
26-Mar-07 Copyright P.H.Welch 1

Shared Channels etc.Shared Channels Shared Channels etc.etc.

Peter Welch Peter Welch ((p.h.welch@kent.ac.ukp.h.welch@kent.ac.uk))
Computing Laboratory, University of Kent at CanterburyComputing Laboratory, University of Kent at Canterbury

Co631 (Concurrency)

26-Mar-07 Copyright P.H.Welch 2

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 3

Unshared Channel-EndsUnshared Channel-Ends

So far, all channels have been strictly So far, all channels have been strictly pointpoint--toto--pointpoint ……

BBAA
cc

Only Only oneone process may output to it process may output to it ……

And only And only oneone process may input from it process may input from it ……

clean and simpleclean and simple

26-Mar-07 Copyright P.H.Welch 4

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

Here is a channel whose Here is a channel whose writingwriting--endend is is SHAREDSHARED ……

serverserver
cc

Any numberAny number of processes may output to it of processes may output to it ……

Only Only oneone process may input from it process may input from it ……

However, only However, only oneone of outputting processesof outputting processes may use it at may use it at
one time one time …… they form an orderly they form an orderly (FIFO)(FIFO) queue for this.queue for this.

26-Mar-07 Copyright P.H.Welch 5

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

Here is a channel whose Here is a channel whose writingwriting--endend is is SHAREDSHARED ……

serverserver
cc

SHARED ! CHANSHARED ! CHAN MY.PROTOCOLMY.PROTOCOL cc::
PARPAR
PAR i = 0 FOR nPAR i = 0 FOR n
smiley smiley ((c!c!))

serverserver ((c?c?))

This allows the writing endThis allows the writing end
to beto be SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 6

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

The process at the The process at the readingreading--endend sees a normal channel sees a normal channel ……

serverserver

PROC server (CHAN MY.PROTOCOL in?)PROC server (CHAN MY.PROTOCOL in?)
... normal coding... normal coding

::
server does
not care which
process sends
it messages.

serverserver does does
not care which not care which
process sends process sends
it messages.it messages.

serverserver is unaware that the other is unaware that the other
end of its input channel is end of its input channel is SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 7

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

The process at the The process at the writingwriting--endend sees a sees a SHAREDSHARED channel channel ……

serverserver

PROC smiley (SHARED CHAN MY.PROTOCOL out!)PROC smiley (SHARED CHAN MY.PROTOCOL out!)
... smiley code body... smiley code body

::

smileysmiley is aware that its endis aware that its end
of the channel is of the channel is SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 8

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

A A SHAREDSHARED channel must be channel must be claimedclaimed before it can be used before it can be used ……

serverserver

PROC smiley (SHARED CHAN MY.PROTOCOL out!) PROC smiley (SHARED CHAN MY.PROTOCOL out!)

:

SEQSEQ
... stuff... stuff
CLAIM out!CLAIM out!
... write to the ... write to the ‘‘out!out!’’ channelchannel

... more stuff... more stuff Cannot use Cannot use ‘‘out!out!’’ here here
(unless similarly claimed)(unless similarly claimed):

26-Mar-07 Copyright P.H.Welch 9

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

A A SHAREDSHARED channel must be channel must be claimedclaimed before it can be used before it can be used ……

serverserver

PROC smiley (SHARED CHAN MY.PROTOCOL out!)PROC smiley (SHARED CHAN MY.PROTOCOL out!)
SEQSEQ
... stuff... stuff
CLAIM out!CLAIM out!
... write to the ... write to the ‘‘out!out!’’ channelchannel

... more stuff... more stuff
::

This process waits hereThis process waits here
…… until ituntil it’’s its turn s its turn ……

26-Mar-07 Copyright P.H.Welch 10

Shared Channel-Ends (Writers)Shared Channel-Ends (Writers)

A A SHAREDSHARED channel must be channel must be claimedclaimed before it can be used before it can be used ……

serverserver

PROC smiley (SHARED CHAN MY.PROTOCOL out!)PROC smiley (SHARED CHAN MY.PROTOCOL out!)
SEQSEQ
... stuff... stuff
CLAIM out!CLAIM out!
... write to the ... write to the ‘‘out!out!’’ channelchannel

... more stuff... more stuff
::

as many times as you like as many times as you like ……

26-Mar-07 Copyright P.H.Welch 11

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

Here is a channel whose Here is a channel whose readingreading--endend is is SHAREDSHARED ……

cc
generatorgenerator

Any numberAny number of processes may input fromof processes may input from it it ……

Only Only oneone process may output to it process may output to it ……

However, only However, only oneone of inputting processesof inputting processes may use it at may use it at
one time one time …… they form an orderly they form an orderly (FIFO)(FIFO) queue for this.queue for this.

26-Mar-07 Copyright P.H.Welch 12

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

Here is a channel whose Here is a channel whose readingreading--endend is is SHAREDSHARED ……

cc
generatorgenerator

SHARED ? CHANSHARED ? CHAN MY.PROTOCOLMY.PROTOCOL cc::
PARPAR
PAR i = 0 FOR nPAR i = 0 FOR n
smiley smiley ((c?c?))

generatorgenerator ((c!c!))

This allows the reading endThis allows the reading end
to beto be SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 13

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

The process at the The process at the writingwriting--endend sees a normal channel sees a normal channel ……

generatorgenerator

generator does
not care which
process takes its
messages.

generatorgenerator does does
not care which not care which
process takes its process takes its
messages.messages.

PROC generatorPROC generator (CHAN MY.PROTOCOL out!)(CHAN MY.PROTOCOL out!)
... normal coding... normal coding

::

generatorgenerator is unaware that the other is unaware that the other
end of its output channel is end of its output channel is SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 14

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

The process at the The process at the readingreading--endend sees a sees a SHAREDSHARED channel channel ……

generatorgenerator

PROC smiley (SHARED CHAN MY.PROTOCOL in?)PROC smiley (SHARED CHAN MY.PROTOCOL in?)
... smiley code body... smiley code body

::

smileysmiley is aware that its endis aware that its end
of the channel is of the channel is SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 15

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

A A SHAREDSHARED channel must be channel must be claimedclaimed before it can be used before it can be used ……

generatorgenerator

PROC smiley (SHARED CHAN MY.PROTOCOL in?)PROC smiley (SHARED CHAN MY.PROTOCOL in?)

:

SEQSEQ
... stuff... stuff
CLAIM in?CLAIM in?
... read from the ... read from the ‘‘in?in?’’ channelchannel

... more stuff... more stuff Cannot use Cannot use ‘‘in?in?’’ here here
(unless similarly claimed)(unless similarly claimed):

26-Mar-07 Copyright P.H.Welch 16

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

A A SHAREDSHARED channel must be channel must be claimedclaimed before it can be used before it can be used ……

generatorgenerator

PROC smiley (SHARED CHAN MY.PROTOCOL in?)PROC smiley (SHARED CHAN MY.PROTOCOL in?)
SEQSEQ
... stuff... stuff
CLAIM in?CLAIM in?
... read from the ... read from the ‘‘in?in?’’ channelchannel

... more stuff... more stuff
::

This process waits hereThis process waits here
…… until ituntil it’’s its turn s its turn ……

26-Mar-07 Copyright P.H.Welch 17

Shared Channel-Ends (Readers)Shared Channel-Ends (Readers)

A A SHAREDSHARED channel must be channel must be claimedclaimed before it can be used before it can be used ……

generatorgenerator

as many times as you like as many times as you like

PROC smiley (SHARED CHAN MY.PROTOCOL in?)PROC smiley (SHARED CHAN MY.PROTOCOL in?)
SEQSEQ
... stuff... stuff
CLAIM in?CLAIM in?
... read from the ... read from the ‘‘in?in?’’ channelchannel

... more stuff... more stuff
::

……

26-Mar-07 Copyright P.H.Welch 18

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
Here is a channel both of whose ends are Here is a channel both of whose ends are SHAREDSHARED ……

cc

Any numberAny number of processes may output to itof processes may output to it ……

Any numberAny number of processesof processes may input from it may input from it ……

However, only However, only oneone outputting process and outputting process and oneone inputting inputting
processprocess may use it at one time may use it at one time …… they form an orderly they form an orderly
(FIFO)(FIFO) queue queue at each endat each end..

26-Mar-07 Copyright P.H.Welch 19

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
Here is a channel both of whose ends are Here is a channel both of whose ends are SHAREDSHARED ……

cc

SHARED CHANSHARED CHAN MY.PROTOCOLMY.PROTOCOL cc::
PARPAR
PAR i = 0 FOR nPAR i = 0 FOR n
blue.smileyblue.smiley ((c!c!))

PAR i = 0 FOR mPAR i = 0 FOR m
green.smileygreen.smiley ((c?c?))

This allows both endsThis allows both ends
to beto be SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 20

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
The processes at the The processes at the writingwriting--endend see a see a SHAREDSHARED channel channel ……

blue.smiley will
have to CLAIM its
‘out!’ channel to
be able to use it.

blue.smileyblue.smiley will will
have to have to CLAIMCLAIM its its
‘‘out!out!’’ channel to channel to
be able to use it.be able to use it.

PROC PROC blue.smileyblue.smiley (SHARED CHAN MY.PROTOCOL out!)(SHARED CHAN MY.PROTOCOL out!)
... ... blue.smileyblue.smiley code bodycode body

::

blue.smileyblue.smiley is aware that itsis aware that its
end of the channel is end of the channel is SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 21

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
The processes at the The processes at the writingwriting--endend see a see a SHAREDSHARED channel channel ……

blue.smiley will
have to CLAIM its
‘out!’ channel to
be able to use it.

blue.smileyblue.smiley will will
have to have to CLAIMCLAIM its its
‘‘out!out!’’ channel to channel to
be able to use it.be able to use it.

blue.smileyblue.smiley is aware that itsis aware that its
end of the channel is end of the channel is SHAREDSHARED..

blue.smiley
must not care which
process takes its
messages.

blue.smileyblue.smiley
must not care which must not care which
process takes its process takes its
messages.messages.

PROC PROC blue.smileyblue.smiley (SHARED CHAN MY.PROTOCOL out!)(SHARED CHAN MY.PROTOCOL out!)
... ... blue.smileyblue.smiley code bodycode body

::

blue.smileyblue.smiley is unaware of the is unaware of the
sharingsharing status at the other endstatus at the other end..

