Message Protocols

Peter Welch (p.h.welch@kent.ac.uk)
Computing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)
\ /




Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




Message Protocols

Till now, we have only shown channels carrying one of the
basic occam-1 types: INT, BYTE, BOOL, REAL32, ...

However, channels may carry any eccam-=7t type: including
arrays and records (which we have not yet introduced).

occam-Tt introduces the concept of PROTOCOL, which enables
rich message structures (containing possibly mixed types) to
be declared for individual channels.

The compiler enforces strict adherence — we gain safety and
auto-documentation (of those message structures).



Array Communication

- C -
- :-

CHAN [100]REAL64 c:
PAR

A (c))
B (c?)

The channel carries a whole array per message ...




Array Communication

N

PROC A (CHAN [100]REAL64 out!)
[100]REALG4 data:
... other declarations
SEQ

... Odnitialise stuff
WHILE TRUE
SEQ

the whole
array is sent
(copied)

modify data
out ! data —




Array Communication

) ‘

PROC B (CHAN [100]REAL64 in?)
[100]REALG4 data:
... other declarations
SEQ

... initialise stuff
WHILE TRUE
SEQ
in ? data —
process data

the whole
array Is
received




Primitive Communication

- C -
- :-

CHAN REAL64 c:
PAR

A (c))
B (c?)

Here, the channel only carries one REAL64 per message ...




Primitive Communication

-

PROC A (CHAN [100]REAL64 out!)
[100]REAL64 data:
... other declarations

SEQ implies 100 context
... (initialise stuff switches (back into A)
WHILE TRUE plus the loop overhead

SEQ
... modify data

SEQ i O FOR SIZE out!

= 100 separate
out ! data[i]

messages



Primitive Communication

) ‘

PROC B (CHAN [100]REAL64 in?)
[100]REAL64 data:

... other declarations Implies 100 context
SEQ S switches (back into B)
--. initialise stuff plus the loop overhead
WHILE TRUE
SEQ

SEQ # = 0 FOR SIZE iIn?
in ? data[i]
process data

100 separate
messages



Array Assignment

Till now, we have only shown assignments between variables
having the same basic occam=-7 type: INT, BYTE, REAL32, ...

However, we may assign between variables having the same

(but any) eccam-7 type: including arrays and records (which
we have not yet introduced).

[100]REAL64 x, Yy:
SEQ

set up X the whole

Yy = X array is
more stuff copied




Primitive Assignment

Till now, we have only shown assignments between variables
having the same basic occam=-7 type: INT, BYTE, REAL32, ...

We could assign the elements one at a time ...

plus the loop
overhead ...
[100]REALG4 x, y:
SEQ
... set up x
SEQ 1 = 0 FOR SIZE x 100 separate
y[1] := x[i] h assignments

more stuff



Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




Message Protocols

Channels may carry occam-x types or PROTOCOLS ...

There are 3 types of PROTOCOL ...

sequential :

An (occam-x) ‘PROTOCOL’ only describes a structure for an

individual message. It does not describe a conversation
pattern (e.g. request-reply) of separate messages.




Sequential Protocol

PROTOCOL TRIPLE IS INT; BOOL; REAL32:

- C -
- :-

CHAN TRIPLE c:
PAR

A (c))
B (c?)

The channel carries one TRIPLE per message ...




Sequential Protocol

PROTOCOL TRIPLE IS INT; BOOL; REAL32:

-

PROC A (CHAN TRIPLE out!)
INITIAL INT & IS 42:
INITIAL BOOL b IS FALSE:
INITIAL REAL32 x IS 100.0:
WHILE TRUE

compiler checks

SEQ message conforms
out ! i; b; x — to the declared
.-.- modify 1, b and X protocol



Sequential Protocol

PROTOCOL TRIPLE IS INT; BOOL; REAL32:

) ‘

PROC B (CHAN TRIPLE in?)

WHILE TRUE
INT i:
BOOL b:
REAL32 x: compiler checks
SEQ variables conform

to the declared
protocol

in ? i; b; X —«—
deal with them



Sequential Protocol

A sequential PROTOCOL lists one or more (previously declared)
PROTOCOLS separated by semi-colons.

PROTOCOL TRIPLE IS INT; BOOL; REAL32:

PROTOCOL DOUBLE.ARRAY IS [100]INT; [42]REAL32:

PROTOCOL TDA 1S TRIPLE; DOUBLE.ARRAY:

The last is equivalent to ...

PROTOCOL TDA IS INT; BOOL:; REAL32;:
[100]INT; [42]REAL32:




Sequential Protocol

A sequential PROTOCOL lists one or more (previously declared)
PROTOCOLS separated by semi-colons.

