
Principles of Concurrent and

Distributed Programming

(Second Edition)

Addison-Wesley, 2006

Mordechai (Moti) Ben-Ari

http://www.weizmann.ac.il/sci-tea/benari/

http://www.weizmann.ac.il/sci-tea/benari/

Computer Time

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 1.2

� -

time (nanoseconds) →
0 100 200 300 400 500

Human Time

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 1.3

� -

time (seconds) →
0 100 200 300 400 500

Concurrency in an Operating System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 1.4

time →

Computation

I/O

start I/O end I/O

6 6

Interleaving as Choosing Among Processes

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.1

p3, . . .

cpp6

q2, . . .

cpq6

r2, . . .

cpr6

p1, r1, p2, q1

�
�

�	

�

@
@

@I

Possible Interleavings

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.2

p1→q1→p2→q2,
p1→q1→q2→p2,
p1→p2→q1→q2,
q1→p1→q2→p2,
q1→p1→p2→q2,
q1→q2→p1→p2.

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.3

Algorithm 2.1: Trivial concurrent program
integer n ← 0

p q
integer k1 ← 1 integer k2 ← 2

p1: n ← k1 q1: n ← k2

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.4

Algorithm 2.2: Trivial sequential program
integer n ← 0

integer k1 ← 1
integer k2 ← 2

p1: n ← k1
p2: n ← k2

State Diagram for a Sequential Program

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.5

-s p1: n ← k1
k1 = 1, k2 = 2

n = 0

'
&

$
%

p2: n ← k2
k1 = 1, k2 = 2

n = 1

'
&

$
%

(end)
k1 = 1, k2 = 2

n = 2

'
&

$
%

- -

State Diagram for a Concurrent Program

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.6

?

r
p1: n ← k1
q1: n ← k2

k1 = 1, k2 = 2
n = 0

'

&

$

%
(end)

q1: n ← k2
k1 = 1, k2 = 2

n = 1

'

&

$

%
(end)

(end)
k1 = 1, k2 = 2

n = 2

'

&

$

%

p1: n ← k1
(end)

k1 = 1, k2 = 2
n = 2

'

&

$

%
(end)

(end)
k1 = 1, k2 = 2

n = 1

'

&

$

%

�
�

��	

?

@
@
@@R

?

Scenario for a Concurrent Program

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.7

Process p Process q n k1 k2

p1: n←k1 q1: n←k2 0 1 2

(end) q1: n←k2 1 1 2

(end) (end) 2 1 2

Multitasking System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.8

��������*

CPU
R
e
g

XXXXXXXXXXXXXXz

R
e
g

R
e
g

R
e
g

R
e
g

R
e
g

Operating
System

Program 1 Program 2 Program 3 Program 4

Multiprocessor Computer

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.9

Local
Memory

CPU

Local
Memory

CPU

Local
Memory

CPU

Global
Memory

Inconsistency Caused by Overlapped Execution

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.10

Local memory Local memory

0000 0000 0000 0001 0000 0000 0000 0010

0000 0000 0000 0011

Global memory

���* HHHY

Distributed Systems Architecture

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.11

Node Node

Node Node

-

6

�

?
�

?

-

6

�
�
�
�
����

�
�

�	

@
@
@
@
@R@

@
@

@
@I

Node Node

Node Node

-

6

�

?

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.12

Algorithm 2.3: Atomic assignment statements
integer n ← 0

p q
p1: n ← n + 1 q1: n ← n + 1

Scenario for Atomic Assignment Statements

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.13

Process p Process q n

p1: n←n+1 q1: n←n+1 0

(end) q1: n←n+1 1

(end) (end) 2

Process p Process q n

p1: n←n+1 q1: n←n+1 0

p1: n←n+1 (end) 1

(end) (end) 2

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.14

Algorithm 2.4: Assignment statements with one global reference
integer n ← 0

p q
integer temp integer temp

p1: temp ← n q1: temp ← n
p2: n ← temp + 1 q2: n ← temp + 1

Correct Scenario for Assignment Statements

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.15

Process p Process q n p.temp q.temp

p1: temp←n q1: temp←n 0 ? ?

p2: n←temp+1 q1: temp←n 0 0 ?

(end) q1: temp←n 1 0 ?

(end) q2: n←temp+1 1 0 1

(end) (end) 2 0 1

Incorrect Scenario for Assignment Statements

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.16

Process p Process q n p.temp q.temp

p1: temp←n q1: temp←n 0 ? ?

p2: n←temp+1 q1: temp←n 0 0 ?

p2: n←temp+1 q2: n←temp+1 0 0 0

(end) q2: n←temp+1 1 0 0

(end) (end) 1 0 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.17

Algorithm 2.5: Stop the loop A
integer n ← 0
boolean flag ← false

p q
p1: while flag = false q1: flag ← true
p2: n ← 1 − n q2:

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.18

Algorithm 2.6: Assignment statement for a register machine
integer n ← 0

p q
p1: load R1,n q1: load R1,n
p2: add R1,#1 q2: add R1,#1
p3: store R1,n q3: store R1,n

Register Machine

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.19

Registers

Memory

· · · · · ·

Registers

Memory

· · · · · ·

Registers

Memory

· · · · · ·0 0 1

0 1 1

?
6Load Store

Scenario for a Register Machine

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.20

Process p Process q n p.R1 q.R1

p1: load R1,n q1: load R1,n 0 ? ?

p2: add R1,#1 q1: load R1,n 0 0 ?

p2: add R1,#1 q2: add R1,#1 0 0 0

p3: store R1,n q2: add R1,#1 0 1 0

p3: store R1,n q3: store R1,n 0 1 1

(end) q3: store R1,n 1 1 1

(end) (end) 1 1 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.21

Algorithm 2.7: Assignment statement for a stack machine
integer n ← 0

p q
p1: push n q1: push n
p2: push #1 q2: push #1
p3: add q3: add
p4: pop n q4: pop n

Stack Machine

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.22

Stack

Memory

· · · · · ·

Stack

Memory

· · · · · ·

Stack

Memory

· · · · · ·

· · · 0 1

A
AU

0

· · · 1

0

· · · 1

A
AK

1

Push Pop

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.23

Algorithm 2.8: Volatile variables
integer n ← 0

p q
integer local1, local2 integer local

p1: n ← some expression q1: local ← n + 6
p2: computation not using n q2:

p3: local1 ← (n + 5) ∗ 7 q3:

p4: local2 ← n + 5 q4:

p5: n ← local1 * local2 q5:

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.24

Algorithm 2.9: Concurrent counting algorithm
integer n ← 0

p q
integer temp integer temp

p1: do 10 times q1: do 10 times
p2: temp ← n q2: temp ← n
p3: n ← temp + 1 q3: n ← temp + 1

Concurrent Program in Pascal

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.25

1 program count;
2 var n: integer := 0;
3

4 procedure p;
5 var temp, i : integer;
6 begin
7 for i := 1 to 10 do
8 begin
9 temp := n; n := temp + 1

10 end
11 end;
12

13 procedure q;
14 var temp, i : integer;
15 begin
16 for i := 1 to 10 do
17 begin
18 temp := n; n := temp + 1
19 end
20 end;
21

22 begin
23 cobegin p; q coend;
24 writeln (’ The value of n is ’ , n)
25 end.

Concurrent Program in C

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.26

1 int n = 0;
2

3 void p() {
4 int temp, i ;
5 for (i = 0; i < 10; i ++) {
6 temp = n;
7 n = temp + 1;
8 }
9 }

10

11 void q() {
12 int temp, i ;
13 for (i = 0; i < 10; i ++) {
14 temp = n;
15 n = temp + 1;
16 }
17 }
18

19 void main() {
20 cobegin { p(); q(); }
21 cout << ”The value of n is ” << n << ”\n”;
22 }

Concurrent Program in Ada

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.27

1 with Ada.Text IO; use Ada.Text IO;
2 procedure Count is
3 N: Integer := 0;
4 pragma Volatile(N);
5

6 task type Count Task;
7 task body Count Task is
8 Temp: Integer;
9 begin

10 for I in 1..10 loop
11 Temp := N;
12 N := Temp + 1;
13 end loop;
14 end Count Task;
15

16 begin
17 declare
18 P, Q: Count Task;
19 begin
20 null ;
21 end;
22 Put Line(”The value of N is ” & Integer’ Image(N));
23 end Count;

Concurrent Program in Java

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.28

1 class Count extends Thread {
2 static volatile int n = 0;
3

4 public void run() {
5 int temp;
6 for (int i = 0; i < 10; i ++) {
7 temp = n;
8 n = temp + 1;
9 }

10 }
11

12 public static void main(String[] args) {
13 Count p = new Count();
14 Count q = new Count();
15 p.start ();
16 q.start ();
17 try {
18 p. join ();
19 q. join ();
20 }
21 catch (InterruptedException e) { }
22 System.out.println (”The value of n is ” + n);
23 }
24 }

Concurrent Program in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.29

1 #include ”for.h”
2 #define TIMES 10
3 byte n = 0;
4

5 proctype P() {
6 byte temp;
7 for (i ,1, TIMES)
8 temp = n;
9 n = temp + 1

10 rof (i)
11 }
12

13 init {
14 atomic {
15 run P();
16 run P()
17 }
18 (nr pr == 1);
19 printf (”MSC: The value is %d\n”, n)
20 }

Frog Puzzle

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.30

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

M→ M→ M→ M→ ←F ←F ←F ←F

One Step of the Frog Puzzle

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.31

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

M→ M→ M→ M→ ←F ←F ←F ←F

Final State of the Frog Puzzle

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.32

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

←F ←F ←F ←F M→ M→ M→ M→

(Partial) State Diagram for the Frog Puzzle

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.33

�� ��MM⊔ FF
�����

HHHHj

��������9

XXXXz

· · ·
×

�� ��⊔MMFF
�� ��M⊔MFF

?

�

�� ��MFM⊔ F
�����

HHHHj�� ��MF⊔MF
�� ��MFMF⊔

�����
HHHHj ?�� ��⊔ FMMF

�� ��MFFM⊔

�� ��MF⊔ FM
�����

�����
�����?�� ��F⊔MMF

×

�� ��MFF⊔M

×

�� ��⊔ FMFM

?�� ��F⊔MFM

?�� ��FFM⊔M

?�� ��FF⊔MM

×

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.34

Algorithm 2.10: Incrementing and decrementing
integer n ← 0

p q
integer temp integer temp

p1: do K times q1: do K times
p2: temp ← n q2: temp ← n
p3: n ← temp + 1 q3: n ← temp − 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.35

Algorithm 2.11: Zero A
boolean found

p q
integer i ← 0 integer j ← 1

p1: found ← false q1: found ← false
p2: while not found q2: while not found
p3: i ← i + 1 q3: j ← j − 1
p4: found ← f(i) = 0 q4: found ← f(j) = 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.36

Algorithm 2.12: Zero B
boolean found ← false

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: i ← i + 1 q2: j ← j − 1
p3: found ← f(i) = 0 q3: found ← f(j) = 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.37

Algorithm 2.13: Zero C
boolean found ← false

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: i ← i + 1 q2: j ← j − 1
p3: if f(i) = 0 q3: if f(j) = 0
p4: found ← true q4: found ← true

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.38

Algorithm 2.14: Zero D
boolean found ← false
integer turn ← 1

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: await turn = 1 q2: await turn = 2

turn ← 2 turn ← 1
p3: i ← i + 1 q3: j ← j − 1
p4: if f(i) = 0 q4: if f(j) = 0
p5: found ← true q5: found ← true

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.39

Algorithm 2.15: Zero E
boolean found ← false
integer turn ← 1

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: await turn = 1 q2: await turn = 2

turn ← 2 turn ← 1
p3: i ← i + 1 q3: j ← j − 1
p4: if f(i) = 0 q4: if f(j) = 0
p5: found ← true q5: found ← true
p6: turn ← 2 q6: turn ← 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.40

Algorithm 2.16: Concurrent algorithm A
integer array [1..10] C ← ten distinct initial values
integer array [1..10] D

integer myNumber, count
p1: myNumber ← C[i]
p2: count ← number of elements of C less than myNumber
p3: D[count + 1] ← myNumber

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.41

Algorithm 2.17: Concurrent algorithm B
integer n ← 0

p q
p1: while n < 2 q1: n ← n + 1
p2: write(n) q2: n ← n + 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.42

Algorithm 2.18: Concurrent algorithm C
integer n ← 1

p q
p1: while n < 1 q1: while n >= 0
p2: n ← n + 1 q2: n ← n − 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.43

Algorithm 2.19: Stop the loop B
integer n ← 0
boolean flag ← false

p q
p1: while flag = false q1: while flag = false
p2: n ← 1 − n q2: if n = 0
p3: q3: flag ← true

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.44

Algorithm 2.20: Stop the loop C
integer n ← 0
boolean flag ← false

p q
p1: while flag = false q1: while n = 0 // Do nothing
p2: n ← 1 − n q2: flag ← true

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.45

Algorithm 2.21: Welfare crook problem
integer array[0..N] a, b, c ← . . . (as required)
integer i ← 0, j ← 0, k ← 0

loop
p1: if condition-1
p2: i ← i + 1
p3: else if condition-2
p4: j ← j + 1
p5: else if condition-3
p6: k ← k + 1

else exit loop

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.1

Algorithm 3.1: Critical section problem
global variables

p q
local variables local variables
loop forever loop forever

non-critical section non-critical section
preprotocol preprotocol
critical section critical section
postprotocol postprotocol

Critical Section

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.2

HHH

fff

f

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.3

Algorithm 3.2: First attempt
integer turn ← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn ← 2 q4: turn ← 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.4

Algorithm 3.3: History in a sequential algorithm
integer a ← 1, b ← 2

p1: Millions of statements
p2: a ← (a+b)*5
p3: . . .