26-Mar-07 Copyright P.H.Welch 22

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
The processes at the The processes at the readingreading--endend see a see a SHAREDSHARED channel channel ……

PROC PROC green.smileygreen.smiley (SHARED CHAN MY.PROTOCOL in?)(SHARED CHAN MY.PROTOCOL in?)
... ... green.smileygreen.smiley code bodycode body

::
green.smiley will
have to CLAIM its
‘in?’ channel to
be able to use it.

green.smileygreen.smiley will will
have to have to CLAIMCLAIM its its
‘‘in?in?’’ channel to channel to
be able to use it.be able to use it.

green.smileygreen.smiley is aware that itsis aware that its
end of the channel is end of the channel is SHAREDSHARED..

26-Mar-07 Copyright P.H.Welch 23

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
The processes at the The processes at the readingreading--endend see a see a SHAREDSHARED channel channel ……

PROC PROC green.smileygreen.smiley (SHARED CHAN MY.PROTOCOL in?)(SHARED CHAN MY.PROTOCOL in?)
... ... green.smileygreen.smiley code bodycode body

::
green.smiley will
have to CLAIM its
‘in?’ channel to
be able to use it.

green.smileygreen.smiley will will
have to have to CLAIMCLAIM its its
‘‘in?in?’’ channel to channel to
be able to use it.be able to use it.

green.smileygreen.smiley is aware that itsis aware that its
end of the channel is end of the channel is SHAREDSHARED..

green.smiley
must not care which
process sends it
messages.

green.smileygreen.smiley
must not care which must not care which
process sends it process sends it
messages.messages.

green.smileygreen.smiley is unaware of the is unaware of the
sharingsharing status at the other endstatus at the other end..

26-Mar-07 Copyright P.H.Welch 24

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
For in

fo only …

For in
fo only

For in
fo only ……

PROBLEM:PROBLEM: once a once a sendersender and and receiverreceiver process have made process have made
their claims, they can do business across the shared channel their claims, they can do business across the shared channel
bundle. Whilst this is happening, all other bundle. Whilst this is happening, all other sendersender and and receiverreceiver
processes are locked out from the communication resource.processes are locked out from the communication resource.

SOLUTION:SOLUTION: use the shared channel structure just to enable use the shared channel structure just to enable
senderssenders and and receiversreceivers to find each other and pass between to find each other and pass between
them a them a mobilemobile private channel. Then, let go of the shared private channel. Then, let go of the shared
channel and transact business over the private connection.channel and transact business over the private connection.

26-Mar-07 Copyright P.H.Welch 25

Shared Channel-Ends (Both)Shared Channel-Ends (Both)
For in

fo only …

For in
fo only

For in
fo only ……

A A sendingsending process constructs both ends of an process constructs both ends of an unsharedunshared
mobilemobile channel and channel and claimsclaims the the writingwriting--endend of theof the shared shared
channel. When successful, it sends the channel. When successful, it sends the readingreading--endend of its of its
mobilemobile channelchannel down the shared channel. This blocks until a down the shared channel. This blocks until a
readingreading process process claimsclaims its end of the shared channelits end of the shared channel and and
inputs that inputs that readingreading--endend of the of the mobilemobile..

‘Advanced’ module …‘‘AdvancedAdvanced’’ module module ……

26-Mar-07 Copyright P.H.Welch 26

Shared Channel-Ends (Both)Shared Channel-Ends (Both)

The The sendingsending and and readingreading processes now exit theirprocesses now exit their claimsclaims on on
thethe shared channel and conduct business over their private shared channel and conduct business over their private
connection. Meanwhile, other connection. Meanwhile, other senderssenders and and readersreaders can use can use
the shared channel similarly and find each other.the shared channel similarly and find each other.

For in
fo only …

For in
fo only

For in
fo only ……

Once each Once each sendingsending and and readingreading pairpair finish their business, finish their business,
there is a mechanism for the there is a mechanism for the readerreader to return its to return its readingreading--endend
of the of the mobilemobile channelchannel back to the back to the sendersender, who may then , who may then
reuse it to send to someone else.reuse it to send to someone else.

‘Advanced’ module …‘‘AdvancedAdvanced’’ module module ……

26-Mar-07 Copyright P.H.Welch 27

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 28

Protocol Inheritance (Variant)Protocol Inheritance (Variant)

AA variantvariant (or (or CASECASE)) PROTOCOLPROTOCOL can can extendextend previously previously
defined ones:defined ones:

PROTOCOL C EXTENDS A, B:PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, B:B:

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison

:

PROTOCOLPROTOCOL AA
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
poisonpoison

::

PROTOCOL B
CASE
blue; INT::[]REAL64
poison

:

PROTOCOLPROTOCOL BB
CASECASE
blue; INT::[]REAL64blue; INT::[]REAL64
poisonpoison

::

26-Mar-07 Copyright P.H.Welch 29

Protocol Inheritance (Variant)Protocol Inheritance (Variant)

Processes with parameter channels carrying the Processes with parameter channels carrying the AA or or BB
protocols may be plugged into channels carrying protocols may be plugged into channels carrying CC::

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison

:

PROTOCOL APROTOCOL A
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
poisonpoison

::

PROTOCOL B
CASE
blue; INT::[]REAL64
poison

:

PROTOCOL BPROTOCOL B
CASECASE
blue; INT::[]REAL64blue; INT::[]REAL64
poisonpoison

::

PROTOCOL C EXTENDS A, B:PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, B:B:

26-Mar-07 Copyright P.H.Welch 30

Protocol Inheritance (Variant)Protocol Inheritance (Variant)

Processes with parameter channels carrying the Processes with parameter channels carrying the AA or or BB
protocols may be plugged into channels carrying protocols may be plugged into channels carrying CC::

serve.cserve.c

gen.agen.a

serviceservice

gen.bgen.b

SHARED ! CHANSHARED ! CHAN C C serviceservice::
PARPAR
serve.cserve.c ((serviceservice??))
gen.agen.a ((serviceservice!!))
gen.bgen.b ((serviceservice!!))

26-Mar-07 Copyright P.H.Welch 31

Protocol Inheritance (Variant)Protocol Inheritance (Variant)

Processes with parameter channels carrying the Processes with parameter channels carrying the AA or or BB
protocols may be plugged into channels carrying protocols may be plugged into channels carrying CC::

serve.cserve.c

gen.agen.a

serviceservice

gen.bgen.b

PROC PROC gen.agen.a (CHAN A out!)(CHAN A out!)
... ... gen.agen.a code bodycode body

:

PROC PROC gen.bgen.b (CHAN B out!)(CHAN B out!)
... ... gen.bgen.b code bodycode body
:: :

26-Mar-07 Copyright P.H.Welch 32

Protocol Inheritance (Variant)Protocol Inheritance (Variant)

The extended protocol carries a The extended protocol carries a mergemerge of the variants in the of the variants in the
protocols it is inheriting.protocols it is inheriting.

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison

:

PROTOCOL APROTOCOL A
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
poisonpoison

::

PROTOCOL B
CASE
blue; INT::[]REAL64
poison

:

PROTOCOL BPROTOCOL B
CASECASE
blue; INT::[]REAL64blue; INT::[]REAL64
poisonpoison

::

PROTOCOL C EXTENDS A, B:PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, B:B:

26-Mar-07 Copyright P.H.Welch 33

Protocol Inheritance (Variant)Protocol Inheritance (Variant)

The extended protocol carries a The extended protocol carries a mergemerge of the variants in the of the variants in the
protocols it is inheriting. It is as though it were declared:protocols it is inheriting. It is as though it were declared:

PROTOCOL C
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
blue; INT::[]REAL64
poison

:

PROTOCOL CPROTOCOL C
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
blue; INT::[]REAL64blue; INT::[]REAL64
poisonpoison

::

Note:Note: the above is the above is notnot the same as before the same as before …… a channel a channel
carrying carrying thisthis version of the version of the CC protocol could protocol could notnot be plugged be plugged
into processes expecting into processes expecting AA or or BB channels.channels.

The extended protocol carries a The extended protocol carries a mergemerge of the variants in the of the variants in the
protocols it is inheriting.protocols it is inheriting.

26-Mar-07 Copyright P.H.Welch 34

Protocol Inheritance (Variant)Protocol Inheritance (Variant)
Rule:Rule: protocols being extended together protocols being extended together eithereither have no have no
tagtag names in common names in common oror the structures associated with the structures associated with
common common tagstags must be identical:must be identical:

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison

:

PROTOCOL APROTOCOL A
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
poisonpoison

::

PROTOCOL B
CASE
blue; INT::[]REAL64
poison

:

PROTOCOL BPROTOCOL B
CASECASE
blue; INT::[]REAL64blue; INT::[]REAL64
poisonpoison

::

PROTOCOL C EXTENDS A, B:PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, B:B: ☺☺ ☺☺ ☺☺

CC will compile will compile …… compatible variants compatible variants ((poisonpoison)) from from AA and and BB

26-Mar-07 Copyright P.H.Welch 35

Protocol Inheritance (Variant)Protocol Inheritance (Variant)
Rule:Rule: protocols being extended together protocols being extended together eithereither have no have no
tagtag names in common names in common oror the structures associated with the structures associated with
common common tagstags must be identical:must be identical:

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison; INT

:

PROTOCOL APROTOCOL A
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
poison; INTpoison; INT

::

PROTOCOL B
CASE
blue; INT::[]REAL64
poison; BYTE

:

PROTOCOL BPROTOCOL B
CASECASE
blue; INT::[]REAL64blue; INT::[]REAL64
poison; BYTEpoison; BYTE

::

PROTOCOL C EXTENDS A, B:PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, B:B: // // //

CC will not compile will not compile …… incompatible variants incompatible variants ((poisonpoison)) from from AA and and BB

26-Mar-07 Copyright P.H.Welch 36

Protocol Inheritance (Variant)Protocol Inheritance (Variant)
Protocols extending other protocols may also add in Protocols extending other protocols may also add in
their own variants:their own variants:

PROTOCOL C EXTENDS A, B
CASE
mustard; INT; BYTE::[]BYTE
aubergine; REAL64; BYTE

:

PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, BB
CASECASE
mustard; INT; BYTE::[]BYTEmustard; INT; BYTE::[]BYTE
aubergine; REAL64; BYTEaubergine; REAL64; BYTE

::

Rule:Rule: extra variants so added must have extra variants so added must have eithereither different different
tagtag names to any variants being inherited names to any variants being inherited oror identical identical
structures.structures.

