Oct-06 Copyright P.H.Welch 26

2003 …2003 2003 ……
In the interests of In the interests of proveabilityproveability, we have been , we have been

careful to preserve the distinction between the careful to preserve the distinction between the
original static pointoriginal static point--toto--point point synchronisedsynchronised
communication of communication of occamoccam and the dynamic and the dynamic

asynchronous multiplexed communication of asynchronous multiplexed communication of
ππ--calculuscalculus;; in this, we have been prepared to in this, we have been prepared to

sacrifice the elegant sacrifice the elegant sparsitysparsity of the of the ππ--calculuscalculus..

We conjecture that the extra complexity and We conjecture that the extra complexity and
discipline introduced will make the task of discipline introduced will make the task of

developing, proving and maintaining developing, proving and maintaining
concurrent and distributed programs easier.concurrent and distributed programs easier.

31-Oct-06 Copyright P.H.Welch 27

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 28

Java Monitors – ConcernsJava Monitors Java Monitors –– ConcernsConcerns
Easy to learnEasy to learn -- but but very difficult to applyvery difficult to apply …… safelysafely ……

Monitor methods are Monitor methods are tightly interdependenttightly interdependent -- their their
semantics compose in semantics compose in complex wayscomplex ways …… the whole skill lies the whole skill lies
in setting up and staying in control of these complex in setting up and staying in control of these complex
interactions interactions ……

Threads have no structure Threads have no structure …… there are no there are no threads within threads within
threadsthreads ……

Big problems when it comes to Big problems when it comes to scaling up complexityscaling up complexity ……

31-Oct-06 Copyright P.H.Welch 29

Objects Considered HarmfulObjects Considered HarmfulObjects Considered Harmful
Most objects are Most objects are
dead dead -- they have they have
no life of their own.

count

state

ready

no life of their own.

All methods have to All methods have to
be invoked by an be invoked by an
external thread of external thread of
control control -- they have to they have to
be be caller orientedcaller oriented ……

…… a somewhat curious a somewhat curious
propertyproperty of of ‘‘object object
orientedoriented’’ design.design.

31-Oct-06 Copyright P.H.Welch 30

Objects Considered HarmfulObjects Considered HarmfulObjects Considered Harmful

count

state

ready

The object is at the The object is at the
mercy of mercy of anyany thread thread
that sees it.that sees it.

Nothing can be done Nothing can be done
to prevent method to prevent method
invocation ...invocation ...

…… even if the object is even if the object is
not in a fit state to service not in a fit state to service
it. it. The object is not in The object is not in
control of its life.control of its life.

31-Oct-06 Copyright P.H.Welch 31

Objects Considered HarmfulObjects Considered HarmfulObjects Considered Harmful
Each single thread of Each single thread of
control snakes around control snakes around
objects in the system, objects in the system,
bringing them to life bringing them to life
transientlytransiently as their as their
methods are executed.methods are executed.

Threads cut across object Threads cut across object
boundaries leaving boundaries leaving
spaghettispaghetti--like trails, like trails,
paying no regard to the paying no regard to the
underlying structureunderlying structure..

31-Oct-06 Copyright P.H.Welch 32

Each object is at the
mercy of anyany thread that
sees it. Nothing can be
done to preventprevent method
invocation … even if the
object is not in a fit state
to service it. The object The object
is not in control of its lifeis not in control of its life.

Threads-n-Locks Considered HarmfulThreadsThreads--nn--LocksLocks Considered HarmfulConsidered Harmful

Big problems occur
when multiple threads
hit the same object.

31-Oct-06 Copyright P.H.Welch 33

Errors in claiming/releasing
locks is probably the main
reason our systems fail …

Threads-n-Locks Considered HarmfulThreadsThreads--nn--LocksLocks Considered HarmfulConsidered Harmful

Too much locking and
we get deadlock …

Too little locking and
race hazards slowly
corrupt …

Sorting this out requires
controlling all possible
interleavings … which is
exponential in the number
of threads …

31-Oct-06 Copyright P.H.Welch 34

Threads-n-Locks Considered HarmfulThreadsThreads--nn--LocksLocks Considered HarmfulConsidered Harmful

Compare
this design
structure ...