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.5

Algorithm 3.4: History in a concurrent algorithm
integer a ← 1, b ← 2

p q
p1: Millions of statements q1: Millions of statements
p2: a ← (a+b)*5 q2: b ← (a+b)*5
p3: . . . q3: . . .

First States of the State Diagram

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.6

-t p1,q1,1

�
�

�
� p1,q2,1

�
�

�
�� �

��

p2,q1,1

�
�

�
� p2,q2,1

�
�

�
�� �

��
?

?

?

?

-

-

State Diagram for the First Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.7

p2,q4,2
�
 �	
 	�-
p2,q3,2
�
 �	
 	�-
p2,q2,2
�
 �	
 	�-
p2,q1,2
�
 �	
 	�-
p1,q1,2
�
 �	
p4,q1,1
�
 �	
p3,q1,1
�
 �	
p2,q1,1
�
 �	

p1,q4,2
�
 �	
p1,q3,2
�
 �	
p1,q2,2
�
 �	
p4,q2,1
�
 �	
 	��
p3,q2,1
�
 �	
 	��
p2,q2,1
�
 �	
 	��
p1,q2,1
�
 �	
 	��
p1,q1,1
�
 �	

?

?

?

?

?

?

?

?

?

?

?

?

?

?

������

������

������

������

HHHHHj

HHHHHj

HHHHHj

HHHHHj

-

�-r

Alternate Layout for First Attempt (Not in book)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.8

?

s
p1,q1,1

�
�

�
� p1,q2,1

�
�

�
��
�� p1,q1,2

�
�

�
� p1,q2,2

�
�

�
�

p2,q1,1
�
�

�
� p2,q2,1

�
�

�
��
�� p2,q1,2

�
�

�
��
�- p1,q3,2

�
�

�
�

p3,q1,1
�
�

�
� p3,q2,1

�
�

�
��
�� p2,q2,2

�
�

�
��
�- p1,q4,2

�
�

�
�

p4,q1,1
�
�

�
� p4,q2,1

�
�

�
��
�� p2,q3,2

�
�

�
��
�- p2,q4,2

�
�

�
��
�-

?

?

?

?

?

?

?

?

?

?

?

?

-

-

-

-

-

-
? ??

?

?

?

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.9

Algorithm 3.5: First attempt (abbreviated)
integer turn ← 1

p q
loop forever loop forever

p1: await turn = 1 q1: await turn = 2
p2: turn ← 2 q2: turn ← 1

State Diagram for the Abbreviated First Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.10

?

t
p1: await turn=1,
q1: await turn=2,

turn = 1

'
&

$
%

p1: await turn=1,
q1: await turn=2,

turn = 2

'
&

$
%

p2: turn←2,
q1: await turn=2,

turn = 1

'
&

$
%

p1: await turn=1,
q2: turn←1,
turn = 2

'
&

$
%

& %
'-

& %
'-

& %
$�

& %
$�

? ?

??

Fragment of the State Diagram for the First Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.11

p1: NCS,
q1: NCS,
turn = 2

'
&

$
%

p1: NCS,
q2: await turn=2,

turn = 2

'
&

$
%

p2: await turn=1,
q1: NCS,
turn = 2

'
&

$
%

p2: await turn=1,
q2: await turn=2,

turn = 2

'
&

$
%

& %
'-

& %
'-

-

-

? ?

-

-

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.12

Algorithm 3.6: Second attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: await wantq = false q2: await wantp = false
p3: wantp ← true q3: wantq ← true
p4: critical section q4: critical section
p5: wantp ← false q5: wantq ← false

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.13

Algorithm 3.7: Second attempt (abbreviated)
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: await wantq = false q1: await wantp = false
p2: wantp ← true q2: wantq ← true
p3: wantp ← false q3: wantq ← false

Fragment of State Diagram for the Second Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.14

6r
p1: await !wantq,
q1: await !wantp,

false,false

'
&

$
%

p2: wantp←true,
q1: await !wantp,

false,false

'
&

$
%

p2: wantp←true,
q2: wantq←true,

false,false

'
&

$
%

p3: wantp←false,
q2: wantq←true,

true,false

'
&

$
%

p3: wantp←false,
q3: wantq←false,

true,true

'
&

$
%

-
-

?

�

Scenario: Mutual Exclusion Does Not Hold

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.15

Process p Process q wantp wantq

p1: await wantq=false q1: await wantp=false false false

p2: wantp←true q1: await wantp=false false false

p2: wantp←true q2: wantq←true false false

p3: wantp←false q3: wantq←true true false

p3: wantp←false q3: wantq←false true true

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.16

Algorithm 3.8: Third attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp ← false q5: wantq ← false

Scenario Showing Deadlock in the Third Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.17

Process p Process q wantp wantq

p1: non-critical section q1: non-critical section false false

p2: wantp←true q1: non-critical section false false

p2: wantp←true q2: wantq←true false false

p3: await wantq=false q2: wantq←true true false

p3: await wantq=false q3: await wantp=false true true

Fragment of the State Diagram Showing Deadlock

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.18

6r
p2: wantp←true,
q2: wantq←true,

false,false

'
&

$
%

p3: await !wantq,
q2: wantq←true,

true,false

'
&

$
%

p3: await !wantq,
q3: await !wantp,

true,true

'
&

$
%

-
-

� �
��

� �
�-

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.19

Algorithm 3.9: Fourth attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: wantp ← false q4: wantq ← false
p5: wantp ← true q5: wantq ← true
p6: critical section q6: critical section
p7: wantp ← false q7: wantq ← false

Cycle in the State Diagram for the Fourth Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.20

?
r

p3: while wantq,
q3: while wantp,

true,true

'
&

$
%

p3: while wantq,
q4: wantq←false,

true,true

'
&

$
%

p4: wantp←false,
q4: wantq←false,

true,true

'
&

$
%

p4: wantp←false,
q5: wantq←true,

true,false

'
&

$
%

p5: wantp←true,
q5: wantq←true,

false,false

'
&

$
%

p5: wantp←true,
q3: while wantp,

false,true

'
&

$
%

- -

?

6

��

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.21

Algorithm 3.10: Dekker’s algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: critical section q8: critical section
p9: turn ← 2 q9: turn ← 1
p10: wantp ← false q10: wantq ← false

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.22

Algorithm 3.11: Critical section problem with test-and-set
integer common ← 0

p q
integer local1 integer local2
loop forever loop forever

p1: non-critical section q1: non-critical section
repeat repeat

p2: test-and-set(q2: test-and-set(
common, local1) common, local2)

p3: until local1 = 0 q3: until local2 = 0
p4: critical section q4: critical section
p5: common ← 0 q5: common ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.23

Algorithm 3.12: Critical section problem with exchange
integer common ← 1

p q
integer local1 ← 0 integer local2 ← 0
loop forever loop forever

p1: non-critical section q1: non-critical section
repeat repeat

p2: exchange(common, lo-
cal1)

q2: exchange(common, lo-
cal2)

p3: until local1 = 1 q3: until local2 = 1
p4: critical section q4: critical section
p5: exchange(common, local1) q5: exchange(common, local2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.24

Algorithm 3.13: Peterson’s algorithm
boolean wantp ← false, wantq ← false
integer last ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: last ← 1 q3: last ← 2
p4: await wantq = false or q4: await wantp = false or

last = 2 last = 1
p5: critical section q5: critical section
p6: wantp ← false q6: wantq ← false

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.25

Algorithm 3.14: Manna-Pnueli algorithm
integer wantp ← 0, wantq ← 0
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: if wantq = −1 q2: if wantp = −1

wantp ← −1 wantq ← 1
else wantp ← 1 else wantq ← −1

p3: await wantq 6= wantp q3: await wantp 6= − wantq
p4: critical section q4: critical section
p5: wantp ← 0 q5: wantq ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.26

Algorithm 3.15: Doran-Thomas algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: if wantq q3: if wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: await wantq = false q8: await wantp = false
p9: critical section q9: critical section
p10: wantp ← false q10: wantq ← false
p11: turn ← 2 q11: turn ← 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.1

Algorithm 4.1: Third attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp ← false q5: wantq ← false

2A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.2

A

time →

false

true

6
i

3A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.3

time →

false

true

6
i

A

Duality: ¬2A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.4

A

time →

false

true

6
i

Duality: ¬3A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.5

time →

false

true

6
i

A

32A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.6

A

time →

false

true

6
i

23A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.7

A

time →

false

true

6
i

AUB

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.8

A, B

time →

false

true

6
i

32A1 ∧32A2

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.9

A1,A2 sk2

?

time →

false

true

6
i

sk1

?

23A1 ∧23A2

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.10

A1,A2

time →

false

true

6
i

Overtaking: tryp→ (¬ csq)W (csq)W (¬ csq)W (csp)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.11

p, q

time →

ncs

try

cs

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.12

Algorithm 4.2: Dekker’s algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: critical section q8: critical section
p9: turn ← 2 q9: turn ← 1
p10: wantp ← false q10: wantq ← false

Dekker’s Algorithm in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.13

1 bool wantp = false, wantq = false;
2 byte turn = 1;
3

4 active proctype p() {
5 do :: wantp = true;
6 do :: !wantq −> break;
7 :: else −>

8 if :: (turn == 1)
9 :: (turn == 2) −>

10 wantp = false; (turn == 1); wantp = true
11 fi
12 od;
13 printf (”MSC: p in CS\n”) ;
14 turn = 2; wantp = false
15 od
16 }

Specifying Correctness in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.14

1 byte critical = 0;
2

3 bool PinCS = false;
4

5 #define nostarve PinCS /∗ LTL claim <> nostarve ∗/
6

7 active proctype p() {
8 do ::
9 /∗ preprotocol ∗/

10 critical ++;
11 assert(critical <= 1);
12 PinCS = true;
13 critical −−;
14 /∗ postprotocol ∗/
15 od
16 }

LTL Translation to Never Claims

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.15

1 never { /∗ !(<>nostarve) ∗/
2 accept init :
3 T0 init :
4 if
5 :: (! ((nostarve))) −> goto T0 init
6 fi ;
7 }
8

9 never { /∗ !([]<>nostarve) ∗/
10 T0 init :
11 if
12 :: (! ((nostarve))) −> goto accept S4
13 :: (1) −> goto T0 init
14 fi ;
15 accept S4:
16 if
17 :: (! ((nostarve))) −> goto accept S4
18 fi ;
19 }

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.1

Algorithm 5.1: Bakery algorithm (two processes)
integer np ← 0, nq ← 0

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: np ← nq + 1 q2: nq ← np + 1
p3: await nq = 0 or np ≤ nq q3: await np = 0 or nq < np
p4: critical section q4: critical section
p5: np ← 0 q5: nq ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.2

Algorithm 5.2: Bakery algorithm (N processes)
integer array[1..n] number ← [0,. . . ,0]

loop forever
p1: non-critical section
p2: number[i] ← 1 + max(number)
p3: for all other processes j
p4: await (number[j] = 0) or (number[i] ≪ number[j])
p5: critical section
p6: number[i] ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.3

Algorithm 5.3: Bakery algorithm without atomic assignment
boolean array[1..n] choosing ← [false,. . . ,false]
integer array[1..n] number ← [0,. . . ,0]

loop forever
p1: non-critical section
p2: choosing[i] ← true
p3: number[i] ← 1 + max(number)
p4: choosing[i] ← false
p5: for all other processes j
p6: await choosing[j] = false
p7: await (number[j] = 0) or (number[i] ≪ number[j])
p8: critical section
p9: number[i] ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.4

Algorithm 5.4: Fast algorithm for two processes (outline)
integer gate1 ← 0, gate2 ← 0

p q
loop forever loop forever

non-critical section non-critical section
p1: gate1 ← p q1: gate1 ← q
p2: if gate2 6= 0 goto p1 q2: if gate2 6= 0 goto q1
p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q
p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0

Fast Algorithm - No Contention (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.5

(a)

�@

�@

ip
-

(b)

�@

�@

ipp -

(c)

�@

�@

ipp p

(d)

�@

�@

ipp p

-

�

Fast Algorithm - No Contention (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.6

(e)

�@

�@

ipp p

�@

�@

ip

(f)

p

Fast Algorithm - Contention At Gate 2

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.7

(a)