26-Mar-07 Copyright P.H.Welch 37

Protocol Inheritance (Variant)Protocol Inheritance (Variant)
Current implementation restriction:Current implementation restriction: all protocols in an all protocols in an
inheritance hierarchy must be declared in the same file.inheritance hierarchy must be declared in the same file.

PROTOCOL C EXTENDS A, B
CASE
mustard; INT; BYTE::[]BYTE
aubergine; REAL64; BYTE

:

PROTOCOL C PROTOCOL C EXTENDSEXTENDS AA,, BB
CASECASE
mustard; INT; BYTE::[]BYTEmustard; INT; BYTE::[]BYTE
aubergine; REAL64; BYTEaubergine; REAL64; BYTE

::

PROTOCOL A
CASE
red; INT; BYTE::[]BYTE
green; BYTE; BYTE; INT
poison

:

PROTOCOL APROTOCOL A
CASECASE
red; INT; BYTE::[]BYTEred; INT; BYTE::[]BYTE
green; BYTE; BYTE; INTgreen; BYTE; BYTE; INT
poisonpoison

::

PROTOCOL B
CASE
blue; INT::[]REAL64
poison

:

PROTOCOL BPROTOCOL B
CASECASE
blue; INT::[]REAL64blue; INT::[]REAL64
poisonpoison

::

26-Mar-07 Copyright P.H.Welch 38

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 39

Process StructuresProcess StructuresProcess Structures

IFIF
WHILEWHILE

CASECASE

SEQSEQ
PARPAR

ALTALT

There are 6 process constructors There are 6 process constructors ……

New!New!New!

26-Mar-07 Copyright P.H.Welch 40

CASE ProcessCASE Process

BOOL, BYTE, INT,
INT16, INT32, INT64
BOOL, BYTE, INT, BOOL, BYTE, INT,
INT16, INT32, INT64INT16, INT32, INT64

CASE CASE <expression><expression>
must be of a must be of a

discrete type discrete type ……<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

a commaa comma--separated list of separated list of
compilercompiler--known values known values

from that type from that type ……

26-Mar-07 Copyright P.H.Welch 41

CASE ProcessCASE Process

CASE CASE <expression><expression>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

The <expression>
is evaluated.
TheThe <expression><expression>
is evaluated. is evaluated.

The first <process>
whose <case-list>
contains the value of
that <expression>
is executed.

The first The first <process><process>
whose whose <case<case--list>list>
contains the value of contains the value of
that that <expression><expression>
is executed.is executed.

If no <case-list>
contains the value of
that <expression>,
this process SKIPs.

If no If no <case<case--list>list>
contains the value of contains the value of
that that <expression><expression>, ,
this process this process SKIPSKIPss..

26-Mar-07 Copyright P.H.Welch 42

CASE ProcessCASE Process

An optional ELSE
<process> may be
appended …

An optional An optional ELSEELSE
<process><process> may be may be
appended appended ……

CASE CASE <expression><expression>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

<process><process><process>

<case<case--list>list>

If no <case-list>
contains the value of
that <expression>,
the ELSE <process>
is executed.

If no If no <case<case--list>list>
contains the value of contains the value of
that that <expression><expression>, ,
the the ELSEELSE <process><process>
is executed.is executed.

<process><process><process>

ELSEELSE

26-Mar-07 Copyright P.H.Welch 43

CASE ProcessCASE Process
CASE CASE chch

'a', 'e', 'i', 'o', 'u''a', 'e', 'i', 'o', 'u'
... deal with lower... deal with lower--case vowelscase vowels

'A', 'E', 'I', 'O', 'U''A', 'E', 'I', 'O', 'U'
... deal with upper... deal with upper--case vowelscase vowels

'0', '1', '2', '3', '4''0', '1', '2', '3', '4'
... deal with these digits... deal with these digits

'?', '!', 'h', 'H', '**''?', '!', 'h', 'H', '**'
... deal with these symbols... deal with these symbols

ELSEELSE
... none of the above... none of the above

Java / C has a similar mechanism – the switch statement …Java / C has a similar mechanism Java / C has a similar mechanism –– the the switchswitch statement statement ……

26-Mar-07 Copyright P.H.Welch 44

Java switch StatementJava switch Statement
switch (switch (chch) {) {

case case 'a''a': case : case 'e''e': case: case 'i''i': case: case 'o''o': case: case 'u''u'::
... deal with lower... deal with lower--case vowelscase vowels
break;break;

case case 'A''A': case : case 'E''E': case: case 'I''I': case: case 'O''O': case: case 'U''U'::
... deal with upper... deal with upper--case vowelscase vowels
break;break;

case case '0''0': case : case '1''1': case: case '2''2': case: case '3''3': case: case '4''4'::
... deal with these digits... deal with these digits
break;break;

case case '?''?': case : case '!''!': case: case 'h''h': case: case 'H''H': case: case '*''*'::
... deal with these symbols... deal with these symbols
break;break;

default:default:
... none of the above... none of the above

}}

26-Mar-07 Copyright P.H.Welch 45

CASE ProcessCASE Process
CASE CASE chch

'a', 'e', 'i', 'o', 'u''a', 'e', 'i', 'o', 'u'
... deal with lower... deal with lower--case vowelscase vowels

'A', 'E', 'I', 'O', 'U''A', 'E', 'I', 'O', 'U'
... deal with upper... deal with upper--case vowelscase vowels

'0', '1', '2', '3', '4''0', '1', '2', '3', '4'
... deal with these digits... deal with these digits

'?', '!', 'h', 'H', '**''?', '!', 'h', 'H', '**'
... deal with these symbols... deal with these symbols

ELSEELSE
... none of the above... none of the above

… but it would be
more complicated and
slower in execution.

…… but it would be but it would be
more complicated and more complicated and
slower in execution.slower in execution.

This could, of course,
be done with an IF …
This could, of course, This could, of course,
be done with an be done with an IFIF ……

26-Mar-07 Copyright P.H.Welch 46

CASE ProcessCASE Process
IFIF

((chch = 'a') OR (= 'a') OR (chch = 'e') OR (= 'e') OR (chch = 'i') OR= 'i') OR
((chch = 'o') OR (= 'o') OR (chch = 'u')= 'u')

... deal with lower... deal with lower--case vowelscase vowels
((chch = 'A') OR (= 'A') OR (chch = 'E') OR (= 'E') OR (chch = 'I') OR= 'I') OR
((chch = 'O') OR (= 'O') OR (chch = 'U')= 'U')

... deal with upper... deal with upper--case vowelscase vowels
((chch = '0') OR (= '0') OR (chch = '1') OR (= '1') OR (chch = '2') OR= '2') OR
((chch = '3') OR (= '3') OR (chch = '4')= '4')

... deal with these digits... deal with these digits
((chch = '?') OR (= '?') OR (chch = '!') OR (= '!') OR (chch = 'h') OR= 'h') OR
((chch = 'H') OR (= 'H') OR (chch = '**')= '**')

... deal with these symbols... deal with these symbols
TRUETRUE

... none of the above
… but it would be
more complicated and
slower in execution.

…… but it would be but it would be
more complicated and more complicated and
slower in execution.slower in execution.

... none of the above

26-Mar-07 Copyright P.H.Welch 47

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 48

Parallel AssignmentParallel Assignment
Multiple expressions can be assigned to multiple variables Multiple expressions can be assigned to multiple variables
(of compatible types) (of compatible types) inin parallelparallel::

REAL32 a.tmp:
INT b.tmp, c.tmp:
SEQ

PAR
a.tmp := x
b.tmp := y+1
c.tmp := z-2

PAR
a := a.tmp
b := b.tmp
c := c.tmp

REAL32 REAL32 a.tmpa.tmp::
INT INT b.tmpb.tmp, , c.tmpc.tmp::
SEQSEQ

PARPAR
a.tmpa.tmp := x:= x
b.tmpb.tmp := y+1:= y+1
c.tmpc.tmp := z:= z--22

PARPAR
a := a := a.tmpa.tmp
b := b := b.tmpb.tmp
c := c := c.tmpc.tmp

a, b, c := x, y+1, z-2a, b, c := x, y+1, za, b, c := x, y+1, z--22

≡≡

First:First: the RHS the RHS
expressions are expressions are

evaluated evaluated inin parallelparallel. .
Second:Second: the values the values
are assigned to the are assigned to the
target variables target variables inin

parallelparallel..

26-Mar-07 Copyright P.H.Welch 49

Parallel AssignmentParallel Assignment
Multiple expressions can be assigned to multiple variables Multiple expressions can be assigned to multiple variables
(of compatible types) (of compatible types) inin parallelparallel::

a, b, c := x, y+1, z-2a, b, c := x, y+1, za, b, c := x, y+1, z--22 REAL32 a.tmp:
INT b.tmp, c.tmp:
SEQ

PAR
a.tmp := x
b.tmp := y+1
c.tmp := z-2

PAR
a := a.tmp
b := b.tmp
c := c.tmp

REAL32 REAL32 a.tmpa.tmp::
INT INT b.tmpb.tmp, , c.tmpc.tmp::
SEQSEQ

PARPAR
a.tmpa.tmp := x:= x
b.tmpb.tmp := y+1:= y+1
c.tmpc.tmp := z:= z--22

PARPAR
a := a := a.tmpa.tmp
b := b := b.tmpb.tmp
c := c := c.tmpc.tmp

≡≡

Note:Note: parallel usage parallel usage
rulesrules implied by the implied by the
expanded definition expanded definition
apply to the apply to the parallel parallel

assignmentassignment..

26-Mar-07 Copyright P.H.Welch 50

Parallel AssignmentParallel Assignment
Swapping variables breaks no Swapping variables breaks no parallel usage rulesparallel usage rules and is, and is,
therefore, allowed:therefore, allowed:

INT b.tmp, c.tmp:
SEQ

PAR
b.tmp := c
c.tmp := b

PAR
b := b.tmp
c := c.tmp

INT INT b.tmpb.tmp, , c.tmpc.tmp::
SEQSEQ

PARPAR
b.tmpb.tmp := c:= c
c.tmpc.tmp := b:= b

PARPAR
b := b := b.tmpb.tmp
c := c := c.tmpc.tmp

b, c := c, bb, c := c, bb, c := c, b

≡≡
Note:Note: parallel parallel

assignment is not assignment is not
actually actually implementedimplemented

in this way. This in this way. This
transformation just transformation just
defines semantics.defines semantics.

