
Lecture Notes
CS377 - Parallel Programming

Marc L. Smith

Linda and Tuple Space

 1



The Linda Model

• A communication and coordination model 
for concurrent processes

• Augments any existing sequential 
programming language

• Consists of

• Tuple Space -- a global shared memory

• 4 primitive operations on Tuple Space

 2



The Linda Model

• Tuple Space -- a container of tuples

• tuple -- an ordered sequence of typed 
values, or value-yielding computations

• a tuple whose values are all computed is 
passive

• a tuple with at least one value still being 
computed is active

 3



The Linda Model
• The Linda primitive operations:

• rd( ) -- “read” -- to match a tuples in TS

• in( ) -- to match/remove tuples from TS

• out( ) -- to place new tuples in TS

• eval( ) -- to create new Linda processes 
             (places active tuple in TS)

• first two ops are synchronous (blocking) *  
* non-blocking versions also exist: rdp( ) and inp( )

• last two operations are asynchronous (non-blocking)

• first three operations operate on passive tuples.
 4



The Linda Model

• Tuple Space

• a distributed shared memory

• not addressable memory  
(no pointers to tuples!)

• an associative memory  
(tuples are matched)

 5



The Linda Model

• Tuple matching is a generalization of how we use hashmaps

• Hashmaps

• key - value pairs

• lookup key; return corresponding value

• Tuples

• multiple keys possible (by position within tuple)

• multiple corresponding values possible (by position)

 6



Rinda

• An implementation of the Linda Model

• Base language: Ruby

• augmented with rd(), in(), out(), and eval()

• and predicate operations rdp() and inp()

• Let’s look at some examples!

 7



Producer/Consumer

• Eval two processes: Producer and Consumer

• Each process has it’s own array of n 
elements.

• Between the two processes, a shared buffer 
exists that will be used to transfer the 
contents of the producer’s buffer to the 
consumer’s buffer, one element at a time

 8



Producer/Consumer 
using shared variables

• Here’s the pseudo code for producer and consumer: 
 
 
 
 
 
 
 
 
 
 

process Producer { 
  int a[n]; 
  while (p < n) { 
    << await (p == c); >> 
    buf = a[p]; 
    p = p+1; 
  } 
}

process Consumer { 
  int b[n]; 
  while (c < n) { 
    << await (p > c); >> 
    b[c] = buf; 
    c = c+1; 
  } 
}

//shared variables 
int buf, n = 80,  p = 0,  c = 0;

 9



Semaphores in Linda

• P(s):  in(“sem”)

• attempts to match/remove a one-field 
tuple in TS

• V(s):  out(“sem”)

• places a one-field tuple in TS

• For multiple semaphores

• you decide how to implement...

 10



Producers/Consumers 
using semaphores

• Here’s the pseudo code for producer and consumer procs: 
 
 
 
 
 
 
 
 
 
 

process Producer(i) { 
  while (true) { 
    . . . 
    // produce data,  
    // deposit in buf. 
    P(empty); 
    buf = data; 
    V(full); 
  } 
}

process Consumer(i) { 
  while (true) { 
    //fetch data from buf, 
    //and consume it. 
    P(full); 
    result = buf; 
    V(empty); 
    . . .  
  } 
}

//shared variables 
int buf;  
sem empty = 1; 
sem full = 0;

 11

//binary semaphores: 0 or 1



Bounded Buffer 
using semaphores

• Here’s the pseudo code for producer and consumer procs: 
 
 
 
 
 
 
 
 
 
 

process Producer { 
  while (true) { 
    . . . 
    // produce data,  
    // deposit in buf. 
    P(empty); 
    buf[rear] = data; 
    rear = (rear+1)%n; 
    V(full); 
  } 
}

process Consumer { 
  while (true) { 
    //fetch data from buf, 
    //and consume it. 
    P(full); 
    result = buf[front]; 
    front = (front+1)%n; 
    V(empty); 
    . . .  
  } 
}

//shared variables 
int buf[n],  
int front = 0, rear = 0; 
sem empty = n, full = 0;

 12

//counting semaphores 
//range from 0 to n



Programming Assignment 
Due:  ?

• Implement Ruby/Rinda versions of the 
producer/consumer and bounded buffer 
problems using semaphores.

• Replace the “. . .” with print statements 
indicating who is producing / consuming 
what.

 13



Question

• How would you handle a bounded buffer 
with multiple producers and consumers?

 14



Semaphores (review)

• Binary

• values = 0 / 1

• operations:  P(s) and V(s)

• Split Binary

• split one semaphore into two

• 0 <= s1 + s2 <= 1

 15



Semaphores (review)

• Counting

• values = 0, 1, 2, ...

