
Principles of Concurrent and

Distributed Programming

(Second Edition)

Addison-Wesley, 2006

Mordechai (Moti) Ben-Ari

http://www.weizmann.ac.il/sci-tea/benari/

http://www.weizmann.ac.il/sci-tea/benari/


Computer Time

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 1.2

� -

time (nanoseconds) →
0 100 200 300 400 500



Human Time

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 1.3

� -

time (seconds) →
0 100 200 300 400 500



Concurrency in an Operating System
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Interleaving as Choosing Among Processes
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Possible Interleavings
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p1→q1→p2→q2,
p1→q1→q2→p2,
p1→p2→q1→q2,
q1→p1→q2→p2,
q1→p1→p2→q2,
q1→q2→p1→p2.
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Algorithm 2.1: Trivial concurrent program
integer n ← 0

p q
integer k1 ← 1 integer k2 ← 2

p1: n ← k1 q1: n ← k2
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Algorithm 2.2: Trivial sequential program
integer n ← 0

integer k1 ← 1
integer k2 ← 2

p1: n ← k1
p2: n ← k2



State Diagram for a Sequential Program
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State Diagram for a Concurrent Program
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Scenario for a Concurrent Program
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Process p Process q n k1 k2

p1: n←k1 q1: n←k2 0 1 2

(end) q1: n←k2 1 1 2

(end) (end) 2 1 2



Multitasking System
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Multiprocessor Computer
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Inconsistency Caused by Overlapped Execution
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Distributed Systems Architecture

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.11

Node Node

Node Node

-

6

�

?
�

?

-

6

�
�
�
�
����

�
�

�	

@
@
@
@
@R@

@
@

@
@I

Node Node

Node Node

-

6

�

?



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.12

Algorithm 2.3: Atomic assignment statements
integer n ← 0

p q
p1: n ← n + 1 q1: n ← n + 1



Scenario for Atomic Assignment Statements
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Process p Process q n

p1: n←n+1 q1: n←n+1 0

(end) q1: n←n+1 1

(end) (end) 2

Process p Process q n

p1: n←n+1 q1: n←n+1 0

p1: n←n+1 (end) 1

(end) (end) 2
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Algorithm 2.4: Assignment statements with one global reference
integer n ← 0

p q
integer temp integer temp

p1: temp ← n q1: temp ← n
p2: n ← temp + 1 q2: n ← temp + 1



Correct Scenario for Assignment Statements
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Process p Process q n p.temp q.temp

p1: temp←n q1: temp←n 0 ? ?

p2: n←temp+1 q1: temp←n 0 0 ?

(end) q1: temp←n 1 0 ?

(end) q2: n←temp+1 1 0 1

(end) (end) 2 0 1



Incorrect Scenario for Assignment Statements
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Process p Process q n p.temp q.temp

p1: temp←n q1: temp←n 0 ? ?

p2: n←temp+1 q1: temp←n 0 0 ?

p2: n←temp+1 q2: n←temp+1 0 0 0

(end) q2: n←temp+1 1 0 0

(end) (end) 1 0 0
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Algorithm 2.5: Stop the loop A
integer n ← 0
boolean flag ← false

p q
p1: while flag = false q1: flag ← true
p2: n ← 1 − n q2:
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Algorithm 2.6: Assignment statement for a register machine
integer n ← 0

p q
p1: load R1,n q1: load R1,n
p2: add R1,#1 q2: add R1,#1
p3: store R1,n q3: store R1,n



Register Machine
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Scenario for a Register Machine
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Process p Process q n p.R1 q.R1

p1: load R1,n q1: load R1,n 0 ? ?

p2: add R1,#1 q1: load R1,n 0 0 ?

p2: add R1,#1 q2: add R1,#1 0 0 0

p3: store R1,n q2: add R1,#1 0 1 0

p3: store R1,n q3: store R1,n 0 1 1

(end) q3: store R1,n 1 1 1

(end) (end) 1 1 1
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Algorithm 2.7: Assignment statement for a stack machine
integer n ← 0

p q
p1: push n q1: push n
p2: push #1 q2: push #1
p3: add q3: add
p4: pop n q4: pop n



Stack Machine
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Algorithm 2.8: Volatile variables
integer n ← 0

p q
integer local1, local2 integer local

p1: n ← some expression q1: local ← n + 6
p2: computation not using n q2:

p3: local1 ← (n + 5) ∗ 7 q3:

p4: local2 ← n + 5 q4:

p5: n ← local1 * local2 q5:
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Algorithm 2.9: Concurrent counting algorithm
integer n ← 0

p q
integer temp integer temp

p1: do 10 times q1: do 10 times
p2: temp ← n q2: temp ← n
p3: n ← temp + 1 q3: n ← temp + 1



Concurrent Program in Pascal

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.25

1 program count;
2 var n: integer := 0;
3

4 procedure p;
5 var temp, i : integer;
6 begin
7 for i := 1 to 10 do
8 begin
9 temp := n; n := temp + 1

10 end
11 end;
12

13 procedure q;
14 var temp, i : integer;
15 begin
16 for i := 1 to 10 do
17 begin
18 temp := n; n := temp + 1
19 end
20 end;
21

22 begin
23 cobegin p; q coend;
24 writeln (’ The value of n is ’ , n)
25 end.