26-Mar-07 Copyright P.H.Welch 51

Parallel AssignmentParallel Assignment
HereHere’’s an example that breaks the s an example that breaks the parallel usage rulesparallel usage rules and, and,
therefore, does not compile:therefore, does not compile:

a[i], i := 4.2, 8a[ia[i], i := 4.2, 8], i := 4.2, 8 REAL32 a.i.tmp:
INT i.tmp:
SEQ

PAR
a.i.tmp := 4.2
i.tmp := 8

PAR
a[i] := a.i.tmp
i := i.tmp

REAL32 REAL32 a.i.tmpa.i.tmp::
INT INT i.tmpi.tmp::
SEQSEQ

PARPAR
a.i.tmpa.i.tmp := 4.2:= 4.2
i.tmpi.tmp := 8:= 8

PARPAR
a[ia[i] :=] := a.i.tmpa.i.tmp
i := i := i.tmpi.tmp

≡≡

Illegal:Illegal: variable variable ‘‘ii’’ is is
being changed and being changed and
observed observed in parallelin parallel..

26-Mar-07 Copyright P.H.Welch 52

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 53

Extended RendezvousExtended Rendezvous
This is a This is a convenienceconvenience –– and itand it’’s free (no impact on runs free (no impact on run--time).time).

SEQ
...
...
in ?? x
... rendezvous block

...

...

The outputting process
is unaware of the

extended nature of the
rendezvous.

The outputting process
is unaware of the

extendedextended nature of the
rendezvous.

wait for input; when wait for input; when
it arrives, it arrives, do notdo not
reschedulereschedule the the

outputting process!outputting process!

reschedule outputting process reschedule outputting process
only afteronly after the rendezvous block the rendezvous block

has terminated.has terminated.

26-Mar-07 Copyright P.H.Welch 54

Extended RendezvousExtended Rendezvous

ALTALT
a a ? ? xx
... react... react

in in ?? ?? xx
... rendezvous block... rendezvous block
... react (optional and outside the rendezvous)... react (optional and outside the rendezvous)

timtim ? AFTER ? AFTER timeouttimeout
... react... react

They can be used as They can be used as ALTALT guards:guards:

guardsguards

26-Mar-07 Copyright P.H.Welch 55

Extended RendezvousExtended Rendezvous
Here is an informal Here is an informal operationaloperational semantics:semantics:

cc c ?? x
... rendezvous block

c c ?? ?? xx
... rendezvous block... rendezvous blockc ! 42 c c ! ! 42 42

≡≡

cc

c.ackc.ack

SEQ
c ? x
... rendezvous block
c.ack ! TRUE

SEQSEQ
c c ? ? xx
... rendezvous block... rendezvous block
c.ackc.ack ! ! TRUETRUE

BOOL any:
SEQ
c ! 42
c.ack ? any

BOOLBOOL anyany::
SEQSEQ
c c ! ! 42 42
c.ackc.ack ? ? anyany

The second version requires an extra channel and for both The second version requires an extra channel and for both
the sender and receiver processes to be modified.the sender and receiver processes to be modified.

26-Mar-07 Copyright P.H.Welch 56

Extended RendezvousExtended Rendezvous
Of course, itOf course, it’’s not implemented that way!s not implemented that way!

cc c ?? x
... rendezvous block

c c ?? ?? xx
... rendezvous block... rendezvous blockc ! 42 c c ! ! 42 42

No new runNo new run--time overheadstime overheads for normal channel for normal channel
communication.communication.
Implementation is very lightweight Implementation is very lightweight (approx. 30 cycles)(approx. 30 cycles)::

no changeno change in outputting process code;in outputting process code;
newnew occam Virtual Machineoccam Virtual Machine instructions for instructions for ““????””..

26-Mar-07 Copyright P.H.Welch 57

Extended Rendezvous TapExtended Rendezvous Tap
Take Take anyany communication channel communication channel ……

We may need to do this for data logging We may need to do this for data logging ((auditingauditing//dede--buggingbugging))
oror for inserting for inserting network driversnetwork drivers to implement the channel over to implement the channel over
a distributed system a distributed system or or ……

BBAA

Question:Question: can we can we taptap the information flowing through the the information flowing through the
channel in a way that is not detectable by the existing channel in a way that is not detectable by the existing
networknetwork??

26-Mar-07 Copyright P.H.Welch 58

Extended Rendezvous TapExtended Rendezvous Tap
Take Take anyany communication channel communication channel ……

Question:Question: can we can we taptap the information flowing through the the information flowing through the
channel in a way that is not detectable by the existing channel in a way that is not detectable by the existing
networknetwork??

BBAA

Answer:Answer: insert a process that behaves similarly to an insert a process that behaves similarly to an idid
process, but uses an process, but uses an extended rendezvousextended rendezvous to forward the to forward the
messages messages …… and anything else it fancies (so long as it and anything else it fancies (so long as it
doesndoesn’’t get blocked indefinitely) t get blocked indefinitely) ……

26-Mar-07 Copyright P.H.Welch 59

Extended Rendezvous TapExtended Rendezvous Tap
Take Take anyany communication channel communication channel ……

tap (id)tap (id)AA BB

loggerlogger

PROC tap (VAL INT id,PROC tap (VAL INT id,
CHAN INT in?, out!,CHAN INT in?, out!,
SHARED CHAN LOG SHARED CHAN LOG loglog!)!)

... tap body... tap body

:

tap (id)tap (id)
inin outout

loglog

:

26-Mar-07 Copyright P.H.Welch 60

Extended Rendezvous TapExtended Rendezvous Tap
Take Take anyany communication channel communication channel ……

tap (id)tap (id)
inin outout

loglog

tap (id)tap (id) BBAA

loggerlogger

{{{ tap body{{{ tap body
WHILE TRUEWHILE TRUE
INT x:INT x:
in ?? xin ?? x
PARPAR
CLAIM log!CLAIM log!
log ! id; xlog ! id; x

out ! xout ! x
}}}}}}

26-Mar-07 Copyright P.H.Welch 61

Extended Rendezvous TapExtended Rendezvous Tap
Take Take anyany communication channel communication channel ……

tap (id)tap (id) BBAA

loggerlogger

Note:Note: the channel has been the channel has been tappedtapped with no change to the with no change to the
sending and receiving processes.sending and receiving processes.
The semantics of a communication between the original The semantics of a communication between the original
processes is unaltered. The sender cannot complete its processes is unaltered. The sender cannot complete its
communication until the receiver takes it communication until the receiver takes it …… and and vicevice--versaversa..

26-Mar-07 Copyright P.H.Welch 62

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 63

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
AliasingAliasing means having means having differentdifferent namesnames for the for the samesame thingthing..

AliasingAliasing is uncontrolled in most existing languages is uncontrolled in most existing languages (such as (such as
Java, C, Pascal, Java, C, Pascal, ……)) and gives rise to and gives rise to semantic complexitiessemantic complexities
that are underestimated. These complexities are subtle, easy that are underestimated. These complexities are subtle, easy
to overlook and cause errors that are hard to find and remove.to overlook and cause errors that are hard to find and remove.

AliasingAliasing is strictly controlled in is strictly controlled in occamoccam--ππ. Only . Only VALVAL constantsconstants
may have different names. Anything else may have different names. Anything else (variable data, (variable data,
channels, timers, channels, timers, ……)) is only allowed is only allowed one name in any one one name in any one
contextcontext. If a . If a new namenew name is introduced is introduced (e.g. through parameter (e.g. through parameter
passing)passing), the , the old nameold name cannot be used within the scope of cannot be used within the scope of
that new name.that new name.

As a result, As a result, occamoccam--ππ variables behave in the way we expect variables behave in the way we expect
variables to behave: variables to behave: they vary if and only if we vary themthey vary if and only if we vary them.. ☺

26-Mar-07 Copyright P.H.Welch 64

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
Reference Abbreviation:Reference Abbreviation:Reference Abbreviation:

<specifier><specifier> <new<new--name>name> ISIS <old<old--name>name>::

<data<data--type>type>
CHAN CHAN <protocol><protocol>
TIMERTIMER
......

<process><process>
scope ofscope of

<new<new--name>name>

<old<old--name>name>
is not allowed in hereis not allowed in here

26-Mar-07 Copyright P.H.Welch 65

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
Reference Abbreviation:Reference Abbreviation:Reference Abbreviation:

<specifier><specifier> <new<new--name>name> ISIS <old<old--name>name>::

<process><process>

<old<old--name>name>
is not allowed in hereis not allowed in here

Any variables Any variables (e.g. array indices)(e.g. array indices)
used in determining used in determining <old<old--name>name> ……

are frozen inare frozen in
the scope ofthe scope of
<new<new--name>name>

26-Mar-07 Copyright P.H.Welch 66

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing

INT nINT n INT iINT iReference Abbreviation:Reference Abbreviation:Reference Abbreviation:
ExampleExampleExample

[200][100]REAL64 x[200][100]REAL64 x CHAN MY.PROTOCOL c!CHAN MY.PROTOCOL c!

<process><process>

INTINT resultresult ISIS nn::
REAL64[]REAL64[] row.irow.i ISIS x[ix[i]]::
CHAN MY.PROTOCOLCHAN MY.PROTOCOL out!out! ISIS c!c!:

Can refer to Can refer to ii
in here, in here, but canbut can’’t t

change itchange it..

Cannot refer Cannot refer
to to nn, , x[ix[i]] or or
c!c! in here.in here.

:

26-Mar-07 Copyright P.H.Welch 67

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing

INT nINT n INT iINT i

ExampleExampleExample
Reference Abbreviation:Reference Abbreviation:Reference Abbreviation:

[200][100]REAL64 x[200][100]REAL64 x CHAN MY.PROTOCOL c!CHAN MY.PROTOCOL c!

<process><process>

INTINT resultresult ISIS nn::
REAL64[]REAL64[] row.irow.i ISIS x[ix[i]]::
CHAN MY.PROTOCOLCHAN MY.PROTOCOL out!out! ISIS c!c!::

Can refer to Can refer to x[jx[j]] here here …… but but
only if (only if (ii <><> jj). If the compiler). If the compiler

doesndoesn’’t know, a runt know, a run--timetime
check will be made.check will be made.