• operations:  still P(s) and V(s)

• useful for managing fixed no. of resources

• Linda implementation

• very natural mapping to in() and out()

• very natural extension from binary to counting

 16



Producer / Consumer
• All versions use split binary semaphores  

(e.g., empty, full)

• Version 1: 

• multiple producers / consumers

• single shared buffer

• Version 2: 

• single producer / single consumer

• bounded buffer (an array)

 17



Producer / Consumer

• Question: how would you handle a bounded 
buffer with multiple producers and 
consumers?

• We solved each problem separately already!

• Version 1: multiple producers / consumers 
with single buffer

• Version 2: single producer / consumer 
with bounded buffer

 18



Producer / Consumer 
(combined solution)

• Here’s the pseudo code for producer and consumer procs: 
 
 
 
 
 
 
 
 
 
 

process Producer[i = 1 to M] { 
  while (true) { 
    . . . 
    // produce data; deposit in buf 
    P(empty); 
      P(mutexD); 
        buf[rear] = data; 
        rear = (rear+1)%n; 
      V(mutexD); 
    V(full); 
  } 
}

process Consumer[j = 1 to N] { 
  while (true) { 
    //fetch data from buf; consume it. 
    P(full); 
      P(mutexF); 
        result = buf[front]; 
        front = (front+1)%n; 
      V(mutexF); 
    V(empty); 
    . . .  
  } 
}

//shared variables 
int buf[n],  
int front = 0, rear = 0;    // indices to buf 
sem empty = n, full = 0;    // between producers/consumers 
sem mutexD = 1,             // between different producers 
    mutexF = 1;             // between different consumers

 19



Semaphores 
(TS implementation)

 20

// Semaphore primitives P and V (works for binary and counting sems) 
// -- must be implemented over tuples in tuple space 

void P(char *s)                        void V(char *s) 
{                                      { 
  in(“sem”, s:(strlen(s)+1));            out(“sem”, s:(strlen(s)+1)); 
}                                      }

P(“empty”); V(“full”);

So this invocation: and this invocation:

Tries to match a 
tuple like this:
(“sem”, “empty”)

Will place a tuple in TS
that looks like this:
(“sem”, “full”)



Semaphore usage 
(binary / counting)

 21

sem full = 0; 
sem empty = 1;

sem empty = n; 
sem full = 0;

binary initialization: counting initialization:

Becomes this in your
C-Linda code:
V(“empty”);  

// places a tuple in TS: 
// (“sem”, “empty”) 

// do nothing to initialize 
// semaphore full = 0...

Becomes this in your
C-Linda code:
for (i=0, i<n; i++) { 
  V(“empty”); 
}  

// places n tuples in TS 
// that all look like this: 
// (“sem”, “empty”)



Bounded buffer in  
Tuple Space

 22

// C declaration of a buffer as an array of ints 
int buf[n]; 

// Assignment of three elements to buf 
buf[0] = 42; 
buf[1] = 43; 
buf[2] = 44; 

// Equivalent assignment using distributed data 
// structure in tuple space... 
// Tuples of this form are used: 
//  
//   (“buf”, index, value) 

out(“buf”, 0, 42); 
out(“buf”, 1, 43); 
out(“buf”, 2, 44); 

// to access value stored in buf[13]... 
int i, value; 
i = 13; 
rd(“buf”, 13, ?value); 

//to consume same data, change rd() to in()... 
in(“buf”, 13, ?value); 



Producer / Consumer 
Version 3

• Here’s the pseudo code for producer and consumer procs: 
 
 
 
 
 
 
 
 
 
 

process Producer[i = 1 to M] { 
  while (true) { 
    . . . 
    // produce data; deposit in buf 
    P(empty); 
      P(mutexD); 
        buf[rear] = data; 
        rear = (rear+1)%n; 
      V(mutexD); 
    V(full); 
  } 
}

process Consumer[j = 1 to N] { 
  while (true) { 
    //fetch data from buf; consume it. 
    P(full); 
      P(mutexF); 
        result = buf[front]; 
        front = (front+1)%n; 
      V(mutexF); 
    V(empty); 
    . . .  
  } 
}

//shared variables -- must be implemented in tuple space 
int buf[n],  
int front = 0, rear = 0;    // indices to buf 
sem empty = n, full = 0;    // between producers/consumers 
sem mutexD = 1,             // between different producers 
    mutexF = 1;             // between different consumers

 23



Producer / Consumer 
Version 3

• Here’s how to initialize tuple space with this shared data:  
 
 
 
 
 
 
 
 
 
 

// nothing for buf[n]  -- until data produced... 

out(“front”, 0);    out(“rear”, 0); 

for (i = 0, i < n, i++) { 
  V(“empty”); 
} 
// nothing for full -- until producer produces something 

V(“mutexD”); 
V(“mutexF”);

//shared variables -- must be implemented in tuple space 
int buf[n],  
int front = 0, rear = 0;    // indices to buf 
sem empty = n, full = 0;    // between producers/consumers 
sem mutexD = 1,             // between different producers 
    mutexF = 1;             // between different consumers

 24