Compare Compare
this design this design
structure ...structure ...

31-Oct-06 Copyright P.H.Welch 35

collision
detect

control

...

scorer

left right

keycontrol

mouse

flasher

new game freeze

canvas

Multi-
Pong
MultiMulti--
PongPong

... against
this one

... against ... against
this onethis one

31-Oct-06 Copyright P.H.Welch 36

…… for example for example ……

31-Oct-06 Copyright P.H.Welch 37

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 38

InIn--vivovivo InIn--silicosilico
One of the UK ‘‘Grand ChallengeGrand Challenge’’ areas.
Move lifelife--sciencessciences from descriptiondescription to modellingmodelling // predictionprediction.
Example: the Nematode worm.the Nematode worm.
Development: from fertilised cell to adultfrom fertilised cell to adult (with virtual experiments).(with virtual experiments).
Sensors and movement: reaction to stimuli.reaction to stimuli.
Interaction between organisms and other pieces of environment.between organisms and other pieces of environment.

Modelling technologiesModelling technologies
Communicating process networks – fundamentally good fit.
Cope with growth / decay, combine / split (evolving topologies).
Mobility and location / neighbour awareness.
Simplicity, dynamics, performance and safety.

occamoccam--ππ (and JCSP)(and JCSP)
Robust and lightweight – good theoretical support.
~10,000,000 processes with useful behaviour in useful time.
Enough to make a start …

Modelling Bio-MechanismsModelling BioModelling Bio--MechanismsMechanisms

31-Oct-06 Copyright P.H.Welch 39

TUNA: TUNA: Theory Underpinning Nanotech AssembliesTheory Underpinning Nanotech Assemblies
Active nanonano--devicesdevices that manipulate the world at nanonano--scalescale to
have macroscopicmacroscopic effects (e.g. through assembling artifacts).
Need vast numbers of them – but these can grow (exponentially).
Need capabilities to design, program and control complex and
dynamic networks – build desired artifacts, not undesired ones.
Need a theory of dynamic networks and emergent properties.

Implementation TechnologiesImplementation Technologies
Communicating process networks – fundamentally good fit.
Cope with growth / decay, combine / split (evolving topologies).
Mobility and location / neighbour awareness.
Simplicity, dynamics, performance and safety.

occamoccam--ππ (and JCSP)(and JCSP)
Robust and lightweight – good theoretical support.
~10,000,000 processes with useful behaviour in useful time.
Enough to make a start …

Modelling Nannite-AssembliesModelling Modelling NanniteNannite--AssembliesAssemblies

Funded Funded ☺☺☺☺☺☺ ……
York, Surrey and York, Surrey and

KentKent

31-Oct-06 Copyright P.H.Welch 40

Mobility and Location AwarenessMobility and Location AwarenessMobility and Location Awareness
Classical communicating process applicationsClassical communicating process applications

Static network structures.
Static memory / silicon requirements (pre-allocated).
Great for hardware design and software for embedded controllers.
Consistent and rich underlying theory – CSP.

Dynamic communicating processes Dynamic communicating processes –– some questionssome questions
Mutating topologies:Mutating topologies: how to keep them safe?
Mobile channelMobile channel--ends and processes:ends and processes: dual notions?
Simple operational semantics:Simple operational semantics: low overhead implementation? Yes.Yes.
Process algebra:Process algebra: combine the best of CSP and the π-calculus? YesYes..
Refinement:Refinement: for manageable system verification … can we keep?
Location awareness:Location awareness: how can mobile processes know where they
are, how can they find each other and link up?
Programmability:Programmability: at what level – individual processes or clusters?
Overall behaviour:Overall behaviour: planned or emergent?planned or emergent?