PROTOCOL TRIPLE IS INT; BOOL; REAL32:

PROTOCOL DOUBLE.ARRAY 1S [100]INT:; [42]REAL32:

PROTOCOL TDA 1S TRIPLE; DOUBLE.ARRAY:

The sending process outputs a (semi-colon separated) list
of values whose types conform to the PROTOCOL.



Sequential Protocol

A sequential PROTOCOL lists one or more (previously declared)
PROTOCOLS separated by semi-colons.

PROTOCOL TRIPLE IS INT; BOOL; REAL32:

PROTOCOL DOUBLE.ARRAY 1S [100]INT:; [42]REAL32:

PROTOCOL TDA 1S TRIPLE; DOUBLE.ARRAY:

The receiving process inputs to a (semi-colon separated) list
of variables whose types conform to the PROTOCOL.



Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




A Simple Multiplexor (seen before)

in[0] |
in[1]

>

L
plex =

in [ni—l]_)

This process just forwards any message It receives ...

... but prefixes the message with the index of the channel
on which it had been received ...

... which will allow subsequent de-multiplexing. © © ©



in[ﬂ
in[ﬂ

>

0
plex =

in [ni—l]_)

PROC plex ([JCHAN INT in?, CHAN INT out!)
WHILE TRUE

ALT i@ = O FOR SIZE in? .
INT x: the array size
in[i] ? x

SEQ
out
out

This guarded process
gets replicated ...

X




PROTOCOL INDEX.INT IS INT; INT:

in[ﬂ
in[ﬂ

>
>

0
plex ==

in [ni—l]_)

PROC plex ([JCHAN INT in?, CHAN INDEX.INT out!)
WHILE TRUE

ALT i@ = 0 FOR SIZE In? .
INT x: the array size

in[i] ? x
i;

t!
- ou % This guarded process
gets replicated ...




A Matching De-Multiplexor (seen)

in

This process recovers input messages to their correct
output channels ... and assumes each message Is
prefixed by the correct target channel index ...

Each message must be a <index, data> pair, generated
by a plex process (with the same number of inputs as this
has outputs).



PROC de.plex (CHAN INT in?, [JCHAN INT out!)
WHILE TRUE

INT ¥, X:

SEQ
in ?2 1 «— This must be a
in ? X legal index of
out[i] ! x the out array!



PROTOCOL INDEX.INT IS INT; INT:

out[O]

out[n-1]

PROC de.plex (CHAN INDEX.INT in?, [JCHAN INT out!)

WHILE TRUE

INT ¥, X:
SEQ _/ This must be a
in ? i; X legal index of
out[i] ! x the out array!



Multiplexor Application (Example)

in[0] |
in[1] )
plex = > de.plex
infn-1] J outfn-1]
machine.a machine.b

Message structures should be documented somewhere!

PROTOCOL INDEX.INT IS INT: INT: done
CHAN INDEX.INT c: © © ©




Multiplexor Application (Example)

in[ﬂ )
in[1]

>

in [ni—l]_)l

machine.a

plex

de.plex

out[rin-l]_)

machine.b

However, suppose that the messages to be multiplexed were

type REALGS ...

Now, messages on ¢ have form: INT; REAL64
How do we type the multiplexed channel: CHAN ??7? c:



PROTOCOL INDEX.INT IS INT; INT:

in[0]
in[1] | y
out
: plex >
infn-1] J
PROC plex ([]CHAN INT in?, CHAN INDEX.INT out!)
WHILE TRUE
ALT i@ = 0 FOR SIZE In?
INT Xx: the array size
in[i] ? x

tt! i
- ou ' This guarded process
gets replicated ...




PROTOCOL INDEX.REAL64 IS INT; REALGA4:

in[ﬂ
in[ﬂ

>

L
plex ==

in [ni—l]_)

PROC plex ([JCHAN REAL64 in?, CHAN INDEX.REAL64 out!)
WHILE TRUE

ALT i@ = 0 FOR SIZE in? « .
REAL64 x: the array size

in[i] ? x

out ! i; X :
- This guarded process
gets replicated ...




PROTOCOL INDEX.INT IS INT; INT:

out[O]

out[n-1]

PROC de.plex (CHAN INDEX.INT in?, [JCHAN INT out!)
WHILE TRUE

INT 1, Xx:

in ? i; X
out[i] ! x

This must be a

legal index of
the out array!




PROTOCOL INDEX.REAL64 1S INT; REALG64:

PROC de.plex (CHAN INDEX_REAL64 in?, [JCHAN REAL64 out!)
WHILE TRUE

INT i:

REAL64 Xx:

SEQ / This must be a
in ? i; X legal index of

out[i] ! x the out array!