�@

�@

ip q

-

(b)

�@

�@

ipp q-

(c)

�@

�@

ipp q

�

(d)

�@

�@

ip
-

p q

Fast Algorithm - Contention At Gate 1 (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.8

(a)

�@

�@

ip
-

(b)

�@

�@

ipp -

(c)

�@

�@

ipp p

(d)

�@

�@

ip�q p

Fast Algorithm - Contention At Gate 1 (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.9

(e)

�@

�@

ipq p-

-

(f)

�@

�@

ipq q-

�

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.10

Algorithm 5.5: Fast algorithm for two processes (outline)
integer gate1 ← 0, gate2 ← 0

p q
loop forever loop forever

non-critical section non-critical section
p1: gate1 ← p q1: gate1 ← q
p2: if gate2 6= 0 goto p1 q2: if gate2 6= 0 goto q1
p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q
p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.11

Algorithm 5.6: Fast algorithm for two processes
integer gate1 ← 0, gate2 ← 0
boolean wantp ← false, wantq ← false

p q
p1: gate1 ← p q1: gate1 ← q

wantp ← true wantq ← true
p2: if gate2 6= 0 q2: if gate2 6= 0

wantp ← false wantq ← false
goto p1 goto q1

p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q

wantp ← false wantq ← false
await wantq = false await wantp = false

p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1
else wantp ← true else wantq ← true

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0

wantp ← false wantq ← false

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.12

Algorithm 5.7: Fisher’s algorithm
integer gate ← 0

loop forever
non-critical section
loop

p1: await gate = 0
p2: gate ← i
p3: delay
p4: until gate = i

critical section
p5: gate ← 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.13

Algorithm 5.8: Lamport’s one-bit algorithm
boolean array[1..n] want ← [false,. . . ,false]

loop forever
non-critical section

p1: want[i] ← true
p2: for all processes j ¡ i
p3: if want[j]
p4: want[i] ← false
p5: await not want[j]

goto p1
p6: for all processes j ¿ i
p7: await not want[j]

critical section
p8: want[i] ← false

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 5.14

Algorithm 5.9: Manna-Pnueli central server algorithm
integer request ← 0, respond ← 0

client process i
loop forever

non-critical section
p1: while respond 6= i
p2: request ← i

critical section
p3: respond ← 0

server process
loop forever

p4: await request 6= 0
p5: respond ← request
p6: await respond = 0
p7: request ← 0

State Changes of a Process

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.1

inactive ready running

blocked

completed- --
�

?
HHHHHHHY

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.2

Algorithm 6.1: Critical section with semaphores (two processes)
binary semaphore S ← (1, ∅)

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wait(S) q2: wait(S)
p3: critical section q3: critical section
p4: signal(S) q4: signal(S)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.3

Algorithm 6.2: Critical section with semaphores (two proc., abbrev.)
binary semaphore S ← (1, ∅)

p q
loop forever loop forever

p1: wait(S) q1: wait(S)
p2: signal(S) q2: signal(S)

State Diagram for the Semaphore Solution

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.4

p1: wait(S),

q1: wait(S),

(1, ∅)

'

&

$

%
p2: signal(S),

q1: wait(S),

(0, ∅)

'

&

$

%
p2: signal(S),
q1: blocked,
(0, {q})

'

&

$

%
p1: wait(S),

q2: signal(S),

(0, ∅)

'

&

$

%
p1: blocked,
q2: signal(S),

(0, {p})

'

&

$

%

-
-

-

�

@
@
@
@
@R
@

@
@

@
@I

�
�

�
�

�	
@

@
@

@
@I p

q

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.5

Algorithm 6.3: Critical section with semaphores (N proc.)
binary semaphore S ← (1, ∅)

loop forever
p1: non-critical section
p2: wait(S)
p3: critical section
p4: signal(S)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.6

Algorithm 6.4: Critical section with semaphores (N proc., abbrev.)
binary semaphore S ← (1, ∅)

loop forever
p1: wait(S)
p2: signal(S)

Scenario for Starvation

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.7

n Process p Process q Process r S

1 p1: wait(S) q1: wait(S) r1: wait(S) (1, ∅)
2 p2: signal(S) q1: wait(S) r1: wait(S) (0, ∅)

3 p2: signal(S) q1: blocked r1: wait(S) (0, {q})
4 p1: signal(S) q1: blocked r1: blocked (0, {q, r})

5 p1: wait(S) q1: blocked r2: signal(S) (0, {q})
6 p1: blocked q1: blocked r2: signal(S) (0, {p, q})

7 p2: signal(S) q1: blocked r1: wait(S) (0, {q})

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.8

Algorithm 6.5: Mergesort
integer array A
binary semaphore S1 ← (0, ∅)
binary semaphore S2 ← (0, ∅)

sort1 sort2 merge
p1: sort 1st half of A q1: sort 2nd half of A r1: wait(S1)
p2: signal(S1) q2: signal(S2) r2: wait(S2)
p3: q3: r3: merge halves of A

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.9

Algorithm 6.6: Producer-consumer (infinite buffer)
infinite queue of dataType buffer ← empty queue
semaphore notEmpty ← (0, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: d ← produce q1: wait(notEmpty)
p2: append(d, buffer) q2: d ← take(buffer)
p3: signal(notEmpty) q3: consume(d)

Partial State Diagram for Producer-Consumer

with Infinite Buffer

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.10

p1: append,
q1: wait(S),

(0, ∅), []

'

&

$

%
p2: signal(S),

q1: wait(S),

(0, ∅), [x]

'

&

$

%
p1: append,
q1: wait(S),

(1, ∅), [x]

'

&

$

%
p1: append,
q1: blocked,
(0, {con}), []

'

&

$

%
p2: signal(S),
q1: blocked,
(0, {con}), [x]

'

&

$

%
p1: append,
q2: take,
(0, ∅), [x]

'

&

$

%

- - -

- - -

? ? ?

6

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.11

Algorithm 6.7: Producer-consumer (infinite buffer, abbreviated)
infinite queue of dataType buffer ← empty queue
semaphore notEmpty ← (0, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: append(d, buffer) q1: wait(notEmpty)
p2: signal(notEmpty) q2: d ← take(buffer)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.12

Algorithm 6.8: Producer-consumer (finite buffer, semaphores)
finite queue of dataType buffer ← empty queue
semaphore notEmpty ← (0, ∅)
semaphore notFull ← (N, ∅)
producer consumer

dataType d dataType d
loop forever loop forever

p1: d ← produce q1: wait(notEmpty)
p2: wait(notFull) q2: d ← take(buffer)
p3: append(d, buffer) q3: signal(notFull)
p4: signal(notEmpty) q4: consume(d)

Scenario with Busy Waiting

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.13

n Process p Process q S

1 p1: wait(S) q1: wait(S) 1

2 p2: signal(S) q1: wait(S) 0

3 p2: signal(S) q1: wait(S) 0

4 p1: wait(S) q1: wait(S) 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.14

Algorithm 6.9: Dining philosophers (outline)

loop forever
p1: think
p2: preprotocol
p3: eat
p4: postprotocol

The Dining Philosophers

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.15

...........................

...........................

............................

............................

............................

...........................

..........................

..........................

..........................

..........................

...........................
............................

............................
..

............................
.......................
....

...................
.......

.................
.........

...............
...........

..............
............

..............
.............

.............
.............
..

.............
.............
..

.............
.............
..

............
............
...

............

............

...

............

............

...

............
............
...

.............
.............
..

.............
.............
..

..............
.............
.

..............
.............

..............
............

...............
...........

.................
.........

...................
.......

.......................
....

............................
............................

............................
...........................

..........................

..........................

..........................

..........................

...........................

............................

............................

............................

...........................

...........................

................

.................

.................
................

................
.................

...
...............
.

..............
...

.............
....

............

....

............

....

.............
....

..............
...
...............
.
................

.................
................
................
.................

.................

................Spaghetti

...........
...........
...........
...........
......................

...
...........
...........
...........
...........
...........phil1

fork1

...........
...........
...........
...........
......................

...
...........
...........
...........
...........
...........phil2

fork2

...........
...........
...........
...........
......................

...
...........
...........
...........
...........
...........phil5

fork5

...........
...........
...........
...........
......................

...
...........
...........
...........
...........
...........phil3

fork3

...........
...........
...........
...........
......................

...
...........
...........
...........
...........
...........phil4

fork4

6

HHHY���*

����
HHHj

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.16

Algorithm 6.10: Dining philosophers (first attempt)
semaphore array [0..4] fork ← [1,1,1,1,1]

loop forever
p1: think
p2: wait(fork[i])
p3: wait(fork[i+1])
p4: eat
p5: signal(fork[i])
p6: signal(fork[i+1])

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.17

Algorithm 6.11: Dining philosophers (second attempt)
semaphore array [0..4] fork ← [1,1,1,1,1]
semaphore room ← 4

loop forever
p1: think
p2: wait(room)
p3: wait(fork[i])
p4: wait(fork[i+1])
p5: eat
p6: signal(fork[i])
p7: signal(fork[i+1])
p8: signal(room)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.18

Algorithm 6.12: Dining philosophers (third attempt)
semaphore array [0..4] fork ← [1,1,1,1,1]

philosopher 4
loop forever

p1: think
p2: wait(fork[0])
p3: wait(fork[4])
p4: eat
p5: signal(fork[0])
p6: signal(fork[4])

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.19

Algorithm 6.13: Barz’s algorithm for simulating general semaphores
binary semaphore S ← 1
binary semaphore gate ← 1
integer count ← k

loop forever
non-critical section

p1: wait(gate)
p2: wait(S) // Simulated wait
p3: count ← count − 1
p4: if count > 0 then
p5: signal(gate)
p6: signal(S)

critical section
p7: wait(S) // Simulated signal
p8: count ← count + 1
p9: if count = 1 then
p10: signal(gate)
p11: signal(S)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.20

Algorithm 6.14: Udding’s starvation-free algorithm
semaphore gate1 ← 1, gate2 ← 0
integer numGate1 ← 0, numGate2 ← 0

p1: wait(gate1)
p2: numGate1 ← numGate1 + 1
p3: signal(gate1)
p4: wait(gate1)
p5: numGate2 ← numGate2 + 1

numGate1 ← numGate1 − 1 // Statement is missing in the
book
p6: if numGate1 ¿ 0
p7: signal(gate1)
p8: else signal(gate2)
p9: wait(gate2)
p10: numGate2 ← numGate2 − 1

critical section
p11: if numGate2 ¿ 0
p12: signal(gate2)
p13: else signal(gate1)

Udding’s Starvation-Free Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.21

�� @@

�� @@

m

�� @@

�� @@

m

�� @@

�� @@

m

�� @@

�� @@

m

�� @@

�� @@

m
numGate1 gate1 numGate2 gate2 CS

Scenario for Starvation in Udding’s Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.22

n Process p Process q gate1 gate2 nGate1 nGate2

1 p4: wait(g1) q4: wait(g1) 1 0 2 0

2 p9: wait(g2) q9: wait(g2) 0 1 0 2

3 CS q9: wait(g2) 0 0 0 1

4 p12: signal(g2) q9: wait(g2) 0 0 0 1

5 p1: wait(g1) CS 0 0 0 0

6 p1: wait(g1) q13: signal(g1) 0 0 0 0

7 p1: blocked q13: signal(g1) 0 0 0 0

8 p4: wait(g1) q1: wait(g1) 1 0 1 0

9 p4: wait(g1) q4: wait(g1) 1 0 2 0

Semaphores in Java

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.23

1 import java. util . concurrent. Semaphore;
2 class CountSem extends Thread {
3 static volatile int n = 0;
4 static Semaphore s = new Semaphore(1);
5

6 public void run() {
7 int temp;
8 for (int i = 0; i < 10; i ++) {
9 try {

10 s. acquire ();
11 }
12 catch (InterruptedException e) {}
13 temp = n;
14 n = temp + 1;
15 s. release ();
16 }
17 }
18

19 public static void main(String[] args) {
20 /∗ As before ∗/
21 }
22 }

Semaphores in Ada

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.24

1 protected type Semaphore(Initial : Natural) is
2 entry Wait;
3 procedure Signal;
4 private
5 Count: Natural := Initial ;
6 end Semaphore;
7

8 protected body Semaphore is
9 entry Wait when Count > 0 is

10 begin
11 Count := Count − 1;
12 end Wait;
13

14 procedure Signal is
15 begin
16 Count := Count + 1;
17 end Signal;
18 end Semaphore;

Busy-Wait Semaphores in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.25

1 inline wait(s) {
2 atomic { s > 0 ; s−− }
3 }
4

5 inline signal (s) { s++ }

Weak Semaphores in Promela (3 processes) (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.26

1 typedef Semaphore {
2 byte count;
3 bool blocked[NPROCS];
4 };
5

6 inline initSem(S, n) {
7 S.count = n
8 }

Weak Semaphores in Promela (3 processes) (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.27