Concurrent Program in C
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1 int n = 0;
2

3 void p() {
4 int temp, i ;
5 for (i = 0; i < 10; i ++) {
6 temp = n;
7 n = temp + 1;
8 }
9 }

10

11 void q() {
12 int temp, i ;
13 for (i = 0; i < 10; i ++) {
14 temp = n;
15 n = temp + 1;
16 }
17 }
18

19 void main() {
20 cobegin { p(); q(); }
21 cout << ”The value of n is ” << n << ”\n”;
22 }



Concurrent Program in Ada
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1 with Ada.Text IO; use Ada.Text IO;
2 procedure Count is
3 N: Integer := 0;
4 pragma Volatile(N);
5

6 task type Count Task;
7 task body Count Task is
8 Temp: Integer;
9 begin

10 for I in 1..10 loop
11 Temp := N;
12 N := Temp + 1;
13 end loop;
14 end Count Task;
15

16 begin
17 declare
18 P, Q: Count Task;
19 begin
20 null ;
21 end;
22 Put Line(”The value of N is ” & Integer’ Image(N));
23 end Count;



Concurrent Program in Java
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1 class Count extends Thread {
2 static volatile int n = 0;
3

4 public void run() {
5 int temp;
6 for (int i = 0; i < 10; i ++) {
7 temp = n;
8 n = temp + 1;
9 }

10 }
11

12 public static void main(String[] args ) {
13 Count p = new Count();
14 Count q = new Count();
15 p.start ();
16 q.start ();
17 try {
18 p. join ();
19 q. join ();
20 }
21 catch (InterruptedException e) { }
22 System.out.println (”The value of n is ” + n);
23 }
24 }



Concurrent Program in Promela
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1 #include ”for.h”
2 #define TIMES 10
3 byte n = 0;
4

5 proctype P() {
6 byte temp;
7 for (i ,1, TIMES)
8 temp = n;
9 n = temp + 1

10 rof (i )
11 }
12

13 init {
14 atomic {
15 run P();
16 run P()
17 }
18 ( nr pr == 1);
19 printf (”MSC: The value is %d\n”, n)
20 }



Frog Puzzle
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One Step of the Frog Puzzle
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Final State of the Frog Puzzle
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(Partial) State Diagram for the Frog Puzzle
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Algorithm 2.10: Incrementing and decrementing
integer n ← 0

p q
integer temp integer temp

p1: do K times q1: do K times
p2: temp ← n q2: temp ← n
p3: n ← temp + 1 q3: n ← temp − 1
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Algorithm 2.11: Zero A
boolean found

p q
integer i ← 0 integer j ← 1

p1: found ← false q1: found ← false
p2: while not found q2: while not found
p3: i ← i + 1 q3: j ← j − 1
p4: found ← f(i) = 0 q4: found ← f(j) = 0



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 2.36

Algorithm 2.12: Zero B
boolean found ← false

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: i ← i + 1 q2: j ← j − 1
p3: found ← f(i) = 0 q3: found ← f(j) = 0
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Algorithm 2.13: Zero C
boolean found ← false

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: i ← i + 1 q2: j ← j − 1
p3: if f(i) = 0 q3: if f(j) = 0
p4: found ← true q4: found ← true
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Algorithm 2.14: Zero D
boolean found ← false
integer turn ← 1

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: await turn = 1 q2: await turn = 2

turn ← 2 turn ← 1
p3: i ← i + 1 q3: j ← j − 1
p4: if f(i) = 0 q4: if f(j) = 0
p5: found ← true q5: found ← true
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Algorithm 2.15: Zero E
boolean found ← false
integer turn ← 1

p q
integer i ← 0 integer j ← 1

p1: while not found q1: while not found
p2: await turn = 1 q2: await turn = 2

turn ← 2 turn ← 1
p3: i ← i + 1 q3: j ← j − 1
p4: if f(i) = 0 q4: if f(j) = 0
p5: found ← true q5: found ← true
p6: turn ← 2 q6: turn ← 1
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Algorithm 2.16: Concurrent algorithm A
integer array [1..10] C ← ten distinct initial values
integer array [1..10] D