INT jINT j

26-Mar-07 Copyright P.H.Welch 68

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
Value Abbreviation:Value Abbreviation:Value Abbreviation:

VALVAL <data<data--type>type> <name><name> ISIS <expression><expression>::

<expression> <expression>
must match themust match the
<data<data--type>type>

<process><process> scope ofscope of
<name><name>

<name><name> cannot be cannot be
changed in herechanged in here

26-Mar-07 Copyright P.H.Welch 69

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
Value Abbreviation:Value Abbreviation:Value Abbreviation:

VALVAL <data<data--type>type> <name><name> ISIS <expression><expression>::

<process><process>

Any variables used in Any variables used in
<expression><expression> ……

are frozen inare frozen in
the scope ofthe scope of
<name><name>

<name><name> cannot be cannot be
changed in herechanged in here

26-Mar-07 Copyright P.H.Welch 70

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing

REAL64 aREAL64 a REAL64 bREAL64 bValue Abbreviation:Value Abbreviation:Value Abbreviation:
ExampleExampleExample

INT iINT i [200][100]REAL64 x[200][100]REAL64 x

<process><process>

VALVAL REAL64REAL64 hypotenusehypotenuse ISIS SQRT ((a*a) + (b*b))SQRT ((a*a) + (b*b))::
VALVAL REAL64[]REAL64[] row.irow.i ISIS x[ix[i]]::
VALVAL INTINT nn ISIS SIZE SIZE row.irow.i:

Also, cannot Also, cannot
change change aa, , bb, , ii or or
x[ix[i]] in here.in here.

Cannot change Cannot change
hypotenusehypotenuse, ,

row.irow.i or or nn in here.in here.

:

26-Mar-07 Copyright P.H.Welch 71

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
Careful use of abbreviations can clarify code and increase Careful use of abbreviations can clarify code and increase
efficiency.efficiency.

HereHere’’s simple code for adding up the elements of a 1s simple code for adding up the elements of a 1--D array:D array:

0 1 2 3 40 1 2 3 4 (n(n––1)1)......

aa sumsum

SEQSEQ
sum := 0sum := 0
SEQ i = 0 FOR SIZE aSEQ i = 0 FOR SIZE a

sum := sum + sum := sum + a[ia[i]]

26-Mar-07 Copyright P.H.Welch 72

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
Now, letNow, let’’s add up the rows of a 2s add up the rows of a 2--D array:D array:

0 1 2 3 40 1 2 3 4 (n(n––1)1)......

aa

(m(m--1)1)

00

11

. .

. .

. .

. .

. .

. .

sumsum

(m(m--1)1)

00

11

. .

. .

. .

SEQ row = 0 FOR SIZE aSEQ row = 0 FOR SIZE a
SEQSEQ

sum[rowsum[row] := 0] := 0
SEQ SEQ colcol = 0 FOR SIZE = 0 FOR SIZE a[rowa[row]]

sum[rowsum[row] :=] := sum[rowsum[row] +] + a[row][cola[row][col]]

26-Mar-07 Copyright P.H.Welch 73

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing
This code contains some wasteful reThis code contains some wasteful re--computations:computations:

SEQ row = 0 FOR SIZE aSEQ row = 0 FOR SIZE a
SEQSEQ

sum[rowsum[row] := 0] := 0
SEQ SEQ colcol = 0 FOR SIZE = 0 FOR SIZE a[rowa[row]]

sum[rowsum[row] :=] := sum[rowsum[row] +] + a[row][cola[row][col]]

For each For each ‘‘rowrow’’, the address of , the address of ‘‘sum[rowsum[row]]’’ is calculated is calculated (2n+1)(2n+1)
times times –– where where ‘‘nn’’ is the size of the is the size of the ‘‘rowrow’’..

For each For each ‘‘rowrow’’, the address of , the address of ‘‘a[rowa[row]]’’ is calculated is calculated (n+1)(n+1)
times times –– where where ‘‘nn’’ is the size of the is the size of the ‘‘rowrow’’..

With abbreviations, the addresses of With abbreviations, the addresses of ‘‘sum[rowsum[row]]’’ and and ‘‘a[rowa[row]]’’
need only be calculated need only be calculated onceonce for each for each ‘‘rowrow’’ …… a saving of a saving of
((3*n*m3*n*m)) array index computationsarray index computations, over , over ‘‘mm’’ rows.rows. ☺ ☺ ☺

26-Mar-07 Copyright P.H.Welch 74

Abbreviations and Anti-AliasingAbbreviations and Anti-Aliasing

sum.rowsum.row := := sum.rowsum.row + + a.row[cola.row[col]]
SEQ SEQ colcol = 0 FOR SIZE = 0 FOR SIZE a.rowa.row

SEQSEQ
sum.rowsum.row := 0:= 0

VAL []INT VAL []INT a.rowa.row IS IS a[rowa[row]:]:

We just abbreviate We just abbreviate ‘‘sum[rowsum[row]]’’ and and ‘‘a[rowa[row]]’’::
SEQ row = 0 FOR SIZE aSEQ row = 0 FOR SIZE a

INT INT sum.rowsum.row IS IS sum[rowsum[row]:]:
calculatedcalculated onceonce

per row per row ……

The neat thing is that, following the abbreviations, the inner The neat thing is that, following the abbreviations, the inner
loop code isloop code is exactly the sameexactly the same (bar variable names)(bar variable names) as the as the
original summation code for the 1original summation code for the 1--D loop:D loop:

SEQSEQ
sum := 0sum := 0
SEQ i = 0 FOR SIZE aSEQ i = 0 FOR SIZE a

sum := sum + sum := sum + a[ia[i]]

26-Mar-07 Copyright P.H.Welch 75

Parameters and AbbreviationsParameters and Abbreviations
AnAn occamoccam--ππ PROCPROC call is formally defined as the call is formally defined as the inin--lineline
replacementreplacement of the invocation with the body of the of the invocation with the body of the PROCPROC, ,
proceeded by a sequence of abbreviations associating the proceeded by a sequence of abbreviations associating the
formal parameters (formal parameters (<new<new--names>names>) with the actual arguments) with the actual arguments
((<old<old--names>names> or or <expressions><expressions>) from the call.) from the call.

Consider:Consider:

outout
foofoo ((idid, , aa, , bb, , rowrow))

PROC PROC foofoo (VAL INT id, INT a, b, REAL64[] row,(VAL INT id, INT a, b, REAL64[] row,
CHAN MY.PROTOCOL out!)CHAN MY.PROTOCOL out!)

... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)
::

26-Mar-07 Copyright P.H.Welch 76

Parameters and AbbreviationsParameters and Abbreviations
PROC PROC foofoo (VAL INT id, INT a, b, REAL64[] row,(VAL INT id, INT a, b, REAL64[] row,

CHAN MY.PROTOCOL out!)CHAN MY.PROTOCOL out!)
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

::

Now consider an invocation of Now consider an invocation of foofoo :: Its contextIts context
(inside a(inside a SEQSEQ,, PARPAR,, ALTALT,,

IFIF,, CASECASE,, ……)) is not is not
relevant.relevant.

foofoo (i+1, n, m, (i+1, n, m, x[ix[i], c!)], c!)

This is formally defined to be:This is formally defined to be:

VAL VAL INTINT idid ISIS i+1i+1::
INTINT aa ISIS nn::
INT INT bb IS IS mm::
REAL64[]REAL64[] rowrow ISIS x[ix[i]]::
CHAN MY.PROTOCOLCHAN MY.PROTOCOL out!out! ISIS c!c!::
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

26-Mar-07 Copyright P.H.Welch 77

Parameters and AbbreviationsParameters and Abbreviations
PROC PROC foofoo (VAL INT id, INT a, b, REAL64[] row,(VAL INT id, INT a, b, REAL64[] row,

CHAN MY.PROTOCOL out!)CHAN MY.PROTOCOL out!)
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

::

The point is that the anti-aliasing
rules carry over (from abbreviations)

to parameter passing …

The point is that the The point is that the antianti--aliasing aliasing
rulesrules carry over (from abbreviations) carry over (from abbreviations)

to parameter passing to parameter passing ……

26-Mar-07 Copyright P.H.Welch 78

Parameters and AbbreviationsParameters and Abbreviations
PROC PROC foofoo (VAL INT id, INT a, b, REAL64[] row,(VAL INT id, INT a, b, REAL64[] row,

CHAN MY.PROTOCOL out!)CHAN MY.PROTOCOL out!)
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

::

The following invocation is illegalThe following invocation is illegal ::

VAL VAL INTINT idid ISIS i+1i+1::
INTINT aa ISIS nn::
INT INT bb IS IS nn::
REAL64[]REAL64[] rowrow ISIS x[ix[i]]::
CHAN MY.PROTOCOLCHAN MY.PROTOCOL out!out! ISIS c!c!::
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

This attempts to set upThis attempts to set up
aa andand bb as as aliasesaliases ofof nn..

foofoo (i+1, n, n, (i+1, n, n, x[ix[i], c!)], c!)

This is formally defined to be:This is formally defined to be:

We are not allowed to We are not allowed to
mentionmention nn here.here.

26-Mar-07 Copyright P.H.Welch 79

Parameters and AbbreviationsParameters and Abbreviations
PROC PROC foofoo (VAL INT id, INT a, b, REAL64[] row,(VAL INT id, INT a, b, REAL64[] row,

CHAN MY.PROTOCOL out!)CHAN MY.PROTOCOL out!)
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

::

This attempts to set upThis attempts to set up
aa andand bb as as aliasesaliases ofof nn..

The following invocation is illegalThe following invocation is illegal ::

VAL VAL INTINT idid ISIS i+1i+1::
INTINT aa ISIS nn::
INT INT bb IS IS nn::
REAL64[]REAL64[] rowrow ISIS x[ix[i]]::
CHAN MY.PROTOCOLCHAN MY.PROTOCOL out!out! ISIS c!c!::
... body of ... body of foofoo (using id, a, b, row, out!)(using id, a, b, row, out!)

☺☺ ☺☺ ☺☺
Therefore, this doesTherefore, this does

not compile.not compile.
foofoo (i+1, n, n, (i+1, n, n, x[ix[i], c!)], c!)

This is formally defined to be:This is formally defined to be:

We are not allowed to We are not allowed to
mentionmention nn here.here.

26-Mar-07 Copyright P.H.Welch 80

Anti-AliasingAnti-Aliasing
Recall, Recall, occamoccam--ππ variables behave in the way we expect variables behave in the way we expect
variables to behave: variables to behave: they vary if and only if we vary themthey vary if and only if we vary them..

Consider the fragment of code:Consider the fragment of code:

Assume the arithmetic Assume the arithmetic
does not overflow.does not overflow.

SEQSEQ
a := a + ba := a + b
a := a a := a -- bb

Everything we feel about algebra, variables, assignment and Everything we feel about algebra, variables, assignment and
sequencing tells us: sequencing tells us: the above code changes nothing.the above code changes nothing.