31-Oct-06 Copyright P.H.Welch 41

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

The
Matrix
The The

MatrixMatrix

Mobile
Agents
Mobile Mobile
AgentsAgents

31-Oct-06 Copyright P.H.Welch 42

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

31-Oct-06 Copyright P.H.Welch 43

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

31-Oct-06 Copyright P.H.Welch 44

Location (Neighbourhood) AwarenessLocation (Neighbourhood) Awareness

31-Oct-06 Copyright P.H.Welch 45

Mobility and Location AwarenessMobility and Location AwarenessMobility and Location Awareness
The MatrixThe Matrix

A network of (mostly passive) server processes.
Responds to client requests from the mobile agents and,
occasionally, from neighbouring server nodes.
Deadlock avoided (in the matrix) either by one-place buffered
server channels or by pure-client slave processes (one per matrix
node) that ask their server node for elements (e.g. mobile agents)
and forward them to neighbouring nodes.
Server nodes only see neighbours, maintain registry of currently
located agents (and, maybe, agents on the neighbouring nodes)
and answer queries from local agents (including moving them).

The AgentsThe Agents
Attached to one node of the Matrix at a time.
Sense presence of other agents – on local or neighbouring nodes.
Interact with other local agents – must use agent-specific protocol
to avoid deadlock. May decide to reproduce, split or move.
Local (or global) sync barrierssync barriers to maintain sense of time.

31-Oct-06 Copyright P.H.Welch 46

A Thesis and HypothesisA Thesis and HypothesisA Thesis and Hypothesis
ThesisThesis

Natural systems are concurrent at all levels of scale. Central points of
control do not remain stable for long.
Natural systems are robust, efficient, long-lived and continuously
evolving. We should take the hint! We should take the hint!
Natural mechanisms should map on to simple engineering principles
with low cost and high benefit. Concurrency is a natural mechanism.
We should look on concurrencyconcurrency as a core design mechanismcore design mechanism – not
as something difficult, used only to boost performance.
Computer science took a wrong turn once. Concurrency should not
introduce the algorithmic distortions and hazards evident in current
practice. It should hastenhasten the construction, commisioning and
maintenance of systems.

HypothesisHypothesis
The wrong turn can be corrected and this correction is needed now.

31-Oct-06 Copyright P.H.Welch 47

Putting CSP into practice …Putting CSP into practice Putting CSP into practice ……

http://http://www.cs.ukc.ac.uk/projects/ofa/krocwww.cs.ukc.ac.uk/projects/ofa/kroc//

31-Oct-06 Copyright P.H.Welch 48

Putting CSP into practice …Putting CSP into practice Putting CSP into practice ……

http://http://www.cs.ukc.ac.uk/projects/ofa/jcspwww.cs.ukc.ac.uk/projects/ofa/jcsp//

31-Oct-06 Copyright P.H.Welch 49

31-Oct-06 Copyright P.H.Welch 50

Motivation: Concurrency for AllMotivation: Concurrency for AllMotivation: Concurrency for All

Nature is not serial ...Nature is not serial ...

Components must compose Components must compose ……

Nature is concurrent Nature is concurrent ……

It was 20 years ago todayIt was 20 years ago today ……

Objects considered harmful Objects considered harmful ……

Modelling complex systems Modelling complex systems ……

Blood clottingBlood clotting ……

31-Oct-06 Copyright P.H.Welch 51

Case Study: blood clottingCase Study: Case Study: blood clottingblood clotting
Haemostasis: Haemostasis: we consider a greatly simplified model of the we consider a greatly simplified model of the
formation of blood clots in response to damage in blood formation of blood clots in response to damage in blood
vessels.vessels.

PlateletsPlatelets are passive quasi-cells carried in the bloodstream.
They become activatedactivated when a balance between chemical
suppressants and activators shift in favour of activation.

When activated, they become stickysticky …

We are just going to model the clumping together of such
sticky activated platelets to form clotsclots.

To learn and refine our modelling techniques, we shall start
with a simple one-dimensional model of a bloodstream.