1 inline wait(S) {
2 atomic {
3 if
4 :: S.count >= 1 −> S.count−−
5 :: else −>

6 S.blocked[pid−1] = true;
7 ! S.blocked[pid−1]
8 fi
9 }

10 }
11

12 inline signal (S) {
13 atomic {
14 if
15 :: S.blocked[0] −> S.blocked[0] = false
16 :: S.blocked[1] −> S.blocked[1] = false
17 :: S.blocked[2] −> S.blocked[2] = false
18 :: else −> S.count++
19 fi
20 }
21 }

Weak Semaphores in Promela (N processes) (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.28

1 typedef Semaphore {
2 byte count;
3 bool blocked[NPROCS];
4 byte i , choice ;
5 };
6

7 inline initSem(S, n) {
8 S.count = n
9 }

10

11 inline wait(S) {
12 atomic {
13 if
14 :: S.count >= 1 −> S.count−−
15 :: else −>

16 S.blocked[pid−1] = true;
17 ! S.blocked[pid−1]
18 fi
19 }
20 }

Weak Semaphores in Promela (N processes) (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.29

1 inline signal (S) {
2 atomic {
3 S.i = 0;
4 S.choice = 255;
5 do
6 :: (S.i == NPROCS) −> break
7 :: (S.i < NPROCS) && !S.blocked[S.i] −> S.i++
8 :: else −>

9 if
10 :: (S.choice == 255) −> S.choice = S.i
11 :: (S.choice != 255) −> S.choice = S.i
12 :: (S.choice != 255) −>

13 fi ;
14 S.i ++
15 od;
16 if
17 :: S.choice == 255 −> S.count++
18 :: else −> S.blocked[S.choice] = false
19 fi
20 }
21 }

Barz’s Algorithm in Promela (N processes, K in CS)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.30

1 byte gate = 1;
2 int count = K;
3

4 active [N] proctype P () {
5 do ::
6 atomic { gate > 0; gate−−; }
7 d step {
8 count−−;
9 if

10 :: count > 0 −> gate++
11 :: else
12 fi
13 }
14 /∗ Critical section ∗/
15 d step {
16 count++;
17 if
18 :: count == 1 −> gate++
19 :: else
20 fi
21 }
22 od
23 }

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.31

Algorithm 6.15: Semaphore algorithm A
semaphore S ← 1, semaphore T ← 0
p q

p1: wait(S) q1: wait(T)
p2: write(”p”) q2: write(”q”)
p3: signal(T) q3: signal(S)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.32

Algorithm 6.16: Semaphore algorithm B
semaphore S1 ← 0, S2 ← 0

p q r
p1: write(”p”) q1: wait(S1) r1: wait(S2)
p2: signal(S1) q2: write(”q”) r2: write(”r”)
p3: signal(S2) q3: r3:

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.33

Algorithm 6.17: Semaphore algorithm with a loop
semaphore S ← 1
boolean B ← false

p q
p1: wait(S) q1: wait(S)
p2: B ← true q2: while not B
p3: signal(S) q3: write(”*”)
p4: q4: signal(S)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.34

Algorithm 6.18: Critical section problem (k out of N processes)
binary semaphore S ← 1, delay ← 0
integer count ← k

integer m
loop forever

p1: non-critical section
p2: wait(S)
p3: count ← count − 1
p4: m ← count
p5: signal(S)
p6: if m ≤ −1 wait(delay)
p7: critical section
p8: wait(S)
p9: count ← count + 1
p10: if count ≤ 0 signal(delay)
p11: signal(S)

Circular Buffer

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.35

�
���

���
�

�
���

���
�

�
���

���
�

inout
6 6

�
���

���
�

�
���

���
�

�
���

���
�

�
���

���
�

in out
6 6

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.36

Algorithm 6.19: Producer-consumer (circular buffer)
dataType array [0..N] buffer
integer in, out ← 0
semaphore notEmpty ← (0, ∅)
semaphore notFull ← (N, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: d ← produce q1: wait(notEmpty)
p2: wait(notFull) q2: d ← buffer[out]
p3: buffer[in] ← d q3: out ← (out+1) modulo N
p4: in ← (in+1) modulo N q4: signal(notFull)
p5: signal(notEmpty) q5: consume(d)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.37

Algorithm 6.20: Simulating general semaphores
binary semaphore S ← 1, gate ← 0
integer count ← 0

wait
p1: wait(S)
p2: count ← count − 1
p3: if count < 0
p4: signal(S)
p5: wait(gate)
p6: else signal(S)

signal
p7: wait(S)
p8: count ← count + 1
p9: if count ≤ 0
p10: signal(gate)
p11: signal(S)

Weak Semaphores in Promela with Channels

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.38

1 typedef Semaphore {
2 byte count;
3 chan ch = [NPROCS] of { pid };
4 byte temp, i ;
5 };
6 inline initSem(S, n) { S.count = n }
7 inline wait(S) {
8 atomic {
9 if

10 :: S.count >= 1 −> S.count−−;
11 :: else −> S.ch ! pid; !(S.ch ?? [eval(pid)])
12 fi
13 }
14 }
15 inline signal (S) {
16 atomic {
17 S.i = len(S.ch);
18 if
19 :: S.i == 0 −> S.count++ /∗No blocked process, increment count∗/
20 :: else −>

21 do
22 :: S.i == 1 −> S.ch ? ; break /∗Remove only blocked process∗/
23 :: else −> S.i−−;
24 S.ch ? S.temp;

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.39

Algorithm 6.21: Readers and writers with semaphores
semaphore readerSem ← 0, writerSem ← 0
integer delayedReaders ← 0, delayedWriters ← 0
semaphore entry ← 1
integer readers ← 0, writers ← 0

SignalProcess
if writers = 0 or delayedReaders > 0

delayedReaders ← delayedReaders − 1
signal(readerSem)

else if readers = 0 and writers = 0 and delayedWriters > 0
delayedWriters ← delayedWriters − 1
signal(writerSem)

else signal(entry)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.40

Algorithm 6.21: Readers and writers with semaphores

StartRead
p1: wait(entry)
p2: if writers > 0
p3: delayedReaders ← delayedReaders + 1
p4: signal(entry)
p5: wait(readerSem)
p6: readers ← readers + 1
p7: SignalProcess

EndRead
p8: wait(entry)
p9: readers ← readers − 1
p10: SignalProcess

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.41

Algorithm 6.21: Readers and writers with semaphores

StartWrite
p11: wait(entry)
p12: if writers > 0 or readers > 0
p13: delayedWriters ← delayedWriters + 1
p14: signal(entry)
p15: wait(writerSem)
p16: writers ← writers + 1
p17: SignalProcess

EndWrite
p18: wait(entry)
p19: writers ← writers − 1
p20: SignalProcess

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.1

Algorithm 7.1: Atomicity of monitor operations

monitor CS
integer n ← 0

operation increment
integer temp
temp ← n
n ← temp + 1

p q
p1: CS.increment q1: CS.increment

Executing a Monitor Operation

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.2

HHH

monitor CS

n 0

fff

f

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.3

Algorithm 7.2: Semaphore simulated with a monitor

monitor Sem
integer s ← k
condition notZero
operation wait

if s = 0
waitC(notZero)

s ← s − 1
operation signal

s ← s + 1
signalC(notZero)

p q
loop forever loop forever

non-critical section non-critical section
p1: Sem.wait q1: Sem.wait

critical section critical section
p2: Sem.signal q2: Sem.signal

Marc Smith

Condition Variable in a Monitor

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.4

HHH

�
��

notZero

fff
monitor Sem

s 0

fff

f

State Diagram for the Semaphore Simulation

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.5

p1: Sem.wait,
q1: Sem.wait,

1, <>

'
&

$
%

p1: Sem.wait,
q2: Sem.signal,

0, <>

'
&

$
%

p2: Sem.signal,
q1: Sem.wait,

0, <>

'
&

$
%

blocked,
q2: Sem.signal

0, < p >

'
&

$
%

p2: Sem.signal,
blocked,
0, < q >

'
&

$
%

-
�

-

6

?

-

6
���������������������9

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.6

Algorithm 7.3: Producer-consumer (finite buffer, monitor)

monitor PC
bufferType buffer ← empty
condition notEmpty
condition notFull
operation append(datatype V)

if buffer is full
waitC(notFull)

append(V, buffer)
signalC(notEmpty)

operation take()
datatype W
if buffer is empty

waitC(notEmpty)
W ← head(buffer)
signalC(notFull)
return W

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.7

Algorithm 7.3: Producer-consumer (finite buffer, monitor) (continued)

producer consumer
datatype D datatype D
loop forever loop forever

p1: D ← produce q1: D ← PC.take
p2: PC.append(D) q2: consume(D)

The Immediate Resumption Requirement

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.8

A
AA

A
AA

�
��

�
��

HHH

monitor

condition 1

condition 2

waiting

signaling

fff

f
fff

ff

ff

f

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.9

Algorithm 7.4: Readers and writers with a monitor

monitor RW
integer readers ← 0
integer writers ← 0
condition OKtoRead, OKtoWrite
operation StartRead

if writers 6= 0 or not empty(OKtoWrite)
waitC(OKtoRead)

readers ← readers + 1
signalC(OKtoRead)

operation EndRead
readers ← readers − 1
if readers = 0

signalC(OKtoWrite)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.10

Algorithm 7.4: Readers and writers with a monitor (continued)

operation StartWrite
if writers 6= 0 or readers 6= 0

waitC(OKtoWrite)
writers ← writers + 1

operation EndWrite
writers ← writers − 1
if empty(OKtoRead)

then signalC(OKtoWrite)
else signalC(OKtoRead)

reader writer
p1: RW.StartRead q1: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.11

Algorithm 7.5: Dining philosophers with a monitor

monitor ForkMonitor
integer array[0..4] fork ← [2, . . . , 2]
condition array[0..4] OKtoEat
operation takeForks(integer i)

if fork[i] 6= 2
waitC(OKtoEat[i])

fork[i+1] ← fork[i+1] − 1
fork[i−1] ← fork[i−1] − 1

operation releaseForks(integer i)
fork[i+1] ← fork[i+1] + 1
fork[i−1] ← fork[i−1] + 1
if fork[i+1] = 2

signalC(OKtoEat[i+1])
if fork[i−1] = 2

signalC(OKtoEat[i−1])

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.12

Algorithm 7.5: Dining philosophers with a monitor (continued)

philosopher i
loop forever

p1: think
p2: takeForks(i)
p3: eat
p4: releaseForks(i)

Scenario for Starvation of Philosopher 2

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.13

n phil1 phil2 phil3 f0 f1 f2 f3 f4

1 take(1) take(2) take(3) 2 2 2 2 2

2 release(1) take(2) take(3) 1 2 1 2 2

3 release(1) take(2) and release(3) 1 2 0 2 1
waitC(OK[2])

4 release(1) (blocked) release(3) 1 2 0 2 1

5 take(1) (blocked) release(3) 2 2 1 2 1

6 release(1) (blocked) release(3) 1 2 0 2 1

7 release(1) (blocked) take(3) 1 2 1 2 2

Readers and Writers in C

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.14

1 monitor RW {
2 int readers = 0, writing = 1;
3 condition OKtoRead, OKtoWrite;
4

5 void StartRead() {
6 if (writing || ! empty(OKtoWrite)) waitc(OKtoRead);
7 readers = readers + 1;
8 signalc (OKtoRead);
9 }

10 void EndRead() {
11 readers = readers − 1;
12 if (readers == 0) signalc (OKtoWrite);
13 }
14

15 void StartWrite () {
16 if (writing || (readers != 0)) waitc(OKtoWrite);
17 writing = 1;
18 }
19 void EndWrite() {
20 writing = 0;
21 if (empty(OKtoRead)) signalc(OKtoWrite);
22 else signalc (OKtoRead);
23 }
24 }

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.15

Algorithm 7.6: Readers and writers with a protected object

protected object RW
integer readers ← 0
boolean writing ← false
operation StartRead when not writing

readers ← readers + 1
operation EndRead

readers ← readers − 1
operation StartWrite when not writing and readers = 0

writing ← true

operation EndWrite
writing ← false

reader writer
loop forever loop forever

p1: RW.StartRead q1: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite

Context Switches in a Monitor

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.16

Process reader Process writer

waitC(OKtoRead) operation EndWrite

(blocked) writing ← false

(blocked) signalC(OKtoRead)

readers ← readers + 1 return from EndWrite

signalC(OKtoRead) return from EndWrite

read the data return from EndWrite

read the data . . .

Context Switches in a Protected Object

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.17

Process reader Process writer

when not writing operation EndWrite

(blocked) writing ← false

(blocked) when not writing

(blocked) readers ← readers + 1

read the data . . .