integer myNumber, count
p1: myNumber ← C[i]
p2: count ← number of elements of C less than myNumber
p3: D[count + 1] ← myNumber
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Algorithm 2.17: Concurrent algorithm B
integer n ← 0

p q
p1: while n < 2 q1: n ← n + 1
p2: write(n) q2: n ← n + 1
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Algorithm 2.18: Concurrent algorithm C
integer n ← 1

p q
p1: while n < 1 q1: while n >= 0
p2: n ← n + 1 q2: n ← n − 1
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Algorithm 2.19: Stop the loop B
integer n ← 0
boolean flag ← false

p q
p1: while flag = false q1: while flag = false
p2: n ← 1 − n q2: if n = 0
p3: q3: flag ← true
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Algorithm 2.20: Stop the loop C
integer n ← 0
boolean flag ← false

p q
p1: while flag = false q1: while n = 0 // Do nothing
p2: n ← 1 − n q2: flag ← true
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Algorithm 2.21: Welfare crook problem
integer array[0..N] a, b, c ← . . . (as required)
integer i ← 0, j ← 0, k ← 0

loop
p1: if condition-1
p2: i ← i + 1
p3: else if condition-2
p4: j ← j + 1
p5: else if condition-3
p6: k ← k + 1

else exit loop
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Algorithm 3.1: Critical section problem
global variables

p q
local variables local variables
loop forever loop forever

non-critical section non-critical section
preprotocol preprotocol
critical section critical section
postprotocol postprotocol



Critical Section
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Algorithm 3.2: First attempt
integer turn ← 1

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: await turn = 1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn ← 2 q4: turn ← 1
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Algorithm 3.3: History in a sequential algorithm
integer a ← 1, b ← 2

p1: Millions of statements
p2: a ← (a+b)*5
p3: . . .
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Algorithm 3.4: History in a concurrent algorithm
integer a ← 1, b ← 2

p q
p1: Millions of statements q1: Millions of statements
p2: a ← (a+b)*5 q2: b ← (a+b)*5
p3: . . . q3: . . .



First States of the State Diagram
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State Diagram for the First Attempt

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 3.7

p2,q4,2
�
 �	
 	�-
p2,q3,2
�
 �	
 	�-
p2,q2,2
�
 �	
 	�-
p2,q1,2
�
 �	
 	�-
p1,q1,2
�
 �	
p4,q1,1
�
 �	
p3,q1,1
�
 �	
p2,q1,1
�
 �	

p1,q4,2
�
 �	
p1,q3,2
�
 �	
p1,q2,2
�
 �	
p4,q2,1
�
 �	
 	��
p3,q2,1
�
 �	
 	��
p2,q2,1
�
 �	
 	��
p1,q2,1
�
 �	
 	��
p1,q1,1
�
 �	

?

?

?

?

?

?

?

?

?

?

?

?

?

?

������

������

������

������

HHHHHj

HHHHHj

HHHHHj

HHHHHj

-

�-r



Alternate Layout for First Attempt (Not in book)
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Algorithm 3.5: First attempt (abbreviated)
integer turn ← 1

p q
loop forever loop forever

p1: await turn = 1 q1: await turn = 2
p2: turn ← 2 q2: turn ← 1



State Diagram for the Abbreviated First Attempt
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Fragment of the State Diagram for the First Attempt
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Algorithm 3.6: Second attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: await wantq = false q2: await wantp = false
p3: wantp ← true q3: wantq ← true
p4: critical section q4: critical section
p5: wantp ← false q5: wantq ← false
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Algorithm 3.7: Second attempt (abbreviated)
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: await wantq = false q1: await wantp = false
p2: wantp ← true q2: wantq ← true
p3: wantp ← false q3: wantq ← false



Fragment of State Diagram for the Second Attempt
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Process p Process q wantp wantq

p1: await wantq=false q1: await wantp=false false false

p2: wantp←true q1: await wantp=false false false

p2: wantp←true q2: wantq←true false false

p3: wantp←false q3: wantq←true true false

p3: wantp←false q3: wantq←false true true
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Algorithm 3.8: Third attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp ← false q5: wantq ← false



Scenario Showing Deadlock in the Third Attempt
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Process p Process q wantp wantq

p1: non-critical section q1: non-critical section false false

p2: wantp←true q1: non-critical section false false

p2: wantp←true q2: wantq←true false false

p3: await wantq=false q2: wantq←true true false

p3: await wantq=false q3: await wantp=false true true



Fragment of the State Diagram Showing Deadlock
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Algorithm 3.9: Fourth attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: wantp ← false q4: wantq ← false
p5: wantp ← true q5: wantq ← true
p6: critical section q6: critical section
p7: wantp ← false q7: wantq ← false