31-Oct-06 Copyright P.H.Welch 52

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)
SpaceSpace is represented as a pipeline of is represented as a pipeline of cellcell processesprocesses.
Activated (i.e. sticky) plateletsplatelets are generated and injected
into the pipeline at a user-determined randomised rate.
They move through the cellscells at speeds inversely
proportional to the size of the clotclot in which they become
embedded – these speeds are randomised slightly. ClotsClots
that bump together stay together.

The cellscells do all the work and work all the time, even when
empty. PlateletsPlatelets/clotsclots pass through them – at which times,
the cellscells compute part of their life-cycle.

PlateletsPlatelets/clotsclots are not directly modelled as processes.

31-Oct-06 Copyright P.H.Welch 53

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)

drawdraw

holegen ···cell cell cell···

screenscreen
display

keyboardkeyboard

keywatch

31-Oct-06 Copyright P.H.Welch 54

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)

drawdraw

Key: Phase 0Phase 0
Phase 1Phase 1

keyboardkeyboard

keywatch
screenscreen

display

holegen ···cell cell cell···

display state running

31-Oct-06 Copyright P.H.Welch 55

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)

drawdraw

Key: Phase 0Phase 0keyboardkeyboard

keywatch
screenscreen

display

holegen ···cell cell cell···

display state running

31-Oct-06 Copyright P.H.Welch 56

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)

drawdraw

Key:
Phase 1Phase 1

keyboardkeyboard

keywatch
screenscreen

display

holegen ···cell cell cell···

display state running

31-Oct-06 Copyright P.H.Welch 57

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)
···cell cellcell cell···
···cell cellcell cell···
···cell cellcell cell···
···cell cellcell cell···
···cell cellcell cell···
···cell cellcell cell···

31-Oct-06 Copyright P.H.Welch 58

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)
PROCPROC cell (cell (BYTEBYTE my.visible.statemy.visible.state, , BOOLBOOL running, running, BARRIERBARRIER draw, draw,

CHANCHAN CELL.CELLCELL.CELL l.inl.in??, , l.outl.out!!, , r.inr.in??, , r.outr.out!!))
... local declarations / initialisation (phase 0)... local declarations / initialisation (phase 0)
WHILE runningWHILE running
SEQSEQ
SYNCSYNC draw draw ---- phase 1phase 1
... PAR... PAR--I/O exchange of full/empty stateI/O exchange of full/empty state
... if full,... if full,
... discover clump size (pass count through)... discover clump size (pass count through)
... if head,... if head,
... decide on move ... decide on move (non(non--deterministic choice)deterministic choice)
... if move, tell empty cell ahead... if move, tell empty cell ahead
... else receive decision on move from cell ahead... else receive decision on move from cell ahead
... if not tail, pass decision back... if not tail, pass decision back
... if tail and move, become empty... if tail and move, become empty
... else if clump behind exists and moves, become full... else if clump behind exists and moves, become full
SYNCSYNC draw draw ---- phase 0phase 0
... update ... update my.visible.statemy.visible.state

::

31-Oct-06 Copyright P.H.Welch 59

Platelet Model (Visualisation)Platelet Model (Visualisation)Platelet Model (Visualisation)

31-Oct-06 Copyright P.H.Welch 60

Platelet Model (‘busy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ CA)CA)
Performance:Performance: each each cellcell has to work harder if full (carrying a has to work harder if full (carrying a
plateletplatelet). Also, clotclot sizes are recomputed every cycle – so
large clumps increase the cost. (2.4 GHz. P IV ‘mobile’).

Generate probability (n / 256)Generate probability (n / 256) Cell cycle time (ns)Cell cycle time (ns)

0 650
1 660
2 670
4 680
8 700

16 740
32 1070 (total jam)

31-Oct-06 Copyright P.H.Welch 61

Platelet Model (‘busy’ ‘lazy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ ‘‘lazylazy’’ CA)CA)
Scaling problem:Scaling problem: every every cellcell is active every cycle is active every cycle –– regardless regardless
of whether it contains a platelet. This works well for systems of whether it contains a platelet. This works well for systems
with up to ~100K with up to ~100K cellscells..