For all languages providing algebra, variables, assignment For all languages providing algebra, variables, assignment
and sequencingand sequencing –– apart (currently) fromapart (currently) from occamoccam--ππ –– that that
intuition will lead us astray.intuition will lead us astray.

26-Mar-07 Copyright P.H.Welch 81

Anti-AliasingAnti-Aliasing

There is a potential semantic singularity below:There is a potential semantic singularity below:

Assume the arithmetic Assume the arithmetic
does not overflow.does not overflow.

SEQSEQ
a := a + ba := a + b
a := a a := a -- bb

The above code changes nothingThe above code changes nothing …… only if only if aa and and bb reference reference
different numbers.different numbers.

If If aa andand bb reference the same number, reference the same number, they would both end they would both end
up with zero!up with zero! The value of The value of bb would varywould vary without it being without it being
explicitly variedexplicitly varied. .

26-Mar-07 Copyright P.H.Welch 82

Anti-AliasingAnti-Aliasing

There is a potential semantic singularity below:There is a potential semantic singularity below:

Assume the arithmetic Assume the arithmetic
does not overflow.does not overflow.

SEQSEQ
a := a + ba := a + b
a := a a := a -- bb

The above code changes nothingThe above code changes nothing …… only if only if aa and and bb reference reference
different numbers.different numbers.

If If aa andand bb reference the same number, reference the same number, they would both end they would both end
up with zero!up with zero! The value of The value of bb would varywould vary without it being without it being
explicitly variedexplicitly varied. .

A complex and horrid semantics …

A complex and horrid semantics

A complex and horrid semantics ……

26-Mar-07 Copyright P.H.Welch 83

Anti-AliasingAnti-Aliasing
What You See Is What You Get (WYSIWYG)What You See Is What You Get What You See Is What You Get (WYSIWYG)(WYSIWYG)

That kind of nonsense does not happen in That kind of nonsense does not happen in occamoccam--ππ ::

Assume the arithmetic Assume the arithmetic
does not overflow.does not overflow.

SEQSEQ
a := a + ba := a + b
a := a a := a -- bb

The above code changes nothingThe above code changes nothing …… we know that we know that aa and and bb
reference different numbers.reference different numbers.

The The antianti--aliasingaliasing rules mean that rules mean that different variablesdifferent variables in the in the
same context same context mustmust refer to refer to different itemsdifferent items..

26-Mar-07 Copyright P.H.Welch 84

Aliasing and Java etc.Aliasing and Java etc.
What You See Is Not What You Get (WYSINWYG)What You See Is What You See Is NotNot What You Get What You Get (WYSI(WYSINNWYG)WYG)

Java has no aliasing problems with its primitive typesJava has no aliasing problems with its primitive types …… but but
aliasing is part of the culture ofaliasing is part of the culture of ‘‘Object OrientationObject Orientation’’ …… it is it is
endemic toendemic to ‘‘OOOO’’ …… we have to work very hard to control itwe have to work very hard to control it..

Consider:Consider:
Assume the arithmetic Assume the arithmetic

does not overflow.does not overflow.a.plusa.plus (b);(b);
a.minusa.minus (b);(b);

where where aa andand bb are object variables of the same class are object variables of the same class …… with with
some private field holding an integer whose value is updated some private field holding an integer whose value is updated
by the by the plusplus and and minusminus methods in the obvious way methods in the obvious way ……

26-Mar-07 Copyright P.H.Welch 85

Aliasing and Java etc.Aliasing and Java etc.
What You See Is Not What You Get (WYSINWYG)What You See Is What You See Is NotNot What You Get What You Get (WYSI(WYSINNWYG)WYG)

class Thing {class Thing {

private integer sum = 0;private integer sum = 0;

public void plus (Thing t) {sum = sum + public void plus (Thing t) {sum = sum + t.sumt.sum;};}

public void minus (Thing t) {sum = sum public void minus (Thing t) {sum = sum -- t.sumt.sum;};}

... other methods... other methods

}}

a.plus (b);
a.minus (b);
a.plusa.plus (b);(b);
a.minusa.minus (b);(b);

If If ThingThing variables variables aa andand bb
reference the same object, reference the same object, they they

would end up holding zero in their would end up holding zero in their
sumsum field!field! The value of The value of bb variesvaries

without it being (explicitly) without it being (explicitly)
updated.updated.

26-Mar-07 Copyright P.H.Welch 86

Aliasing and Java etc.Aliasing and Java etc.
What You See Is Not What You Get (WYSINWYG)What You See Is What You See Is NotNot What You Get What You Get (WYSI(WYSINNWYG)WYG)

a.plus (b);
a.minus (b);
a.plusa.plus (b);(b);
a.minusa.minus (b);(b);

If If ThingThing variables variables aa andand bb
reference the same object, reference the same object, they they

would end up holding zero in their would end up holding zero in their
sumsum field!field! The value of The value of bb variesvaries

without it being (explicitly) without it being (explicitly)
updated.updated.

26-Mar-07 Copyright P.H.Welch 87

Aliasing and Java etc.Aliasing and Java etc.
What You See Is Not What You Get (WYSINWYG)What You See Is What You See Is NotNot What You Get What You Get (WYSI(WYSINNWYG)WYG)

a.plus (b);
a.minus (b);
a.plusa.plus (b);(b);
a.minusa.minus (b);(b);

If If ThingThing variables variables aa andand bb
reference the same object, reference the same object, they they

would end up holding zero in their would end up holding zero in their
sumsum field!field! The value of The value of bb variesvaries

without it being (explicitly) without it being (explicitly)
updated.updated.

This is not an uncommon piece of coding This is not an uncommon piece of coding …… we often write:we often write:

... set up object ... set up object aa

... use ... use aa for somethingfor something

... restore ... restore aa to its previous stateto its previous state

with data from “other” objectswith data from with data from ““otherother”” objectsobjects

with data from the
“unchanged” “others”

with data from the with data from the
““unchangedunchanged”” ““othersothers””

don’t change a or
the “other” objects
dondon’’t change t change aa oror
the the ““otherother”” objectsobjects

BUT IT’S BEEN ZEROED !!!BUT ITBUT IT’’S BEEN ZEROED !!!S BEEN ZEROED !!!

26-Mar-07 Copyright P.H.Welch 88

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 89

VALOF ExpressionsVALOF Expressions

<local<local--declarations>declarations>

<list-of-expressions><list<list--ofof--expressions>expressions>RESULTRESULT

<process><process>

This allows us to declare variables in the middle of This allows us to declare variables in the middle of
expressions and perform calculations expressions and perform calculations (serial logic only)(serial logic only)..

If the result list has more than one item, this can onlyIf the result list has more than one item, this can only
be the be the RightRight--HandHand--SideSide of a parallel assignment.of a parallel assignment.

((

))

VALOFVALOF

26-Mar-07 Copyright P.H.Welch 90

VALOF ExpressionsVALOF Expressions

REAL64 totalREAL64 total [1000]REAL64 x[1000]REAL64 x

total := total +total := total +
((REAL64 sum:REAL64 sum:
VALOFVALOF
SEQSEQ
sum := 0sum := 0
SEQ i = 0 FOR SIZE xSEQ i = 0 FOR SIZE x
sum := sum + x[i]sum := sum + x[i]

RESULT sumRESULT sum
))

26-Mar-07 Copyright P.H.Welch 91

VALOF ExpressionsVALOF Expressions

BYTE aBYTE a REAL32 bREAL32 b BYTE cBYTE c

a, b, c :=a, b, c := ((BYTE BYTE chch, , shsh::
REAL32 z:REAL32 z:
VALOFVALOF

RESULT RESULT chch, z, , z, shsh
))

<compute <compute chch, z, , z, shsh>>

26-Mar-07 Copyright P.H.Welch 92

FunctionsFunctions
<type<type--list>list> FUNCTIONFUNCTION <id><id> ((<<paramsparams>>))

VALOFVALOF

RESULTRESULT <list<list--ofof--expressions>expressions>

:

<local<local--declarations>declarations>

must match the must match the
<type<type--list>list>

<process><process>

:

TheThe <<paramsparams>> may only bemay only be VALVAL data types (no data types (no referencereference
data, channels, data, channels, ……).).
Functions are Functions are deterministicdeterministic and and sideside--effecteffect free (i.e. itsfree (i.e. its

body may not assign to global variables, body may not assign to global variables,
communicate on global channels, use timers or engage incommunicate on global channels, use timers or engage in
any internal concurrency using any internal concurrency using ALTALT or or SHAREDSHARED channels.)channels.)

<process><process>

26-Mar-07 Copyright P.H.Welch 93

Short FunctionsShort Functions

<type.list><type.list> FUNCTIONFUNCTION <id><id> ((<<paramsparams>>)) IS IS

::<list-of-expressions><list<list--ofof--expressions>expressions>

for example for example

BOOLBOOL FUNCTIONFUNCTION capital (capital (VAL BYTE VAL BYTE chch)) ISIS
('A' <= ('A' <= chch) AND () AND (chch <= 'Z'):<= 'Z'):

26-Mar-07 Copyright P.H.Welch 94

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 95

occam-π Data Typesoccam-π Data Types
Revision:Revision:Revision:

occamoccam--ππ has a set of has a set of primitiveprimitive types:types:
BOOL, BYTE, INT, INT16, INT32, INT64, REAL32, REAL64BOOL, BYTE, INT, INT16, INT32, INT64, REAL32, REAL64

occamoccam--ππ has has fixedfixed--size anonymoussize anonymous arrayarray types:types:
[n][n]<type><type>

where where nn is a is a compilercompiler--knownknown INTINT value and value and <type><type> is a is a
compilercompiler--knownknown type (which could itself be an type (which could itself be an arrayarray type).type).

New:New:New:

occamoccam--ππ allows new allows new namednamed types to be declared.types to be declared.

26-Mar-07 Copyright P.H.Welch 96

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

A A recordrecord type groups together elements of type groups together elements of differentdifferent types:types:
An An arrayarray type groups together elements of the type groups together elements of the samesame type.type.

DATA TYPEDATA TYPE FOOFOO
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

This gives a record with 5 This gives a record with 5 named fieldsnamed fields: two : two INTINT ones, ones,
one one BYTEBYTE, one , one REAL64REAL64 and one and one BYTEBYTE array (e.g. a string).array (e.g. a string).