Multiplexor Application (Example)

in[0] |
in[1] )
plex = > de.plex
infn-1] J outfn-1]
machine.a machine.b

Message structures should be documented somewhere!

PROTOCOL INDEX.REAL64 IS INT: REAL64: done
CHAN INDEX.REAL64 c: © © ©




Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




N

A Simple Data Monitor

in[0] |

in[1] J

in [nt—l]_)

monitor.0 (lo, hi)

ALARM.MESSAGE

The input channels deliver raw sensor data (such as
temperature / pressure measurements from a machine).

The rate of supply of this data is irregular.

This process monitors that data, raising an alarm
should any lie outside the range lo. .hi (defined by
Its parameters).



r

A Simple Data Monitor

ALARM.MESSAGE

in[0] |

in[1] J

in [nt—l]_)

@nding channel i@ offending data

monitor.0 (lo, hi) >

PROTOCOL ALARM.MESSAGE IS INT; INT:

//




A Simple Data Monitor

in[]
j monitor.0 (lo, hi) | e

PROC monitor.0 (VAL INT lo, hi, [JCHAN INT in?,
CHAN ALARM.MESSAGE alarm!)

WHILE TRUE
ALT 1 = O FOR SIZE in?
INT Xx:
infi] ? X
IF
(x < 10) OR (x > hi)
alarm ! §; X
TRUE
SKIP



A Better Data Monitor

LIMITS.MESSAGE
Ilimits /

ALARM.MESSAGE

-~

. ]
monitor.1 22

r in[0] | /
in[1] )

in [ni—l]_)l

This version allows the ‘safe’ limits of the monitored
range to be changed at run-time. It also refuses to
start monitoring until those limits have been set.



A Better Data Monitor

LIMITS.MESSAGE
Ilimits /

ALARM .MESSAGE

>

r in[0] N
in[1]

in [ni—l]_)

monitor.1

/

-
alarm

>

PROTOCOL LIMITS.MESSAGE IS INT; INT:

' 4
lower limit

higher limit




PROC monitor.l ([JCHAN INT in?,
CHAN LIMITS.MESSAGE limits?,
CHAN ALARM.MESSAGE alarm!)

INT lo, hi:
SEQ llimits
limits ? lo; hi -

in[]
WHILE TRUE 1 alarm
PRI ALT - s
limits ? lo; hi

SKIP
ALT 1 = 0 FOR SIZE in?
INT Xx:
infi] ? X
IF

(x < 10) OR (x > hi)
allarm ! §; X
TRUE
SKIP

This ALT is nested ...




An Even Better Data Monitor

LIMITS.MESSAGE

CONTROL . MESSAGE - ~
control limits
INT
r in[0] |
inL}l )
= : monitor.2
infn-1] J

ALARM.MESSAGE

/

-
alarm

>

This version allows switching off listening to some (or
all) of the data channels at run-time. Initially, it is set
to listen to all channels.



An Even Better Data Monitor

INT ALARM .MESSAGE

r in[0] ////’
in[1] |
haslh ; monitor.2 alarn_,

CONTROL . MESSAGE P ~ LIMITS.MESSAGE
control limits
>

in [ni—l]_)

PROTOCOL CONTROL.MESSAGE 1S INT; BOOL:

4




controll llimits
in[]

alarm
mon.2

PROC monitor.2 ([JCHAN INT in?,
CHAN CONTROL.MESSAGE control?,
CHAN LIMITS.MESSAGE limits?,
CHAN ALARM.MESSAGE alarm!,
[1BOOL ok) <

—

User supplies an array of BOOL
flags for this process to use ...




controll llimits
in[]

alarm
mon.2

PROC monitor.2 ([JCHAN INT in?,
CHAN CONTROL.MESSAGE control?,
CHAN LIMITS.MESSAGE limits?,
CHAN ALARM.MESSAGE alarm!,
[1BOOL ok) <
-- assume: (SIZE in?) = (SIZE ok) T~
INT lo, hi:
SEQ
... initialise
... main cycle

We need one flag for each
monitored channel ...




controll llimits
in[]

alarm

mon.2

--{{{ initialise
SEQ
limits ? lo; hi
SEQ i = 0 FOR SIZE ok
k[i] := TRUE X
ok[i] —

=13} /
@ten to all @




controll llimits
in[]

alarm

mon.2

--{{{ main cycle

WHILE TRUE
PRI ALT
|lg}l(f§ ? lo; hi This guard is pre-cor@
INT line:

control ? line; ok[line]

SKIP N\
ALT i@ = 0 FOR SIZE in? 4‘——”;>
INT x:

ok[i] & in[i] ? x <&
IF
(x < 10) OR (x > hi)
alarm ! i; X
TRUE
SKIP

-=}}}



Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




Counted Array Protocol

Previous message structures (PROTOCOLSs) have always had
a known and fixed size.