Simple Readers and Writers in Ada

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.18

1 protected RW is
2 procedure Write(I: Integer);
3 function Read return Integer ;
4 private
5 N: Integer := 0;
6 end RW;
7

8 protected body RW is
9 procedure Write(I: Integer) is

10 begin
11 N := I;
12 end Write;
13 function Read return Integer is
14 begin
15 return N;
16 end Read;
17 end RW;

Readers and Writers in Ada (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.19

1 protected RW is
2 entry StartRead;
3 procedure EndRead;
4 entry Startwrite ;
5 procedure EndWrite;
6 private
7 Readers: Natural :=0;
8 Writing: Boolean := false ;
9 end RW;

Readers and Writers in Ada (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.20

1 protected body RW is
2 entry StartRead
3 when not Writing is
4 begin
5 Readers := Readers + 1;
6 end StartRead;
7

8 procedure EndRead is
9 begin

10 Readers := Readers − 1;
11 end EndRead;
12

13 entry StartWrite
14 when not Writing and Readers = 0 is
15 begin
16 Writing := true ;
17 end StartWrite;
18

19 procedure EndWrite is
20 begin
21 Writing := false ;
22 end EndWrite;
23 end RW;

Producer-Consumer in Java (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.21

1 class PCMonitor {
2 final int N = 5;
3 int Oldest = 0, Newest = 0;
4 volatile int Count = 0;
5 int Buffer [] = new int[N];
6

7 synchronized void Append(int V) {
8 while (Count == N)
9 try {

10 wait();
11 } catch (InterruptedException e) {}
12 Buffer [Newest] = V;
13 Newest = (Newest + 1) % N;
14 Count = Count + 1;
15 notifyAll ();
16 }

Producer-Consumer in Java (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.22

1 synchronized int Take() {
2 int temp;
3 while (Count == 0)
4 try {
5 wait();
6 } catch (InterruptedException e) {}
7 temp = Buffer[Oldest];
8 Oldest = (Oldest + 1) % N;
9 Count = Count − 1;

10 notifyAll ();
11 return temp;
12 }
13 }

A Monitor in Java With notifyAll

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.23

�
��

HHH

object waiting

fff

f fff��
��@

@
@

@I

Java Monitor for RW (try-catch omitted)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.24

1 class RWMonitor {
2 volatile int readers = 0;
3 volatile boolean writing = false;
4

5 synchronized void StartRead() {
6 while (writing) wait();
7 readers = readers + 1;
8 notifyAll ();
9 }

10 synchronized void EndRead() {
11 readers = readers − 1;
12 if (readers == 0) notifyAll();
13 }
14

15 synchronized void StartWrite() {
16 while (writing || (readers != 0)) wait();
17 writing = true;
18 }
19

20 synchronized void EndWrite() {
21 writing = false;
22 notifyAll ();
23 }
24 }

Simulating Monitors in Promela (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.25

1 bool lock = false;
2

3 typedef Condition {
4 bool gate;
5 byte waiting ;
6 }
7

8 #define emptyC(C) (C.waiting == 0)
9

10 inline enterMon() {
11 atomic {
12 ! lock;
13 lock = true;
14 }
15 }
16

17 inline leaveMon() {
18 lock = false;
19 }

Simulating Monitors in Promela (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.26

1 inline waitC(C) {
2 atomic {
3 C.waiting++;
4 lock = false; /∗ Exit monitor ∗/
5 C.gate; /∗ Wait for gate ∗/
6 lock = true; /∗ IRR ∗/
7 C.gate = false; /∗ Reset gate ∗/
8 C.waiting−−;
9 }

10 }
11

12 inline signalC (C) {
13 atomic {
14 if
15 /∗ Signal only if waiting ∗/
16 :: (C.waiting > 0) −>

17 C.gate = true;
18 ! lock; /∗ IRR − wait for released lock ∗/
19 lock = true; /∗ Take lock again ∗/
20 :: else
21 fi ;
22 }
23 }

Readers and Writers in Ada (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.27

1 protected RW is
2 entry Start Read;
3 procedure End Read;
4 entry Start Write ;
5 procedure End Write;
6 private
7 Waiting To Read : integer := 0;
8 Readers : Natural := 0;
9 Writing : Boolean := false ;

10 end RW;

Readers and Writers in Ada (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.28

1 protected RW is
2 entry StartRead;
3 procedure EndRead;
4 entry Startwrite ;
5 procedure EndWrite;
6 function NumberReaders return Natural;
7 private
8 entry ReadGate;
9 entry WriteGate;

10 Readers: Natural :=0;
11 Writing: Boolean := false ;
12 end RW;

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.1

Algorithm 8.1: Producer-consumer (channels)
channel of integer ch

producer consumer
integer x integer y
loop forever loop forever

p1: x ← produce q1: ch ⇒ y
p2: ch ⇐ x q2: consume(y)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.2

Algorithm 8.2: Conway’s problem
constant integer MAX ← 9
constant integer K ← 4
channel of integer inC, pipe, outC

compress output
char c, previous ← 0 char c
integer n ← 0 integer m ← 0
inC ⇒ previous
loop forever loop forever

p1: inC ⇒ c q1: pipe ⇒ c
p2: if (c = previous) and q2: outC ⇐ c

(n < MAX − 1)
p3: n ← n + 1 q3: m ← m + 1

else
p4: if n > 0 q4: if m >= K
p5: pipe⇐ intToChar(n+1) q5: outC ⇐ newline
p6: n ← 0 q6: m ← 0
p7: pipe ⇐ previous q7:

p8: previous ← c q8:

Conway’s Problem

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.3

- - -compress output
inC pipe outC

Process Array for Matrix Multiplication

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.4

Sink Sink Sink

Result

Result

Result

Zero

Zero

Zero

Source Source Source

����

����

����
?

?

?

?

?

?

?

?

?

?

?

?

1 2 3

4 5 6

7 8 9

4,2,6 3,2,4 3,0,0 0,0,0

10,5,18 6,5,10 6,0,0 0,0,0

16,8,30 9,8,16 9,0,0 0,0,0

2
0
1

2
0
1

2
0
1

2
0
1

2
1
0

2
1
0

2
1
0

2
1
0

0
0
1

0
0
1

0
0
1

0
0
1

Computation of One Element

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.5

Result Zero7 8 9 ����

? ? ?
2 2 0

001630

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.6

Algorithm 8.3: Multiplier process with channels
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
p1: North ⇒ SecondElement
p2: East ⇒ Sum
p3: Sum ← Sum + FirstElement · SecondElement
p4: South ⇐ SecondElement
p5: West ⇐ Sum

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.7

Algorithm 8.4: Multiplier with channels and selective input
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
either

p1: North ⇒ SecondElement
p2: East ⇒ Sum

or
p3: East ⇒ Sum
p4: North ⇒ SecondElement
p5: South ⇐ SecondElement
p6: Sum ← Sum + FirstElement · SecondElement
p7: West ⇐ Sum

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.8

Algorithm 8.5: Dining philosophers with channels
channel of boolean forks[5]

philosopher i fork i
boolean dummy boolean dummy
loop forever loop forever

p1: think q1: forks[i] ⇐ true
p2: forks[i] ⇒ dummy q2: forks[i] ⇒ dummy
p3: forks[i+1] ⇒ dummy q3:

p4: eat q4:

p5: forks[i] ⇐ true q5:

p6: forks[i+1] ⇐ true q6:

Conway’s Problem in Promela (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.9

1 #define N 9
2 #define K 4
3

4 chan inC, pipe, outC = [0] of { byte };
5

6 active proctype Compress() {
7 byte previous , c, count = 0;
8 inC ? previous ;
9 do

10 :: inC ? c −>

11 if
12 :: (c == previous) && (count < N−1) −> count++
13 :: else −>

14 if
15 :: count > 0 −>

16 pipe ! count+1;
17 count = 0
18 :: else
19 fi ;
20 pipe ! previous ;
21 previous = c;
22 fi
23 od
24 }

Conway’s Problem in Promela (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.10

1 active proctype Output() {
2 byte c, count = 0;
3 do
4 :: pipe ? c;
5 outC ! c;
6 count++;
7 if
8 :: count >= K −>

9 outC ! ’ \n’;
10 count = 0
11 :: else
12 fi
13 od
14 }

Multiplier Process in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.11

1 proctype Multiplier (byte Coeff;
2 chan North; chan East; chan South; chan West) {
3 byte Sum, X;
4 for (i ,0, SIZE−1)
5 if :: North ? X −> East ? Sum;
6 :: East ? Sum −> North ? X;
7 fi ;
8 South ! X;
9 Sum = Sum + X∗Coeff;

10 West ! Sum;
11 rof (i)
12 }

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.12

Algorithm 8.6: Rendezvous

client server
integer parm, result integer p, r
loop forever loop forever

p1: parm ← . . . q1:

p2: server.service(parm, result) q2: accept service(p, r)
p3: use(result) q3: r ← do the service(p)

Timing Diagram for a Rendezvous

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.13

time →

calling

accepting ?

6

parameters results

t1 t2 t3

Bounded Buffer in Ada

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.14

1 task body Buffer is
2 B: Buffer Array ;
3 In Ptr , Out Ptr, Count: Index := 0;
4

5 begin
6 loop
7 select
8 when Count < Index’Last =>

9 accept Append(I: in Integer) do
10 B(In Ptr) := I ;
11 end Append;
12 Count := Count + 1; In Ptr := In Ptr + 1;
13 or
14 when Count > 0 =>

15 accept Take(I: out Integer) do
16 I := B(Out Ptr);
17 end Take;
18 Count := Count − 1; Out Ptr := Out Ptr + 1;
19 or
20 terminate;
21 end select;
22 end loop;
23 end Buffer;

Remote Procedure Call

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.15

Remote
interface

Remote
interface

Communications

Sending stub

?

Client program

?

Communications

6

Receiving stub

6

Server program

-

Pipeline Sort

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.16

- - - - - -· · ·

Hoare’s Game

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.17

y�
�@
@

�
�@
@

�
�@
@

A Space

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.1

�
�

�
�(’a’,10,20)

�
�

�
�(’a’,30)

�
�

�
�(’a’,false,40)

�
�

�
�(’a’,true,50)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.2

Algorithm 9.1: Critical section problem in Linda

loop forever
p1: non-critical section
p2: removenote(’s’)
p3: critical section
p4: postnote(’s’)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.3

Algorithm 9.2: Client-server algorithm in Linda

client server
constant integer me ← . . . integer client
serviceType service serviceType s
dataType result, parm dataType r, p

p1: service ← // Service requested q1: removenote(’S’, client, s, p)
p2: postnote(’S’, me, service, parm) q2: r ← do (s, p)
p3: removenote(’R’, me, result) q3: postnote(’R’, client, r)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.4

Algorithm 9.3: Specific service

client server
constant integer me ← . . . integer client
serviceType service serviceType s
dataType result, parm dataType r, p

p1: service ← // Service requested q1: s ← // Service provided
p2: postnote(’S’, me, service, parm) q2: removenote(’S’, client, s=, p)
p3: q3: r ← do (s, p)
p4: removenote(’R’, me, result) q4: postnote(’R’, client, r)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.5

Algorithm 9.4: Buffering in a space

producer consumer
integer count ← 0 integer count ← 0
integer v integer v
loop forever loop forever

p1: v ← produce q1: removenote(’B’, count=, v)
p2: postnote(’B’, count, v) q2: consume(v)
p3: count ← count + 1 q3: count ← count + 1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.6

Algorithm 9.5: Multiplier process with channels in Linda
parameters: integer FirstElement
parameters: integer North, East, South, West
integer Sum, integer SecondElement
integer Sum, integer SecondElement

loop forever
p1: removenote(’E’, North=, SecondElement)
p2: removenote(’S’, East=, Sum)
p3: Sum ← Sum + FirstElement · SecondElement
p4: postnote(’E’, South, SecondElement)
p5: postnote(’S’, West, Sum)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.7

Algorithm 9.6: Matrix multiplication in Linda
constant integer n ← . . .

master worker
integer i, j, result integer r, c, result
integer r, c integer array[1..n] vec1, vec2

loop forever
p1: for i from 1 to n q1: removenote(’T’, r, c)
p2: for j from 1 to n q2: readnote(’A’, r=, vec1)
p3: postnote(’T’, i, j) q3: readnote(’B’, c=, vec2)
p4: for i from 1 to n q4: result ← vec1 · vec2
p5: for j from 1 to n q5: postnote(’R’, r, c, result)
p6: removenote(’R’, r, c, re-
sult)

q6:

p7: print r, c, result q7:

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.8

Algorithm 9.7: Matrix multiplication in Linda with granularity
constant integer n ← . . .
constant integer chunk ← . . .

master worker
integer i, j, result integer r, c, k, result
integer r, c integer array[1..n] vec1, vec2

loop forever
p1: for i from 1 to n q1: removenote(’T’, r, k)
p2: for j from 1 to n step by chunk q2: readnote(’A’, r=, vec1)
p3: postnote(’T’, i, j) q3: for c from k to k+chunk-1
p4: for i from 1 to n q4: readnote(’B’, c=, vec2)
p5: for j from 1 to n q5: result ← vec1 · vec2
p6: removenote(’R’, r, c, re-
sult)

q6: postnote(’R’, r, c, result)

p7: print r, c, result q7:

Definition of Notes in Java

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.9

1 public class Note {
2 public String id ;
3 public Object[] p;
4

5 // Constructor for an array of objects
6 public Note (String id , Object[] p) {
7 this . id = id;
8 if (p != null) this . p = p.clone();
9 }

10

11 // Constructor for a single integer
12 public Note (String id , int p1) {
13 this (id , new Object[]{new Integer(p1)});
14 }
15

16 // Accessor for a single integer value
17 public int get(int i) {
18 return ((Integer)p[i]). intValue ();
19 }
20 }

Matrix Multiplication in Java

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.10

1 private class Worker extends Thread {
2 public void run() {
3 Note task = new Note(”task”);
4 while (true) {
5 Note t = space.removenote(task);
6 int row = t.get(0), col = t.get(1);
7 Note r = space.readnote(match(”a”, row));
8 Note c = space.readnote(match(”b”, col));
9 int ip = 0;

10 for (int i = 1; i <= SIZE; i++)
11 ip = ip + r.get(i)∗c. get(i);
12 space. postnote(new Note(”result”, row, col , ip));
13 }
14 }
15 }

Matrix Multiplication in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.11

1 chan space = [25] of { byte, short, short, short, short };
2

3 active [WORKERS] proctype Worker() {
4 short row, col , ip , r1, r2, r3, c1, c2, c3;
5 do
6 :: space ?? ’ t’ , row, col , , ;
7 space ?? <’a’, eval(row), r1, r2, r3>;
8 space ?? <’b’, eval(col), c1, c2, c3>;
9 ip = r1∗c1 + r2∗c2 + r3∗c3;

10 space ! ’ r ’ , row, col , ip , 0;
11 od;
12 }

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.12

Algorithm 9.8: Matrix multiplication in Linda (exercise)
constant integer n ← . . .

master worker
integer i, j, result integer i, r, c, result
integer r, c integer array[1..n] vec1, vec2

loop forever
p1: postnote(’T’, 0) q1: removenote(’T’ i)
p2: q2: if i ¡ (n · n) − 1
p3: q3: postnote(’T’, i+1)
p4: q4: r ← (i / n) + 1
p5: q5: c ← (i modulo n) + 1
p6: for i from 1 to n q6: readnote(’A’, r=, vec1)
p7: for j from 1 to n q7: readnote(’B’, c=, vec2)
p8: removenote(’R’, r, c, re-
sult)

q8: result ← vec1 · vec2

p9: print r, c, result q9: postnote(’R’, r, c, result)

Sending and Receiving Messages

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.1

node 5

integer k ← 20
send(request, 3, k, 30)

node 3

integer m, n
receive(request, m, n)

-

Sending a Message and Expecting a Reply

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.2

node 5

send(request, 3, myID)

node 3

integer source
receive(request, source)

-

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.3

Algorithm 10.1: Ricart-Agrawala algorithm (outline)
integer myNum ← 0
set of node IDs deferred ← empty set

main
p1: non-critical section
p2: myNum ← chooseNumber
p3: for all other nodes N
p4: send(request, N, myID, myNum)
p5: await reply’s from all other nodes
p6: critical section
p7: for all nodes N in deferred
p8: remove N from deferred
p9: send(reply, N, myID)

receive
integer source, reqNum

p10: receive(request, source, reqNum)
p11: if reqNum < myNum
p12: send(reply,source,myID)
p13: else add source to deferred

RA Algorithm (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.4

Aaron 10

Becky 5 Chloe 15

-
req

� req

�
�

��	

req
@
@
@@R

req

�
�

��� req

@
@

@@I req

RA Algorithm (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.5

Aaron 10

Chloe

Becky • 5

Aaron, Chloe

Chloe 15
�reply

�
�

��	

reply

@
@

@@I reply

Virtual Queue in the RA Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.6

Becky Aaron Chloe� �

RA Algorithm (3)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.7

Aaron • 10

Chloe

Becky 5 Chloe 15reply-

reply

�
�
���

RA Algorithm (4)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.8

Aaron 10

Becky 5 Chloe • 15

@
@
@@R

reply

Equal Ticket Numbers

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.9

Becky 5 Aaron 5

-
req

�
req

Becky 5

Aaron

Aaron 5

Becky

Note: This figure is not in the book.

Choosing Ticket Numbers (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.10

Becky 5 Aaron 10

-
req

�
req

Becky • 5

Aaron

Aaron 10
�
reply

Becky 5 Aaron • 10

-
reply

Choosing Ticket Numbers (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.11

Becky 8 Aaron • 10

-
req

Becky • 8 Aaron • 10
�
reply

Quiescent Nodes

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.12

Becky 5 Aaron 0

-
req

Becky 5 Aaron 0

Becky

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.13

Algorithm 10.2: Ricart-Agrawala algorithm
integer myNum ← 0
set of node IDs deferred ← empty set
integer highestNum ← 0
boolean requestCS ← false

Main
loop forever

p1: non-critical section
p2: requestCS ← true
p3: myNum ← highestNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: await reply’s from all other nodes
p7: critical section
p8: requestCS ← false
p9: for all nodes N in deferred
p10: remove N from deferred
p11: send(reply, N, myID)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.14

Algorithm 10.2: Ricart-Agrawala algorithm (continued)

Receive
integer source, requestedNum
loop forever

p1: receive(request, source, requestedNum)
p2: highestNum ← max(highestNum, requestedNum)
p3: if not requestCS or requestedNum ≪ myNum
p4: send(reply, source, myID)
p5: else add source to deferred

Correct of the RA Algorithm (Case 1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.15

i choose - send
request

-j receive
request

- reply - choose

Correct of the RA Algorithm (Case 2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.16

i main

i receive

choose - send
request

- receive
request

- reply

j main

j receive

choose - send
request

- receive
request

- reply

Channels in RA Algorithm in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.17

node j

· · ·

node i

node id

����

HHHH -ch[id]

RA Algorithm in Promela – Main Process

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.18

1 proctype Main(byte myID) {
2 do ::
3 atomic {
4 requestCS[myID] = true ;
5 myNum[myID] = highestNum[myID] + 1 ;
6 }
7 for (J,0, NPROCS−1)
8 if
9 :: J != myID −>

10 ch[J] ! request , myID, myNum[myID];
11 :: else
12 fi
13 rof (J);
14 for (K,0,NPROCS−2)
15 ch[myID] ?? reply , , ;
16 rof (K);
17 critical section ();
18 requestCS[myID] = false;
19 byte N;
20 do
21 :: empty(deferred[myID]) −> break;
22 :: deferred [myID] ? N −> ch[N] ! reply, 0, 0
23 od
24 od
25 }

RA Algorithm in Promela – Receive Process

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.19

1 proctype Receive(byte myID) {
2 byte reqNum, source;
3 do ::
4 ch[myID] ?? request, source, reqNum;
5 highestNum[myID] =
6 ((reqNum > highestNum[myID]) −>

7 reqNum : highestNum[myID]);
8 atomic {
9 if

10 :: requestCS[myID] &&
11 ((myNum[myID] < reqNum) ||
12 ((myNum[myID] == reqNum) &&
13 (myID < source)
14)) −>

15 deferred [myID] ! source
16 :: else −>

17 ch[source] ! reply , 0, 0
18 fi
19 }
20 od
21 }

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.20

Algorithm 10.3: Ricart-Agrawala token-passing algorithm
boolean haveToken ← true in node 0, false in others
integer array[NODES] requested ← [0,. . . ,0]
integer array[NODES] granted ← [0,. . . ,0]
integer myNum ← 0
boolean inCS ← false

sendToken
if exists N such that requested[N] > granted[N]

for some such N
send(token, N, granted)
haveToken ← false

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.21

Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)

Main
loop forever

p1: non-critical section
p2: if not haveToken
p3: myNum ← myNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: receive(token, granted)
p7: haveToken ← true
p8: inCS ← true
p9: critical section
p10: granted[myID] ← myNum
p11: inCS ← false
p12: sendToken

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.22

Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)

Receive
integer source, reqNum
loop forever

p13: receive(request, source, reqNum)
p14: requested[source] ← max(requested[source], reqNum)
p15: if haveToken and not inCS
p16: sendToken

Data Structures for RA Token-Passing Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.23

requested

granted

Aaron Becky Chloe Danielle Evan

4 2 2 4 1

4 3 0 5 1

Distributed System for Neilsen-Mizuno Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.24

Aaron

?
Danielle

�Becky

- Evan

6

Chloe

-�

-�

6

?

6

?�
����
��	

�
���@

@@R@
@@I

@
@@R@
@@I

�
��	

Spanning Tree in Neilsen-Mizuno Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.25

Aaron

Danielle

Becky

Evan

Chloe

-

�

@
@I

@
@R

Neilsen-Mizuno Algorithm (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.26

Aaron Becky Chloe Danielle Evan- � �

Aaron Becky Chloe Danielle Evan� � �

Aaron Becky Chloe Danielle Evan� � � �
?

Aaron Becky Chloe Danielle Evan- - -
?

Neilsen-Mizuno Algorithm (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.27

Aaron Becky Chloe Danielle Evan- - - -
?

6

Aaron Becky Chloe Danielle Evan- - - -

6

Aaron Becky Chloe Danielle Evan- - - -

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.28

Algorithm 10.4: Neilsen-Mizuno token-passing algorithm
integer parent ← (initialized to form a tree)
integer deferred ← 0
boolean holding ← true in the root, false in others

Main
loop forever

p1: non-critical section
p2: if not holding
p3: send(request, parent, myID, myID)
p4: parent ← 0
p5: receive(token)
p6: holding ← false
p7: critical section
p8: if deferred 6= 0
p9: send(token, deferred)
p10: deferred ← 0
p11: else holding ← true

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 10.29

Algorithm 10.4: Neilsen-Mizuno token-passing algorithm (continued)

Receive
integer source, originator
loop forever

p12: receive(request, source, originator)
p13: if parent = 0
p14: if holding
p15: send(token, originator)
p16: holding ← false
p17: else deferred ← originator
p18: else send(request, parent, myID, originator)
p19: parent ← source

Distributed System with an Environment Node

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.1

node1

node3

node2

node4

������*

HHHHHHj

HHHHHHj

�������

6

?

Back Edges

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.2

node1

node3

node2

node4

������*

HHHHHHj

HHHHHHj

�������

6

?

��������

HHHHHHHY

HHHHHHHY

�������*
?

6

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.3

Algorithm 11.1: Dijkstra-Scholten algorithm (preliminary)
integer array[incoming] inDeficit ← [0,. . . ,0]
integer inDeficit ← 0, integer outDeficit ← 0

send message
p1: send(message, destination, myID)
p2: increment outDeficit

receive message
p3: receive(message, source)
p4: increment inDeficit[source] and inDeficit

send signal
p5: when inDeficit > 1 or

(inDeficit = 1 and isTerminated and outDeficit = 0)
p6: E ← some edge E with inDeficit[E] 6= 0
p7: send(signal, E, myID)
p8: decrement inDeficit[E] and inDeficit

receive signal
p9: receive(signal,)
p10: decrement outDeficit

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.4

Algorithm 11.2: Dijkstra-Scholten algorithm (env., preliminary)
integer outDeficit ← 0

computation
p1: for all outgoing edges E
p2: send(message, E, myID)
p3: increment outDeficit
p4: await outDeficit = 0
p5: announce system termination

receive signal
p6: receive(signal, source)
p7: decrement outDeficit

The Preliminary DS Algorithm is Unsafe

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.5

node1

node3

node2

������*

HHHHHHj

6

?

e2

e3

Spanning Tree

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.6

node1

node3

node2

node4

������* HHHHHHj

?

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.7

Algorithm 11.3: Dijkstra-Scholten algorithm
integer array[incoming] inDeficit ← [0,. . . ,0]
integer inDeficit ← 0
integer outDeficit ← 0
integer parent ← −1

send message
p1: when parent 6= −1 // Only active nodes send messages
p2: send(message, destination, myID)
p3: increment outDeficit

receive message
p4: receive(message,source)
p5: if parent = −1
p6: parent ← source
p7: increment inDeficit[source] and inDeficit

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.8

Algorithm 11.3: Dijkstra-Scholten algorithm (continued)

send signal
p8: when inDeficit > 1
p9: E ← some edge E for which

(inDeficit[E] > 1) or (inDeficit[E] = 1 and E 6= parent)
p10: send(signal, E, myID)
p11: decrement inDeficit[E] and inDeficit
p12: or when inDeficit = 1 and isTerminated and outDeficit = 0
p13: send(signal, parent, myID)
p14: inDeficit[parent] ← 0
p15: inDeficit ← 0
p16: parent ← −1

receive signal
p17: receive(signal,)
p18: decrement outDeficit

Partial Scenario for DS Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.9

Action node1 node2 node3 node4

1 ⇒ 2 (-1,[],0) (-1,[0,0],0) (-1,[0,0,0],0) (-1,[0],0)

2 ⇒ 4 (-1,[],1) (1,[1,0],0) (-1,[0,0,0],0) (-1,[0],0)

2 ⇒ 3 (-1,[],1) (1,[1,0],1) (-1,[0,0,0],0) (2,[1],0)

2 ⇒ 4 (-1,[],1) (1,[1,0],2) (2,[0,1,0],0) (2,[1],0)

1 ⇒ 3 (-1,[],1) (1,[1,0],3) (2,[0,1,0],0) (2,[2],0)

3 ⇒ 2 (-1,[],2) (1,[1,0],3) (2,[1,1,0],0) (2,[2],0)

4 ⇒ 3 (-1,[],2) (1,[1,1],3) (2,[1,1,0],1) (2,[2],0)

(-1,[],2) (1,[1,1],3) (2,[1,1,1],1) (2,[2],1)

Data Structures After Partial Scenario

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.10

node1 (2)

node3 (1)

node2 (3)

node4 (1)

1

1

1

1

1

2

HHHHHHj

�������

6
������*

?