26-Mar-07 Copyright P.H.Welch 97

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

Now, we can declare variables of this new type:Now, we can declare variables of this new type:

FOOFOO xx, , yy, , zz::
[42]FOO[42]FOO databasedatabase::

To access individual fields of a record, the notation is like To access individual fields of a record, the notation is like
array indexing:array indexing:

SEQSEQ
xx[[sizesize] :=] := 4242
yy[[weightweight] :=] := 7777
zz[[namename] :=] := "Susan ""Susan "
zz[[sizesize] :=] := xx[[sizesize]]
yy[[namename] :=] := zz[[namename]

DATA TYPE FOO
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE FOOFOO
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::]

26-Mar-07 Copyright P.H.Welch 98

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

Now, we can declare variables of this new type:Now, we can declare variables of this new type:

FOOFOO xx, , yy, , zz::
[42]FOO[42]FOO databasedatabase::

Record literalsRecord literals let us assign all fields at once:let us assign all fields at once:

xx :=:= [[4242,, 7777,, greengreen,,
99.715821499.7158214,,
""JosephsonJosephson ""]

DATA TYPE FOO
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE FOOFOO
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

]

where, perhaps:where, perhaps:
VAL BYTEVAL BYTE green green IS IS 6:6:

26-Mar-07 Copyright P.H.Welch 99

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

RecordRecord data types are data types are first classfirst class types. We can assign types. We can assign
them to each other or send them down appropriately them to each other or send them down appropriately
typed channels:typed channels:

FOOFOO xx, , yy::
SEQSEQ

xx :=:= [[4242,, 7777,, greengreen, , 99.715821499.7158214, , ""JosephsonJosephson ""]]
... stuff... stuff
yy :=:= xx

All the data in All the data in xx is is
copiedcopied into into yy..

Note: in Java, assignment between object variables just copies the reference.
The source and target variables end up referring to the same object.
Note:Note: in in JavaJava, assignment between object variables just copies the reference., assignment between object variables just copies the reference.
The source and target variables end up referring to the The source and target variables end up referring to the samesame object.object.

26-Mar-07 Copyright P.H.Welch 100

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

RecordRecord data types are data types are first classfirst class types. We can assign types. We can assign
them to each other or send them down appropriately them to each other or send them down appropriately
typed channels:typed channels:

FOOFOO xx, , yy::
SEQSEQ

xx :=:= [[4242,, 7777,, greengreen, , 99.715821499.7158214, , ""JosephsonJosephson ""]]
... stuff... stuff
yy :=:= xx

All the data in All the data in xx is is
copiedcopied into into yy..

Note: in occam-π, assignment between variables copies the data.
The source and target variables end up referring to different pieces of data.
Note:Note: in in occamoccam--ππ, assignment between variables copies the data., assignment between variables copies the data.
The source and target variables end up referring to The source and target variables end up referring to differentdifferent pieces of data.pieces of data.

26-Mar-07 Copyright P.H.Welch 101

Records:Records:Records:

RecordRecord data types are data types are first classfirst class types. We can assign types. We can assign
them to each other or send them down appropriately them to each other or send them down appropriately
typed channels:typed channels:

occam-π Data Typesoccam-π Data Types

FOOFOO xx, , yy::
SEQSEQ

xx :=:= [[4242,, 7777,, greengreen, , 99.715821499.7158214, , ""JosephsonJosephson ""]]
... stuff... stuff
yy :=:= xx

All the data in All the data in xx is is
copiedcopied into into yy..

Note: in occ
am-

π, d
ata may be declared MO

BI
LE

. F
or such data,

assignment (a
nd communication) m

oves the data fro
m the source

to the target –
leaving the source variable referrin

g to no data.

[This is for in
formation only – not part o

f th
is course.]

Note:
Note: in in occ

am
occ

am--
ππ, data may be declared

, data may be declared MO
BI
LE

MO
BI
LE. F

or such data,

. F
or such data,

assignment (a
nd communication)

assignment (a
nd communication) m

oves
moves the data fro

m the source

the data fro
m the source

to the target

to the target ––
leaving the source variable referrin

g to

leaving the source variable referrin
g to nono data.

data.

[This is for in
formation only

[This is for in
formation only –– not part o

f th
is course.]

not part o
f th

is course.]

Note: in occam-π, assignment between variables copies the data.
The source and target variables end up referring to different pieces of data.
Note:Note: in in occamoccam--ππ, assignment between variables copies the data., assignment between variables copies the data.
The source and target variables end up referring to The source and target variables end up referring to differentdifferent pieces of data.pieces of data.

26-Mar-07 Copyright P.H.Welch 102

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

RecordRecord data types are data types are first classfirst class types. We can assign types. We can assign
them to each other or send them down appropriately them to each other or send them down appropriately
typed channels:typed channels:

cc
R0R0R0 R1R1R1

CHAN FOO c:
PAR
R0 (c!)
R1 (c?)

CHANCHAN FOOFOO cc::
PARPAR
R0R0 ((c!c!))
R1R1 ((c?c?))

26-Mar-07 Copyright P.H.Welch 103

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

RecordRecord data types are data types are first classfirst class types. We can assign types. We can assign
them to each other or send them down appropriately them to each other or send them down appropriately
typed channels:typed channels:

PROCPROC R0R0 ((CHANCHAN FOO FOO out!out!))
FOO FOO xx::
SEQSEQ

... set up x... set up x
out !out ! xx
... more stuff... more stuff
out !out ! [[2121,, 7272,, blueblue, , 3.1423.142, , "Junction ""Junction "]]

:

outoutR0R0R0

:

26-Mar-07 Copyright P.H.Welch 104

occam-π Data Typesoccam-π Data Types
Records:Records:Records:

RecordRecord data types are data types are first classfirst class types. We can assign types. We can assign
them to each other or send them down appropriately them to each other or send them down appropriately
typed channels:typed channels:

PROCPROC R1R1 ((CHANCHAN FOO FOO in?in?))
FOO x, y:FOO x, y:
SEQSEQ

in ?in ? xx
... stuff... stuff
in ?in ? yy
... more stuff... more stuff

:

inin R1R1R1

:

26-Mar-07 Copyright P.H.Welch 105

occam-π Data Typesoccam-π Data Types
Renamed Types:Renamed Types:Renamed Types:

We can just define a new type to be implemented by an We can just define a new type to be implemented by an
existing type:existing type:
DATA TYPEDATA TYPE COLOUR COLOUR ISIS BYTEBYTE::
DATA TYPEDATA TYPE MATRIX MATRIX ISIS [20][30]REAL64[20][30]REAL64::
DATA TYPEDATA TYPE BAR BAR ISIS FOOFOO::

Now, Now, COLOURCOLOUR,, MATRIXMATRIX and and BARBAR are are newnew types, different to types, different to
their underlying their underlying BYTEBYTE, , [20][30]REAL64[20][30]REAL64 andand FOOFOO types.types.

occamoccam--ππ enforces enforces strong typingstrong typing. So. So,, COLOURCOLOUR and and BYTEBYTE
variables are not assignment compatible. Also, a variables are not assignment compatible. Also, a COLOURCOLOUR
variable cannot be the target of an input from a variable cannot be the target of an input from a CHANCHAN BYTEBYTE
(or (or vicevice--versaversa).).

26-Mar-07 Copyright P.H.Welch 106

occam-π Data Typesoccam-π Data Types
Example:Example:Example:

DATA TYPEDATA TYPE COLOUR COLOUR ISIS BYTEBYTE::
BYTEBYTE bb::
COLOURCOLOUR cc::
SEQSEQ

... stuff... stuff
b := cb := c ---- illegal: will not compileillegal: will not compile
... more stuff... more stuff
c := b c := b ---- illegal: will not compile

User reUser re--named data named data
types can give extra types can give extra

security against security against
careless errors.careless errors.

illegal: will not compile

occamoccam--ππ enforces enforces strong typingstrong typing. So. So,, COLOURCOLOUR and and BYTEBYTE
variables are not assignment compatible. Also, a variables are not assignment compatible. Also, a COLOURCOLOUR
variable cannot be the target of an input from a variable cannot be the target of an input from a CHANCHAN BYTEBYTE
(or (or vicevice--versaversa).).

26-Mar-07 Copyright P.H.Welch 107

occam-π Data Typesoccam-π Data Types
Example:Example:Example:

PROC PROC foofoo (CHAN(CHAN COLOUR COLOUR colour.incolour.in??,, colour.outcolour.out!!,,
CHANCHAN BYTE BYTE byte.inbyte.in??,, byte.outbyte.out!!))

BYTEBYTE bb::
COLOURCOLOUR cc::
SEQSEQ
colour.incolour.in ?? bb ---- illegal: will not compileillegal: will not compile
colour.outcolour.out !! bb ---- illegal: will not compileillegal: will not compile
byte.inbyte.in ?? cc ---- illegal: will not compileillegal: will not compile
byte.outbyte.out !! cc ---- illegal: will not compileillegal: will not compile

::

occamoccam--ππ enforces enforces strong typingstrong typing. So. So,, COLOURCOLOUR and and BYTEBYTE
variables are not assignment compatible. Also, a variables are not assignment compatible. Also, a COLOURCOLOUR
variable cannot be the target of an input from a variable cannot be the target of an input from a CHANCHAN BYTEBYTE
(or (or vicevice--versaversa).).

26-Mar-07 Copyright P.H.Welch 108

occam-π Data Typesoccam-π Data Types
Example:Example:Example:

PROC PROC foofoo (CHAN(CHAN COLOUR COLOUR colour.incolour.in??,, colour.outcolour.out!!,,
CHANCHAN BYTE BYTE byte.inbyte.in??,, byte.outbyte.out!!))

BYTEBYTE bb::
COLOURCOLOUR cc::
SEQSEQ
colour.incolour.in ?? cc ---- legallegal
colour.outcolour.out !! cc ---- legallegal
byte.inbyte.in ?? bb ---- legallegal
byte.outbyte.out !! bb ---- legallegal

:

User reUser re--named data named data
types can give extra types can give extra

security against security against
careless errors.careless errors.

:

occamoccam--ππ enforces enforces strong typingstrong typing. So. So,, COLOURCOLOUR and and BYTEBYTE
variables are not assignment compatible. Also, a variables are not assignment compatible. Also, a COLOURCOLOUR
variable cannot be the target of an input from a variable cannot be the target of an input from a CHANCHAN BYTEBYTE
(or (or vicevice--versaversa).).

26-Mar-07 Copyright P.H.Welch 109

occam-π Data Typesoccam-π Data Types
Type Equivalence:Type Equivalence:Type Equivalence:

occamoccam--ππ types are types are equivalentequivalent if and only if they have the if and only if they have the
same name.same name.