We now describe messages whose components all have the
same type (in fact, they are an array) but whose size is part
of the message ...

PROTOCOL PACKET 1S INT::[JREAL64:



Counted Array Protocol

PROTOCOL PACKET IS INT::[]REALGA:

The sending process outputs a count (which must be >= 0)
followed by (::) an array (whose size must be >= count).

The types of the count and the array must conform to the
PROTOCOL.

Only the first count elements of the array are sent (copied).



Counted Array Protocol

In general ...

PROTOCOL <name> IS <discrete-type>::[]<type>:
chosen

The count value must be non-negative and only the first
count elements of the array are communicated.




Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




Counted Array Protocol (Example)

This is another multiplexor/ de-multiplexor example.

This time the messages being multiplexed are ‘packets’ of
data, whose size is given at run-time.

Initially, the elements within these ‘packets’ are all INTSs.

And we will program them at a low-level, using CHAN INTSs.

Afterwards, we will program them using a counted array.



out

multiplex

hS .

Variable length packets of data:
a “length” count followed by that number of
integers (e.g. 5, -77, 2, 12, 4, 99)

J

Channel index followed by a
variable length packet

out[]

\ 4

de.multiplex




in[]

multiplex

PROC multiplex ([JCHAN INT in?, CHAN INT out!)
WHILE TRUE

ALT & = 0 FOR SIZE iIn? < eplicated ALT
INT Iength \

in[i] ? length
SEQ
out ! i @
out ! Iength <
SEQ j = 0 FOR length <::]§£EE::>

INT x:

SEQ
infi] ? x
out ! Xx

rest of ‘packet’




out[]

de.multiplex

PROC de.multiplex (CHAN INT in?, [JCHAN INT out!)
WHILE TRUE
INT i, length:
SEQ

in 21 <« index

in ? length <«

out[i] ! length < @
SEQ j = 0 FOR length
INT Xx:
SEQ

in ? X
outf[i] ! x

rest of ‘packet’




Counted Array Protocol (Example)

PROTOCOL PACKET IS INT::[]REAL64:

PROTOCOL INDEX.PACKET IS INT; PACKET:

The last Is equivalent to ...

PROTOCOL INDEX.PACKET IS INT; INT::[JREAL64:




in[]
out
N .

Variable length packets of data:
a “length” count followed by that number of
integers (e.g. 5, -77, 2, 12, 4, 99)

J

Channel index followed by a
variable length packet

iNn

out[]

de.multiplex X




in[]

multiplex

PROC multiplex ([JCHAN INT in?, CHAN INT out!)
WHILE TRUE

ALT & = 0 FOR SIZE iIn? < eplicated ALT
INT Iength \

in[i] ? length
SEQ
out ! i @
out ! Iength <
SEQ j = 0 FOR length <::]§£EE::>

INT x:

SEQ
infi] ? x
out ! Xx

rest of ‘packet’




in[]

_ out
multiplex .
PROC multiplex ([]JREAL64 buffer,
[JCHAN PACKET in?,
CHAN INDEX.PACKET out!)
WHILE TRUE /////”___“::::>
ALT @ = 0 FOR SIZE iIn? < replicated ALT
INT length: \
in[i] ? length::buffer
out ! i; length::buffer @
User supplies multiplex with a buffer guarded process

sufficiently large for all messages that will
be passed through this component.




out[]

de.multiplex

PROC de.multiplex (CHAN INT in?, [JCHAN INT out!)
WHILE TRUE
INT i, length:
SEQ

in 21 <« index

in ? length <«

out[i] ! length < @
SEQ j = 0 FOR length
INT Xx:
SEQ

in ? X
outf[i] ! x

rest of ‘packet’




out[]

\ 4

de.multiplex

PROC de.multiplex ([]JREAL64 buffer,
CHAN INDEX.PACKET in?,
[JCHAN PACKET out!)

WHILE TRUE
INT 1, length:
SEQ A/‘/*
in ? 1; Iength::buﬁ’? rest of ‘packet’

out[i] ! length::buffer

User supplies de.mulltiplex with a buffer sufficiently large
for all messages that will be passed through this component.




Counted Array Protocol

Gives us a higher level expression for this communication
structure: a count followed by (an array of) count items.

Gives us shorter and easier to write and understand code.