HHHHHHj

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.11

Algorithm 11.4: Credit-recovery algorithm (environment node)
float weight ← 1.0

computation
p1: for all outgoing edges E
p2: weight ← weight / 2.0
p3: send(message, E, weight)
p4: await weight = 1.0
p5: announce system termination

receive signal
p6: receive(signal, w)
p7: weight ← weight + w

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.12

Algorithm 11.5: Credit-recovery algorithm (non-environment node)
constant integer parent ← 0 // Environment node
boolean active ← false
float weight ← 0.0

send message
p1: if active // Only active nodes send messages
p2: weight ← weight / 2.0
p3: send(message, destination, myID, weight)

receive message
p4: receive(message, source, w)
p5: active ← true
p6: weight ← weight + w

send signal
p7: when terminated
p8: send(signal, parent, weight)
p9: weight ← 0.0
p10: active ← false

Messages on a Channel

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.13

node1 node2-m14, m13, m12, m11, m10

Sending a Marker

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.14

node1 node2-m14, m13, m12, marker, m11, m10

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.15

Algorithm 11.6: Chandy-Lamport algorithm for global snapshots
integer array[outgoing] lastSent ← [0, . . . , 0]
integer array[incoming] lastReceived ← [0, . . . , 0]
integer array[outgoing] stateAtRecord ← [−1, . . . , −1]
integer array[incoming] messageAtRecord ← [−1, . . . , −1]
integer array[incoming] messageAtMarker ← [−1, . . . , −1]

send message
p1: send(message, destination, myID)
p2: lastSent[destination] ← message

receive message
p3: receive(message,source)
p4: lastReceived[source] ← message

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.16

Algorithm 11.6: Chandy-Lamport algorithm (continued)

receive marker
p6: receive(marker, source)
p7: messageAtMarker[source] ← lastReceived[source]
p8: if stateAtRecord = [−1,. . . ,−1] // Not yet recorded
p9: stateAtRecord ← lastSent
p10: messageAtRecord ← lastReceived
p11: for all outgoing edges E
p12: send(marker, E, myID)

record state
p13: await markers received on all incoming edges
p14: recordState

Messages and Markers for a Scenario

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.17

node1 -M,3,2,1
node3

�
�
�

��
M,3,2,1

node2

@
@
@
@R

M,3,2,1

Scenario for CL Algorithm (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.18

Action node1 node2

ls lr st rc mk ls lr st rc mk

[3,3] [3] [3]

1M⇒2 [3,3] [3,3] [3] [3]

1M⇒3 [3,3] [3,3] [3] [3]

2⇐1M [3,3] [3,3] [3] [3]

2M⇒3 [3,3] [3,3] [3] [3] [3] [3] [3]

Scenario for CL Algorithm (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.19

Action node3

ls lr st rc mk

3⇐2

3⇐2 [0,1]

3⇐2 [0,2]

3⇐2M [0,3]

3⇐1 [0,3] [0,3] [0,3]

3⇐1 [1,3] [0,3] [0,3]

3⇐1 [2,3] [0,3] [0,3]

3⇐1M [3,3] [0,3] [0,3]

[3,3] [0,3] [3,3]

Architecture for a Reliable System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.1

Pressure

Temperature

������������
������������

CPU

CPU

CPU

�

�
�
�
�3

-

J
J
J
J
J
JĴ

Q
Q
Q
Qs

- HHHHj

����*
-
�� ��Comparator -

Throttle

����

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.2

Algorithm 12.1: Consensus - one-round algorithm
planType finalPlan
planType array[generals] plan

p1: plan[myID] ← chooseAttackOrRetreat
p2: for all other generals G
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: finalPlan ← majority(plan)

Messages Sent in a One-Round Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.3

Zoe A Leo R

Basil A

-
��
�

�
��

�
�

�
�

�	

@
@
@
@R @
@

@
@

@I

R

A

– A A R

Data Structures in a One-Round Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.4

Leo

general plan

Basil A

Leo R

Zoe A

majority A

Zoe

general plans

Basil –

Leo R

Zoe A

majority R

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.5

Algorithm 12.2: Consensus - Byzantine Generals algorithm
planType finalPlan
planType array[generals] plan, majorityPlan
planType array[generals, generals] reportedPlan

p1: plan[myID] ← chooseAttackOrRetreat
p2: for all other generals G // First round
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: for all other generals G // Second round
p7: for all other generals G’ except G
p8: send(G’, myID, G, plan[G])
p9: for all other generals G
p10: for all other generals G’ except G
p11: receive(G, G’, reportedPlan[G, G’])
p12: for all other generals G // First vote
p13: majorityPlan[G] ← majority(plan[G] ∪ reportedPlan[*, G])
p14: majorityPlan[myID] ← plan[myID] // Second vote
p15: finalPlan ← majority(majorityPlan)

Crash Failure - First Scenario (Leo)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.6

Leo

general plan reported by majority

Basil Zoe

Basil A – A

Leo R R

Zoe A – A

majority A

Crash Failure - First Scenario (Zoe)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.7

Zoe

general plan reported by majority

Basil Leo

Basil – A A

Leo R – R

Zoe A A

majority A

Crash Failure - Second Scenario (Leo)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.8

Leo

general plan reported by majority

Basil Zoe

Basil A A A

Leo R R

Zoe A A A

majority A

Crash Failure - Second Scenario (Zoe)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.9

Zoe

general plan reported by majority

Basil Leo

Basil A A A

Leo R – R

Zoe A A

majority A

Knowledge Tree about Basil - First Scenario

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.10

Leo A Zoe A

Zoe A Leo A

Basil A

����
HHHH

Knowledge Tree about Basil - Second Scenario

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.11

Zoe X

Leo X

Basil X

HHHH

Knowledge Tree about Leo

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.12

Basil X

Zoe X Basil X

Leo X

����
HHHH

Byzantine Failure with Three Generals

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.13

Zoe A Leo R

Basil

-
��
�

�
��

�
�

�
�

�	

@
@
@
@R @
@

@
@

@I

R

A

R A A R

Data Stuctures for Leo and Zoe After First Round

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.14

Leo

general plans

Basil A

Leo R

Zoe A

majority A

Zoe

general plans

Basil R

Leo R

Zoe A

majority R

Data Stuctures for Leo After Second Round

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.15

Leo

general plans reported by majority

Basil Zoe

Basil A A A

Leo R R

Zoe A R R

majority R

Data Stuctures for Zoe After Second Round

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.16

Zoe

general plans reported by majority

Basil Leo

Basil A A A

Leo R R R

Zoe A A

majority A

Knowledge Tree About Zoe

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.17

Basil A

Basil A

Zoe A

����
HHHH

Leo R

Leo A

Four Generals: Data Structure of Basil (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.18

Basil

general plan reported by majority

John Leo Zoe

Basil A A

John A A ? A

Leo R R ? R

Zoe ? ? ? ?

majority ?

Four Generals: Data Structure of Basil (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.19

Basil

general plans reported by majority

John Leo Zoe

Basil A A

John A A ? A

Leo R R ? R

Zoe R A R R

R

Knowledge Tree About Loyal General Leo

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.20

Leo X

Basil X John X Zoe X

John X Zoe X Basil X Zoe X Basil Y John Z

�
�

�
�

�
�

A
A

A
A

A
A

��������

HHHHHHHH

Knowledge Tree About Traitor Zoe

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.21

Zoe

Basil X John Y Leo Z

John X Leo X Basil Y Leo Y Basil Z John Z

�
�

�
�

�
�

A
A

A
A

A
A

��������

HHHHHHHH

Complexity of the Byzantine Generals Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.22

traitors generals messages

1 4 36

2 7 392

3 10 1790

4 13 5408

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.23

Algorithm 12.3: Consensus - flooding algorithm
planType finalPlan
set of planType plan ← { chooseAttackOrRetreat }
set of planType receivedPlan

p1: do t+ 1 times
p2: for all other generals G
p3: send(G, plan)
p4: for all other generals G
p5: receive(G, receivedPlan)
p6: plan ← plan ∪ receivedPlan
p7: finalPlan ← majority(plan)

Flooding Algorithm with No Crash:

Knowledge Tree About Leo

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.24

Leo X

? ?

Zoe X

Zoe X

Zoe X �

�

�

John X

Basil X

Basil X

John X

Zoe X Zoe X

Zoe X

�
��	

@
@@R

??

Zoe X Zoe X

Zoe X

�
��	

@
@@R

??

Flooding Algorithm with Crash:

Knowledge Tree About Leo (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.25

Leo X

?

John X

Basil X

Zoe X Zoe X

Zoe X

�
��	

@
@@R

??

Flooding Algorithm with Crash:

Knowledge Tree About Leo (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.26

Leo X

?

John X

Basil X

Zoe X

@
@@R

?

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.27

Algorithm 12.4: Consensus - King algorithm
planType finalPlan, myMajority, kingPlan
planType array[generals] plan
integer votesMajority

p1: plan[myID] ← chooseAttackOrRetreat

p2: do two times
p3: for all other generals G // First and third rounds
p4: send(G, myID, plan[myID])
p5: for all other generals G
p6: receive(G, plan[G])
p7: myMajority ← majority(plan)
p8: votesMajority ← number of votes for myMajority

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.28

Algorithm 12.4: Consensus - King algorithm (continued)

p9: if my turn to be king // Second and fourth rounds
p10: for all other generals G
p11: send(G, myID, myMajority)
p12: plan[myID] ← myMajority

else
p13: receive(kingID, kingPlan)
p14: if votesMajority ¿ 3
p15: plan[myID] ← myMajority

else
p16: plan[myID] ← kingPlan

p17: finalPlan ← plan[myID] // Final decision

Scenario for King Algorithm:

First King Loyal General Zoe (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.29

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R R R R 3

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R A R A 3

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R A R A 3

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R R R R 3

Scenario for King Algorithm:

First King Loyal General Zoe (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.30

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R

Scenario for King Algorithm:

First King Loyal General Zoe (3)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.31

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R R ? R R 4–5

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R R ? R R 4–5

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R R ? R R 4–5

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R R ? R R 4–5

Scenario for King Algorithm:

First King Traitor Mike (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.32

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

Scenario for King Algorithm:

First King Traitor Mike (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.33

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R A A ? R ? 3

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R A A ? R ? 3

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R A A ? R ? 3

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R A A ? R ? 3

Scenario for King Algorithm:

First King Traitor Mike (3)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.34

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A

Complexity of

Byzantine Generals and King Algorithms

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.35

traitors generals messages

1 4 36

2 7 392

3 10 1790

4 13 5408

traitors generals messages

1 5 48

2 9 240

3 13 672

4 17 1440

Impossibility with Three Generals (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.36

Zoe X

JohnLeo
x1, . . . , xn

Leo
u1, . . . , um

�
��

@
@@

Leo Y

JohnZoe
y1, . . . , yn

Zoe
v1, . . . , vm

�
��

@
@@

Impossibility with Three Generals (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.37

John

Zoe
x1, . . . , xn

Zoe
y1, . . . , yn

Leo
x1, . . . , xn

Leo
y1, . . . , yn

�
��

@
@@

Exercise for Byzantine Generals Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.38

Zoe

general plan reported by majority

Basil John Leo

Basil R A R ?

John A R A ?

Leo R R R ?

Zoe A A

?