DATA TYPE BAR IS FOO:DATA TYPEDATA TYPE BAR BAR ISIS FOOFOO::

DATA TYPE WIPPY
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE WIPPYWIPPY
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

DATA TYPE FOO
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE FOOFOO
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

Data types Data types FOOFOO, , BARBAR and and WIPPYWIPPY have the same have the same structurestructure
but are not but are not equivalentequivalent..

26-Mar-07 Copyright P.H.Welch 110

occam-π Data Typesoccam-π Data Types
Type Equivalence:Type Equivalence:Type Equivalence:

occamoccam--ππ types are types are equivalentequivalent if and only if they have the if and only if they have the
same name.same name.

DATA TYPE BAR IS FOO:DATA TYPEDATA TYPE BAR BAR ISIS FOOFOO::

DATA TYPE WIPPY
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE WIPPYWIPPY
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

DATA TYPE FOO
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE FOOFOO
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

FOOFOO, , BARBAR and and WIPPYWIPPY variables may not be directly variables may not be directly assignedassigned
to each other to each other –– but their values may be but their values may be castcast..

26-Mar-07 Copyright P.H.Welch 111

occam-π Data Typesoccam-π Data Types
Type Equivalence:Type Equivalence:Type Equivalence:

occamoccam--ππ types are types are equivalentequivalent if and only if they have the if and only if they have the
same name.same name.

FOOFOO ff::
WIPPYWIPPY ww::
SEQSEQ

... set up ... set up ff
w := fw := f ---- illegal: will not compileillegal: will not compile
... more stuff... more stuff
w := w := WIPPYWIPPY f f ---- legallegal

FOOFOO, , BARBAR and and WIPPYWIPPY variables may not be directly variables may not be directly assignedassigned
to each other to each other –– but their values may be but their values may be castcast..

26-Mar-07 Copyright P.H.Welch 112

Type Equivalence:Type Equivalence:Type Equivalence:

occam-π Data Typesoccam-π Data Types

occamoccam--ππ types are types are equivalentequivalent if and only if they have the if and only if they have the
same name.same name.

MATRIXMATRIX mm::
[20][30]REAL64[20][30]REAL64 xx::
SEQSEQ

... set up ... set up xx
m := xm := x ---- illegal: will not compileillegal: will not compile
... more stuff... more stuff
m := m := MATRIXMATRIX x x ---- legallegal

DATA TYPE MATRIX IS [20][30]REAL64:DATA TYPEDATA TYPE MATRIX MATRIX ISIS [20][30]REAL64[20][30]REAL64::

MATRIXMATRIX and and [20][30]REAL64[20][30]REAL64 variables may not be directly variables may not be directly
assignedassigned to each other to each other –– but their values may be but their values may be castcast..

26-Mar-07 Copyright P.H.Welch 113

occam-π Data Typesoccam-π Data Types
Type Equivalence:Type Equivalence:Type Equivalence:

occamoccam--ππ types are types are equivalentequivalent if and only if they have the if and only if they have the
same name.same name.

Array types are Array types are anonymous anonymous –– but any particular array type but any particular array type
has an implicit (hidden) name that is has an implicit (hidden) name that is the samethe same for all for all
occurrences of that type.occurrences of that type.

So, So, [20][30]REAL64[20][30]REAL64 variables are always variables are always assignableassignable to to
each other each other –– wherever they happen to have been declared.wherever they happen to have been declared.

26-Mar-07 Copyright P.H.Welch 114

occam-π Data Typesoccam-π Data Types
Operator Inheritance:Operator Inheritance:Operator Inheritance:

All arithmetic and logical operators on All arithmetic and logical operators on primitiveprimitive types are types are
inheritedinherited by types by types renamingrenaming them.them.

DATA TYPE COLOUR IS BYTE:DATA TYPEDATA TYPE COLOUR COLOUR ISIS BYTEBYTE::

COLOURCOLOUR redred, , greengreen, , yellowyellow::
SEQSEQ

... set up ... set up redred and and greengreen
yellow := read /yellow := read /\\ greengreen
... stuff... stuff

26-Mar-07 Copyright P.H.Welch 115

occam-π Data Typesoccam-π Data Types
Operator Inheritance:Operator Inheritance:Operator Inheritance:

All indexing and size operations on All indexing and size operations on arrayarray typestypes are are inheritedinherited
by types by types renamingrenaming them.them.

DATA TYPE MATRIX IS [20][30]REAL64:DATA TYPEDATA TYPE MATRIX MATRIX ISIS [20][30]REAL64[20][30]REAL64::

MATRIXMATRIX mm::
SEQSEQ

SEQSEQ ii = = 00 FOR FOR SIZESIZE mm
SEQ SEQ jj = = 00 FOR FOR SIZESIZE mm[[ii]]

mm[[jj][][ii] :=] := some.real64some.real64
... stuff... stuff

26-Mar-07 Copyright P.H.Welch 116

occam-π Data Typesoccam-π Data Types
Operator Inheritance:Operator Inheritance:Operator Inheritance:

All field indexing operations on All field indexing operations on recordrecord typestypes are are inheritedinherited
by types by types renamingrenaming them.them.

DATA TYPE FOO
RECORD

INT size, weight:
BYTE colour:
REAL64 frequency:
[10]BYTE name:

:

DATA TYPEDATA TYPE FOOFOO
RECORDRECORD

INT INT sizesize, , weightweight::
BYTE BYTE colourcolour::
REAL64 REAL64 frequencyfrequency::
[10]BYTE [10]BYTE namename::

::

BARBAR bb::
SEQSEQ

bb[[sizesize] :=] := 4242
bb[[weightweight] :=] := 7777
bb[[colourcolour] :=] := yellow yellow
... stuff... stuff

DATA TYPE BAR IS FOO:DATA TYPEDATA TYPE BAR BAR ISIS FOOFOO::

26-Mar-07 Copyright P.H.Welch 117

A Few More Bits of occam-πA Few More Bits of occamoccam--ππ
SHAREDSHARED channels channels ……

PROTOCOLPROTOCOL inheritance inheritance ……

CASECASE processes processes ……

Parallel assignment Parallel assignment ……

Extended rendezvous Extended rendezvous ……

Abbreviations and antiAbbreviations and anti--aliasing aliasing ……

FUNCTIONFUNCTIONss ……

RECORDRECORD data types data types ……

Array slices Array slices ……

26-Mar-07 Copyright P.H.Welch 118

Array SlicesArray Slices
Let Let aa be an array. Then, the expression:be an array. Then, the expression:

[[aa FROM FROM startstart FOR FOR nn]]

represents the represents the sliceslice of the array of the array aa from element from element aa[[startstart]]

through through aa[[startstart ++ (n(n -- 1)1)]] inclusive. Also:inclusive. Also:

[[aa FOR FOR nn]]

represents the represents the sliceslice consisting of the firstconsisting of the first nn elements. Also:elements. Also:

[[aa FROM FROM startstart]]

represents the represents the sliceslice from element from element aa[[startstart]] to its end.to its end.

The defined slices must lie within the bounds of the array.The defined The defined slicesslices must lie within the bounds of the array.must lie within the bounds of the array.

26-Mar-07 Copyright P.H.Welch 119

Array SlicesArray Slices

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

a

...

...
[[aa FROM FROM 66 FOR FOR 55]]

26-Mar-07 Copyright P.H.Welch 120

Array SlicesArray Slices

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

a

...

...
[[aa FOR FOR 1212]]

26-Mar-07 Copyright P.H.Welch 121

Array SlicesArray Slices

14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

max–1
max–2

a

...

...
[[aa FROM FROM 88]]

26-Mar-07 Copyright P.H.Welch 122

Array SlicesArray Slices
An array slice may be the source or target of assignment:An array slice may be the source or target of assignment:

[[aa FROM FROM ii FOR FOR nn]] :=:= [[bb FROM FROM jj FOR FOR nn]]

The sliceThe slice sizessizes must must be the samebe the same..

[[aa FROM FROM ii FOR FOR nn]] :=:= [[aa FROM FROM jj FOR FOR nn]]

The slicesThe slices mustmust not overlapnot overlap..

26-Mar-07 Copyright P.H.Welch 123

Array SlicesArray Slices
An array slice may be the source or target of communication:An array slice may be the source or target of communication:

out !out ! [[bb FROM FROM jj FOR FOR nn]]

The channel must carry The channel must carry [[nn]] arrays arrays ……

in ?in ? [[aa FROM FROM ii FOR FOR nn]]

…… where where nn is a compiler known value.is a compiler known value.

26-Mar-07 Copyright P.H.Welch 124

Array SlicesArray Slices
More flexible (and usual) would be a More flexible (and usual) would be a counted arraycounted array protocol:protocol:

out !out ! n::[n::[bb FROM FROM jj]]

Output Output nn elements from elements from bb[[jj]] ……

in ?in ? m::[m::[aa FROM FROM ii]]

Input Input mm elements starting at elements starting at aa[[ii]] ……

	Shared Channels etc.
	A Few More Bits of occam-
	Unshared Channel-Ends
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Writers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Readers)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	Shared Channel-Ends (Both)
	A Few More Bits of occam-
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	Protocol Inheritance (Variant)
	A Few More Bits of occam-
	Process Structures
	CASE Process
	CASE Process
	CASE Process
	CASE Process
	Java switch Statement
	CASE Process
	CASE Process
	A Few More Bits of occam-
	Parallel Assignment
	Parallel Assignment
	Parallel Assignment
	Parallel Assignment
	A Few More Bits of occam-
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	Extended Rendezvous Tap
	A Few More Bits of occam-
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Abbreviations and Anti-Aliasing
	Parameters and Abbreviations
	Parameters and Abbreviations
	Parameters and Abbreviations
	Parameters and Abbreviations
	Parameters and Abbreviations
	Anti-Aliasing
	Anti-Aliasing
	Anti-Aliasing
	Anti-Aliasing
	Aliasing and Java etc.
	Aliasing and Java etc.
	Aliasing and Java etc.
	Aliasing and Java etc.
	A Few More Bits of occam-
	VALOF Expressions
	VALOF Expressions
	VALOF Expressions
	Functions
	Short Functions
	A Few More Bits of occam-
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	occam- Data Types
	A Few More Bits of occam-
	Array Slices
	Array Slices
	Array Slices
	Array Slices
	Array Slices
	Array Slices
	Array Slices