For For TUNATUNA, we will need to be working in 3D (say, ~10M , we will need to be working in 3D (say, ~10M cellscells),),
modelling many different types of agent with much richer rules modelling many different types of agent with much richer rules
of engagement.of engagement.

These automata must become These automata must become ‘‘lazylazy’’, whereby only processes , whereby only processes
with things to do remain in the computation. with things to do remain in the computation.

31-Oct-06 Copyright P.H.Welch 62

Platelet Model (‘busy’ ‘lazy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ ‘‘lazylazy’’ CA)CA)
Logical problem:Logical problem: the rules for the different stages in the life the rules for the different stages in the life
cycle of cycle of plateletsplatelets, or , or clotsclots, are coded into different cycles of , are coded into different cycles of
the cells. Each the cells. Each cellcell sees lots of different sees lots of different platelets platelets –– sometimes sometimes
bunched together as bunched together as clots clots –– and operates on them as they and operates on them as they
pass through.pass through.

No process directly models the development of a single No process directly models the development of a single clotclot..

The following system addresses this. The The following system addresses this. The cellcell processes are processes are
pure pure serversservers, not enrolled on the time, not enrolled on the time--synchronising synchronising barrierbarrier. .
Their Their clientsclients are are clotclot processes, processes, generated dynamicallygenerated dynamically, that , that
are enrolled on the are enrolled on the barrierbarrier and use that and use that barrierbarrier to synchronise to synchronise
access to the access to the cellcell servers with their generator and the display.servers with their generator and the display.

The The cellcell processes are only worked as processes are only worked as clotclot boundariesboundaries pass pass
over them.over them.

31-Oct-06 Copyright P.H.Welch 63

Platelet Model (‘busy’ ‘lazy’ CA)Platelet Model (Platelet Model (‘‘busybusy’’ ‘‘lazylazy’’ CA)CA)

The following system addresses this. The The following system addresses this. The cellcell processes are processes are
pure pure serversservers, not enrolled on the time, not enrolled on the time--synchronising synchronising barrierbarrier. .
Their Their clientsclients are are clotclot processes, processes, generated dynamicallygenerated dynamically, that , that
are enrolled on the are enrolled on the barrierbarrier and use that and use that barrierbarrier to synchronise to synchronise
access to the access to the cellcell servers with their generator and the display.servers with their generator and the display.

To manage this, we need to move
barriers barriers to FORKFORKed processes. The
general solution is given by making

barriersbarriers MOBILEMOBILE.

31-Oct-06 Copyright P.H.Welch 64

occamoccam--ππ includes mobilemobile barrier types:

Barriers (mobile)Barriers (mobile)

MOBILEMOBILE BARRIER b:BARRIER b:
SEQSEQ
bb := := MOBILE MOBILE BARRIERBARRIER
... logic involving ... logic involving SYNC bSYNC b

Run-time construction

Declaration: initially bb
is undefinedundefined

Whenever a barrier is constructed, the process doing the
construction becomes enrolledenrolled.

Whenever a barrier is communicated (e.g. to a forkedforked process),
the receiving process dynamically enrollsenrolls and the sending
process resignsresigns (unless a CLONECLONE is sent).

Channels may carry MOBILE MOBILE BARRIERBARRIERs as components of
their messages (occamoccam--ππ PROTOCOLPROTOCOLs).

Whenever a defined barrier variable is overwritten or goes out
of scope, the process holding it resignsresigns.

31-Oct-06 Copyright P.H.Welch 65

Forking Processes with BarriersForking Processes with BarriersForking Processes with Barriers

bb

FORKINGFORKING
XX PPPPPP

occamoccam--ππ viewview

31-Oct-06 Copyright P.H.Welch 66

Forking Processes with BarriersForking Processes with BarriersForking Processes with Barriers

