CS377
Parallel Programming

Lecture |
Introduction

Marc L. Smith

Preliminaries

® |Introductions
® Why are you taking this course!?

® Discuss syllabus: online

Computing Platform

® Linux command:$ lscpu
® SP 307 (Asprey) and 309 Linux workstations are:
® single-socket
® |2 cores per socket
®) threads per core
® 20 online CPUs (0-19)
® why not 24 total cores! (run: $ lscpu -e)
® SC 006 (Agile) workstations have different specs

® Your computer / mobile device also has parallel computing

A motivating example

® Find the max of n numbers
® How would you do it!
® Assumptions!?

® How many comparisons?
(we are computer scientists!)

Find max of n numbers

® Case |:sorted (ascending)

® no comparisons -- just return last number
In array

® O(l) comparisons
® |t's easy when numbers already sorted!

® Hidden cost!

Find max of n numbers

® Case 2:unsorted
® sort array first, then return max
® O(n log(n)) comparisons

® a |ot of work just to return the max!

Find max of n numbers

® Case 3:unsorted

® Compare unsorted numbers from first to
last, keep track of max as you go

® O(n) comparisons

® sure beats sorting them all first!

Find max of n numbers

® |et’s pause for a moment...

® the unsorted cases are the interesting
ones...

® it takes n-I comparisons to find the max
of n unsorted numbers ~ O(n)

® can we do better than O(n)?
(and what do we mean by better?)

Find max of n numbers

® |et’s look at the problem again

® just the problem
® no assumptions about its solution

® Did we make assumptions previously!?
® yes:single processor

® what if we had more processors!?

Find max of n numbers
arrayA: |8 (6|4 (2|1 |3 |57

Max =?

All numbers must be compared at least once to find the
max, but the pairs we choose to compare, and the order
of those comparisons, depends on the algorithm.

Order. Traditional (imperative) programming causes
us to become (necessarily) obsessed with order...

It’s time to break out of the sequential box.

Find max of n numbers

® Why were we counting comparisons?
® a measure independent of machine speed

® |s this still what we want if not sequential?
(i.e., we can do >| comparisons concurrently)

® \We need new measures!

® |ike what? (time, speedup, cost, work,
efficiency)

Find max of N numbers

Let T1(N) be the Best Sequential Algorithm

Let Tp(N) be the Time for Parallel Algorithm (P processors)
The Speedup Sp(N) is T1(N)/Te(N)

The Cost Cp(N) is PTp(N), assuming P processors

The Work Wp(N) is the summation of the number of steps
taken by each of the processors. It is often, but not always,
the same as Cost.

The Cost Efficiency CEp(N) (often called efficiency Ep(N)) is
Sp(N)/P = Ci(N) / Cp(N) =T i(N) / (PTe(N))

The Work Efficiency WEp(N) is
Wi(N) /Wp(N) =Ti(N) /Wp(N)

Find max of n numbers

A: |8|6|4|2|1|3(5]7
Y Y'Y

7/
\/ \/
A binary tree! 8\/7
Comparisons in each row g
can be performed in parallel How many
Time = #rows = log(n) processors needed?

Tradeoffs of time, cost, efficiency...

Find max of n numbers

A: (864|121 3|57

This problem can be solved in
Time = O(l)

How!?
Next time...

Reading Assignment |

® Read Sutter and Larus article from
September 2005 issue of ACM Queue

® Write one-page summary (no more, no less)
® to discuss during next class

® points in article most striking to you

Programming
Assignment |

® Write a C program that finds the max of n
numbers

® Why!? (it’s a familiar problem)

® Goals
® implement sequential solution to max
® use a real editor: vim (learn it!)

® compile / execute C program (not C++)

Programming
Assignment |

® Write a C program that finds the max of n
numbers

® main() function
® initializes array (read values from stdin)
® prints array

® calls max() and prints result

Programming
Assignment |

® Write a C program that finds the max of n
numbers

® max() function
® takes array of integers as parameter
® iterates through array to find max

® returns value of max element in given
array