Release Time, Execution Time and

Relative Deadline

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.1

r

D� -

e� -

Periodic Task

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.2

r r r r

p� - p� - p� -

Deadline is a Multiple of the Period

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.3

D� -

r e� -

Architecture of Ariane Control System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.4

Sensors INS
Main

Computer Actuators- - -

Synchronization Window in the Space Shuttle

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.5

0 225 240 1000

Synchronous System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample

Compute

Control

Telemetry

Self-test

T1 T2 T1 T2

Synchronous System Scheduling Table

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.7

0 1 2 3 4

Sample Compute Control Telemetry 1 Self-test

5 6 7 8 9

Sample Compute Control Telemetry 2 Telemetry 1

10 11 12 13 14

Sample Compute Control Telemetry 2 Self-test

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.8

Algorithm 13.1: Synchronous scheduler
taskAddressType array[0..numberFrames-1] tasks ←

[task address,. . . ,task address]
integer currentFrame ← 0

p1: loop
p2: await beginning of frame
p3: invoke tasks[currentFrame]
p4: increment currentFrame modulo numberFrames

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.9

Algorithm 13.2: Producer-consumer (synchronous system)
queue of dataType buffer1, buffer2

sample compute control
dataType d dataType d1, d2 dataType d

p1: d ← sample q1: d1← take(buffer1) r1: d ← take(buffer2)
p2: append(d, buffer1) q2: d2← compute(d1) r2: control(d)
p3: q3: append(d2,

buffer2)
r3:

Asynchronous System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Telemetry

Communications

Data management

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.11

Algorithm 13.3: Asynchronous scheduler
queue of taskAddressType readyQueue ← . . .
taskAddressType currentTask

loop forever
p1: await readyQueue not empty
p2: currentTask ← take head of readyQueue
p3: invoke currentTask

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.12

Algorithm 13.4: Preemptive scheduler
queue of taskAddressType readyQueue ← . . .
taskAddressType currentTask

loop forever
p1: await a scheduling event
p2: if currentTask.priority ¡ highest priority of a task on readyQueue
p3: save partial computation of currentTask and place on readyQueue
p4: currentTask ← take task of highest priority from readyQueue
p5: invoke currentTask
p6: else if currentTask’s timeslice is past and

currentTask.priority = priority of some task on readyQueue
p7: save partial computation of currentTask and place on readyQueue
p8: currentTask ← take a task of the same priority from readyQueue
p9: invoke currentTask
p10: else resume currentTask

Preemptive Scheduling

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Telemetry

Communications

Data management

Watchdog

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.14

Algorithm 13.5: Watchdog supervision of response time
boolean ran ← false

data management watchdog
loop forever loop forever

p1: do data management q1: await ninth frame
p2: ran ← true q2: if ran is false
p3: rejoin readyQueue q3: notify response-time over-

flow
p4: q4: ran ← false
p5: q5: rejoin readyQueue

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.15

Algorithm 13.6: Real-time buffering - throw away new data
queue of dataType buffer ← empty queue
sample compute

dataType d dataType d
loop forever loop forever

p1: d ← sample q1: await buffer not empty
p2: if buffer is full do nothing q2: d ← take(buffer)
p3: else append(d,buffer) q3: compute(d)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.16

Algorithm 13.7: Real-time buffering - overwrite old data
queue of dataType buffer ← empty queue
sample compute

dataType d dataType d
loop forever loop forever

p1: d ← sample q1: await buffer not empty
p2: append(d, buffer) q2: d ← take(buffer)
p3: q3: compute(d)

Interrupt Overflow on Apollo 11

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.17

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Main task

Counter increments

Watchdog

Priority Inversion (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.18

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Telemetry

� CS -

Data management

� CS -

Priority Inversion (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Telemetry

� CS -

Communications

Data management

� CS -

Priority Inheritance

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Telemetry

� CS -

Telemetry

Communications

Data management

� CS -

Priority Inversion in Promela (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.21

1 mtype = { idle, blocked, nonCS, CS, long };
2

3 mtype data = idle, comm = idle, telem = idle;
4

5 #define ready(p) (p != idle && p != blocked)
6

7 active proctype Data() {
8 do
9 :: data = nonCS;

10 enterCS(data);
11 exitCS(data);
12 data = idle ;
13 od
14 }

Priority Inversion in Promela (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.22

1 active proctype Comm() provided (!ready(data)) {
2 do
3 :: comm = long;
4 comm = idle;
5 od
6 }
7

8 active proctype Telem() provided (!ready(data) && !ready(comm)) {
9 do

10 :: telem = nonCS;
11 enterCS(telem);
12 exitCS(telem);
13 telem = idle ;
14 od
15 }

Priority Inversion in Promela (3)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.23

1 bit sem = 1;
2

3 inline enterCS(state) {
4 atomic {
5 if
6 :: sem == 0 −>

7 state = blocked;
8 sem != 0;
9 :: else −>

10 fi ;
11 sem = 0;
12 state = CS;
13 }
14 }
15

16 inline exitCS(state) {
17 atomic {
18 sem = 1;
19 state = idle
20 }
21 }

Priority Inheritance in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.24

1 #define inherit (p) (p == CS)
2

3 active proctype Data() {
4 do
5 :: data = nonCS;
6 assert(! (telem == CS && comm == long));
7 enterCS(data); exitCS(data);
8 data = idle ;
9 od

10 }
11

12 active proctype Comm()
13 provided (! ready(data) && !inherit (telem))
14 { ... }
15

16 active proctype Telem()
17 provided (! ready(data) && !ready(comm) || inherit(telem))
18 { ... }

Data Structures in Simpson’s Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.25

0 1

0 1 0 1

@
@

@
@

@
@I

�
�
�
�
�
��

0 1

currentSlot

lastWrittenPair �
�

�	

lastReadPair@
@
@R

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.26

Algorithm 13.8: Simpson’s four-slot algorithm
dataType array[0..1,0..1] data ← default initial values
bit array[0..1] currentSlot ← { 0, 0 }
bit lastWrittenPair ← 1, lastReadPair ← 1

writer
bit writePair, writeSlot
dataType item
loop forever

p1: item ← produce
p2: writePair ← 1− lastReadPair
p3: writeSlot ← 1− currentSlot[writePair]
p4: data[writePair, writeSlot] ← item
p5: currentSlot[writePair] ← writeSlot
p6: lastWrittenPair ← writePair

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.27

Algorithm 13.8: Simpson’s four-slot algorithm (continued)

reader
bit readPair, readSlot
dataType item
loop forever

p7: readPair ← lastWrittenPair
p8: lastReadPair ← readPair
p9: readSlot ← currentSlot[readPair]
p10: item ← data[readPair, readSlot]
p11: consume(item)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.28

Algorithm 13.9: Event signaling
binary semaphore s ← 0

p q
p1: if decision is to wait for event q1: do something to cause event
p2: wait(s) q2: signal(s)

Suspension Objects in Ada

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.29

1 package Ada.Synchronous Task Control is
2 type Suspension Object is limited private ;
3 procedure Set True(S : in out Suspension Object);
4 procedure Set False(S : in out Suspension Object);
5 function Current State (S : Suspension Object)
6 return Boolean;
7 procedure Suspend Until True(
8 S : in out Suspension Object);
9 private

10 −− not specified by the language
11 end Ada.Synchronous Task Control;

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.30

Algorithm 13.10: Suspension object - event signaling
Suspension Object SO ← (false by default)

p q
p1: if decision is to wait for event q1: do something to cause event
p2: Suspend Until True(SO) q2: Set True(SO)

Transition in UPPAAL

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.31

-���� ����
clk >= 12, ch ?, n := n + 1

Feasible Priority Assignment

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.32

0 1 2 3 4 5

P1

P2

Infeasible Priority Assignment

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.33

0 1 2 3 4 5

P2

P1

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.34

Algorithm 13.11: Periodic task
constant integer period ← . . .

integer next ← currentTime
loop forever

p1: delay next − currentTime
p2: compute
p3: next ← next + period

Semantics of Propositional Operators

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.1

A v(A1) v(A2) v(A)

¬A1 T F
¬A1 F T

A1 ∨A2 F F F
A1 ∨A2 otherwise T

A1 ∧A2 T T T
A1 ∧A2 otherwise F

A1→ A2 T F F
A1→ A2 otherwise T

A1↔ A2 v(A1) = v(A2) T
A1↔ A2 v(A1) 6= v(A2) F

Wason Selection Task

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.2

p3 p5 flag = 1 flag = 0

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.3

Algorithm 2.1: Verification example
integer x1, integer x2
integer y1 ← 0, integer y2 ← 0, integer y3

p1: read(x1,x2)
p2: y3 ← x1
p3: while y3 6= 0
p4: if y2+1 = x2
p5: y1 ← y1 + 1
p6: y2 ← 0
p7: else
p8: y2 ← y2 + 1
p9: y3 ← y3 − 1
p10: write(y1,y2)

Spark Program for Integer Division

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.4

1 −−# main program;
2 procedure Divide(X1,X2: in Integer ; Q,R : out Integer)
3 −−# derives Q, R from X1,X2;
4 −−# pre (X1 >= 0) and (X2 > 0);
5 −−# post (X1 = Q ∗ X2 + R) and (X2 > R) and (R >= 0);
6 is
7 N: Integer ;
8 begin
9 Q := 0; R := 0; N := X1;

10 while N /= 0
11 −−# assert (X1 = Q∗X2+R+N) and (X2 > R) and (R >= 0);
12 loop
13 if R+1 = X2 then
14 Q := Q + 1; R := 0;
15 else
16 R := R + 1;
17 end if ;
18 N := N − 1;
19 end loop;
20 end Divide;

Integer Division

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.5

1 procedure Divide(X1,X2: in Integer ; Q,R : out Integer) is
2 N: Integer ;
3 begin
4 −− pre (X1 >= 0) and (X2 > 0);
5 Q := 0; R := 0; N := X1;
6 while N /= 0
7 −− assert (X1 = Q∗X2+R+N) and (X2 > R) and (R >= 0);
8 loop
9 if R+1 = X2 then Q := Q + 1; R := 0;

10 else R := R + 1;
11 end if ;
12 N := N − 1;
13 end loop;
14 −− post (X1 = Q ∗ X2 + R) and (X2 > R) and (R >= 0);
15 end Divide;

Verification Conditions for Integer Division

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.6

Precondition to assertion:

(X1 ≥ 0) ∧ (X2 > 0)→
(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0).

Assertion to postcondition:

(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0) ∧ (N = 0)→
(X1 = Q ·X2 +R) ∧ (X2 > R) ∧ (R ≥ 0).

Assertion to assertion by then branch:

(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0) ∧ (R+ 1 = X2)→
(X1 = Q′ ·X2 +R′ +N ′) ∧ (X2 > R′) ∧ (R′ ≥ 0).

Assertion to assertion by else branch:

(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0) ∧ (R+ 1 6= X2)→
(X1 = Q′ ·X2 +R′ +N ′) ∧ (X2 > R′) ∧ (R′ ≥ 0).

The Sleeping Barber

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.1

n producer consumer Buffer notEmpty

1 append(d, Buffer) wait(notEmpty) [] 0

2 signal(notEmpty) wait(notEmpty) [1] 0

3 append(d, Buffer) wait(notEmpty) [1] 1

4 append(d, Buffer) d ← take(Buffer) [1] 0

5 append(d, Buffer) wait(notEmpty) [] 0

Synchronizing Precedence

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.2

node1

node3

node2

node4

������*

HHHHHHj

HHHHHHj

�������
?

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.3

Algorithm 3.1: Barrier synchronization
global variables for synchronization

loop forever
p1: wait to be released
p2: computation
p3: wait for all processes to finish their computation

The Stable Marriage Problem

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.4

Man List of women

1 2 4 1 3

2 3 1 4 2

3 2 3 1 4

4 4 1 3 2

Woman List of men

1 2 1 4 3

2 4 3 1 2

3 1 4 3 2

4 2 1 4 3

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.5

Algorithm 3.2: Gale-Shapley algorithm for stable marriage
integer list freeMen ← {1,. . . ,n}
integer list freeWomen ← {1,. . . ,n}
integer pair-list matched ← ∅
integer array[1..n, 1..n] menPrefs ← . . .
integer array[1..n, 1..n] womenPrefs ← . . .
integer array[1..n] next ← 1

p1: while freeMen 6= ∅, choose some m from freeMen
p2: w ← menPrefs[m, next[m]]
p3: next[m] ← next[m] + 1
p4: if w in freeWomen
p5: add (m,w) to matched, and remove w from freeWomen
p6: else if w prefers m to m’ // where (m’,w) in matched
p7: replace (m’,w) in matched by (m,w), and remove m’ from freeMen
p8: else // w rejects m, and nothing is changed

The n-Queens Problem

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.6

1 2 3 4 5 6 7 8

8

7

6

5

4

3

2

1 Q

Q

Q

Q

Q

Q

Q

Q

The Architecture of BACI

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.1

Editor

C
source

Pascal
source

C
compiler

Pascal
compiler

P-code Interpreter�
��

@
@R -

-

�
��

@
@R -

The Architecture of Spin

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.2

Editor

LTL
formula

Promela
source

LTL
translator

Parser/
Generator

Verifier
C source

C
Compiler

Verifier
Executable

Computer

Trail

�
�
��

@
@
@R

6

6

-

?

?

-

6

6

Cycles in a State Diagram

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.3

· · ·
criticalp = 0
criticalq = 0

'
&

$
%

· · ·
criticalp = 0
criticalq = 1

'
&

$
%

· · ·
criticalp = 0
criticalq = 0

'
&

$
%

· · ·
criticalp = 0
criticalq = 0

'
&

$
%

· · ·
criticalp = 0
criticalq = 1

'
&

$
%

· · ·
criticalp = 0
criticalq = 0

'
&

$
%

- -

?

��

?