Allows array components of any occam-7t type (not just INT).

Yields much faster code (than directly programming the loops).

But requires bu

fer space to hold a complete message —

whereas the low-level loop code worm-holed the message
through, needing just two INTs (one for the length and one

for each INT element of the message).



Message Protocols

Primitive type protocols ...
Sequential protocols ...

A more flexible multiplexer ...
Three monitors ...

Counted array protocols ...
A packet multiplexer ...

Variant protocols ...




Variant Protocol

Often we need to send different kinds (i.e. protocols) of
message between a pair of processes.

One way would be to connect them with a set of different
channels — each carrying one of the different protocols:

The sender process just uses the appropriate channel for
the message it wants to send.

The receiver process listens on all channels (using an ALT)
from the sender.




Variant Protocol

occam-T7t provides a direct (and more efficient) mechanism
— the variant (or CASE) PROTOCOL - that allows different

kinds of message to be sent along a single channel.

‘ I

The sender process prefixes each message with a tag BYTE
that identifies its structure. Each variant has a unique tag.

The receiver process listens on the one channel for the tag
BYTE, using that in a CASE (switching) mechanism to input
the rest of the message.




Example Protocols

PROTOCOL STRING 1S BYTE::[]BYTE:

countedrarray

PROTOCOL PACKET 1S INT::[]JREAL32:

PROTOCOL MESSAGE IS STRING; PACKET: seguenitiel

PROTOCOL ALTERNATIVES
CASE
dog; INT
cat; STRING
pig; PACKET
canary; MESSAGE
poison




Variant Protocol

PROTOCOL ALTERNATIVES
CASE
dog; INT

cat; STRING
user-chosen _ pig; PACKET
names canary; MESSAGE
poison
CHAN ALTERNATIVES c:
A C PAR
A (c!)
B (c?)




Variant Protocol

PROC A (CHAN ALTERNATIVES out!)

VAL []BYTE s IS '""sat on the mat":
[255]BYTE a: A out
[1000]REAL32 b, c:

SEQ
... Ainitalise a, b and c
out ! dog; 42 | " " nt.
out ! cat: 6::s Fam Only the first 6 BYTEs of s (*"'sat on'") are se
out ! pig; (SIZE b)::b
out ! canary; (BYTE (SIZE a))::a; (SIZE b)::b
-.-. more stuff
out ! poison The SIZE of an array is always an INT. So,

- | this must be cast into the BYTE needed for

the first counted array component of the
canary variant.




Variant Protocol

PROC B (CHAN ALTERNATIVES i1n?) in

[255]BYTE s:

[1024]REAL32 Xx:

INT state:

INITIAL BOOL running IS TRUE:

WHILE running
process input alternatives



Variant Protocol

WHILE running
in ? CASE

dog; state
... deal with this variant
BYTE size:
cat; slze::s
... deal with this variant
INT size:
pig; size::Xx
... deal with this variant
BYTE size.s:
INT size.x:
canary; slize.s::S; slize.X::X
... deal with this variant
poison
running := FALSE

[255]BYTE s:
[1024]REAL32 x:
INT state:

BOOL running:




Variant Protocol

CHAN ALTERNATIVES c:
A C PAR
A (c!)
B (c?)

PROTOCOL ALTERNATIVES Notice the higher-level
CASE protocol employed here ...
dog; INT
cat; STRING
pig; PACKET If the polison variant Is
canary; MESSAGE sent, it is the last message
_poison sent on the channel.




	Message Protocols
	Message Protocols
	Message Protocols
	Array Communication
	Array Communication
	Array Communication
	Primitive Communication
	Primitive Communication
	Primitive Communication
	Array Assignment
	Primitive Assignment
	Message Protocols
	Message Protocols
	Sequential Protocol
	Sequential Protocol
	Sequential Protocol
	Sequential Protocol
	Sequential Protocol
	Sequential Protocol
	Message Protocols
	A Simple Multiplexor (seen before)
	A Matching De-Multiplexor (seen)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Multiplexor Application (Example)
	Message Protocols
	A Simple Data Monitor
	A Simple Data Monitor
	A Simple Data Monitor
	A Better Data Monitor
	A Better Data Monitor
	Message Protocols
	Counted Array Protocol
	Counted Array Protocol
	Counted Array Protocol
	Message Protocols
	Counted Array Protocol (Example)
	Counted Array Protocol (Example)
	Counted Array Protocol
	Message Protocols
	Variant Protocol
	Variant Protocol
	Example Protocols
	Variant Protocol
	Variant Protocol
	Variant Protocol
	Variant Protocol
	Variant Protocol