bb

FORKINGFORKING
XX PP PPPP

occamoccam--ππ viewview

31-Oct-06 Copyright P.H.Welch 67

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

keyboardkeyboard

keywatch

gen

······ cell cellcell cell cellcell

clot

drawdraw

31-Oct-06 Copyright P.H.Welch 68

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot

phase 1

screenscreen
display

31-Oct-06 Copyright P.H.Welch 69

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

31-Oct-06 Copyright P.H.Welch 70

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

31-Oct-06 Copyright P.H.Welch 71

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

phase 1

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot

31-Oct-06 Copyright P.H.Welch 72

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

31-Oct-06 Copyright P.H.Welch 73

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

clot
phase 0

31-Oct-06 Copyright P.H.Welch 74

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

31-Oct-06 Copyright P.H.Welch 75

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

31-Oct-06 Copyright P.H.Welch 76

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

31-Oct-06 Copyright P.H.Welch 77

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clotclot

31-Oct-06 Copyright P.H.Welch 78

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clot

31-Oct-06 Copyright P.H.Welch 79

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)

screenscreen
display

keyboardkeyboard

keywatch

drawdraw

gen

······ cell cellcell cell cellcell

phase 1

clot

31-Oct-06 Copyright P.H.Welch 80

Platelet Model (‘lazy’ CA)Platelet Model (Platelet Model (‘‘lazylazy’’ CA)CA)
Performance:Performance: a a cellcell only works when a only works when a clotclot boundary
moves through. Run-time depends only on the number of
clotsclots; the clotclot sizes are now irrelevant (2.4 GHz. P IV-M).

Generate probability (n / 256)Generate probability (n / 256) ‘‘BusyBusy’’ (ns)(ns) ‘‘LazyLazy’’ (ns)(ns)

0 650 0
8

12
14
16
18

0 (total jam)

1 660
2 670
4 680
8 700

16 740
32 1070 (total jam)

31-Oct-06 Copyright P.H.Welch 81

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 82

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 83

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 84

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 85

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 86

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 87

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 88

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 89

Clot Frequency by Position by SizeClot Frequency by Position by SizeClot Frequency by Position by Size

31-Oct-06 Copyright P.H.Welch 90

Maximum Clot Size by PositionMaximum Clot Size by PositionMaximum Clot Size by Position

31-Oct-06 Copyright P.H.Welch 91

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 92

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 93

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 94

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 95

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 96

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 97

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 98

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 99

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 100

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 101

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 102

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 103

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 104

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 105

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 106

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 107

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 108

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 109

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 110

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 111

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 112

3-D Bloodstream33--D BloodstreamD Bloodstream

31-Oct-06 Copyright P.H.Welch 113

3-D Bloodstream33--D BloodstreamD Bloodstream

	Motivation: Concurrency for All (Process Oriented Design)
	Motivation: Concurrency for All
	Nature is not organised as a single thread of control:
	Motivation and Applications
	Motivation: Concurrency for All
	Components?
	Components?
	Components?
	Components?
	Composition?
	Composition?
	Motivation: Concurrency for All
	This tradition is WRONG!
	What we want from Parallelism
	Multi-Pong
	Multi-Pong
	Good News!
	Motivation: Concurrency for All
	Twenty Years Ago …
	2003 …
	2003 …
	2003 …
	Motivation: Concurrency for All
	Java Monitors – Concerns
	Multi-Pong
	Motivation: Concurrency for All
	Modelling Bio-Mechanisms
	Modelling Nannite-Assemblies
	Mobility and Location Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Location (Neighbourhood) Awareness
	Mobility and Location Awareness
	A Thesis and Hypothesis
	Putting CSP into practice …
	Putting CSP into practice …
	Motivation: Concurrency for All
	Case Study: blood clotting
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ CA)
	Platelet Model (Visualisation)
	Platelet Model (‘busy’ CA)
	Platelet Model (‘busy’ ‘lazy’ CA)
	Platelet Model (‘busy’ ‘lazy’ CA)
	Platelet Model (‘busy’ ‘lazy’ CA)
	Barriers (mobile)
	Forking Processes with Barriers
	Forking Processes with Barriers
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Platelet Model (‘lazy’ CA)
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Clot Frequency by Position by Size
	Maximum Clot Size by Position
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream
	3-D Bloodstream