Cycle in the State Diagram for the Fourth Attempt
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Algorithm 3.10: Dekker’s algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: critical section q8: critical section
p9: turn ← 2 q9: turn ← 1
p10: wantp ← false q10: wantq ← false
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Algorithm 3.11: Critical section problem with test-and-set
integer common ← 0

p q
integer local1 integer local2
loop forever loop forever

p1: non-critical section q1: non-critical section
repeat repeat

p2: test-and-set( q2: test-and-set(
common, local1) common, local2)

p3: until local1 = 0 q3: until local2 = 0
p4: critical section q4: critical section
p5: common ← 0 q5: common ← 0
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Algorithm 3.12: Critical section problem with exchange
integer common ← 1

p q
integer local1 ← 0 integer local2 ← 0
loop forever loop forever

p1: non-critical section q1: non-critical section
repeat repeat

p2: exchange(common, lo-
cal1)

q2: exchange(common, lo-
cal2)

p3: until local1 = 1 q3: until local2 = 1
p4: critical section q4: critical section
p5: exchange(common, local1) q5: exchange(common, local2)
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Algorithm 3.13: Peterson’s algorithm
boolean wantp ← false, wantq ← false
integer last ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: last ← 1 q3: last ← 2
p4: await wantq = false or q4: await wantp = false or

last = 2 last = 1
p5: critical section q5: critical section
p6: wantp ← false q6: wantq ← false
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Algorithm 3.14: Manna-Pnueli algorithm
integer wantp ← 0, wantq ← 0
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: if wantq = −1 q2: if wantp = −1

wantp ← −1 wantq ← 1
else wantp ← 1 else wantq ← −1

p3: await wantq 6= wantp q3: await wantp 6= − wantq
p4: critical section q4: critical section
p5: wantp ← 0 q5: wantq ← 0
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Algorithm 3.15: Doran-Thomas algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: if wantq q3: if wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: await wantq = false q8: await wantp = false
p9: critical section q9: critical section
p10: wantp ← false q10: wantq ← false
p11: turn ← 2 q11: turn ← 1
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Algorithm 4.1: Third attempt
boolean wantp ← false, wantq ← false
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: await wantq = false q3: await wantp = false
p4: critical section q4: critical section
p5: wantp ← false q5: wantq ← false
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Overtaking: tryp→ (¬ csq)W (csq)W (¬ csq)W (csp)
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Algorithm 4.2: Dekker’s algorithm
boolean wantp ← false, wantq ← false
integer turn ← 1
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: wantp ← true q2: wantq ← true
p3: while wantq q3: while wantp
p4: if turn = 2 q4: if turn = 1
p5: wantp ← false q5: wantq ← false
p6: await turn = 1 q6: await turn = 2
p7: wantp ← true q7: wantq ← true
p8: critical section q8: critical section
p9: turn ← 2 q9: turn ← 1
p10: wantp ← false q10: wantq ← false



Dekker’s Algorithm in Promela
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1 bool wantp = false, wantq = false;
2 byte turn = 1;
3

4 active proctype p() {
5 do :: wantp = true;
6 do :: !wantq −> break;
7 :: else −>

8 if :: (turn == 1)
9 :: (turn == 2) −>

10 wantp = false; (turn == 1); wantp = true
11 fi
12 od;
13 printf (”MSC: p in CS\n”) ;
14 turn = 2; wantp = false
15 od
16 }



Specifying Correctness in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 4.14

1 byte critical = 0;
2

3 bool PinCS = false;
4

5 #define nostarve PinCS /∗ LTL claim <> nostarve ∗/
6

7 active proctype p() {
8 do ::
9 /∗ preprotocol ∗/

10 critical ++;
11 assert(critical <= 1);
12 PinCS = true;
13 critical −−;
14 /∗ postprotocol ∗/
15 od
16 }



LTL Translation to Never Claims
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1 never { /∗ !(<>nostarve) ∗/
2 accept init :
3 T0 init :
4 if
5 :: (! ((nostarve ))) −> goto T0 init
6 fi ;
7 }
8

9 never { /∗ !([]<>nostarve) ∗/
10 T0 init :
11 if
12 :: (! ((nostarve ))) −> goto accept S4
13 :: (1) −> goto T0 init
14 fi ;
15 accept S4:
16 if
17 :: (! ((nostarve ))) −> goto accept S4
18 fi ;
19 }
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Algorithm 5.1: Bakery algorithm (two processes)
integer np ← 0, nq ← 0

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: np ← nq + 1 q2: nq ← np + 1
p3: await nq = 0 or np ≤ nq q3: await np = 0 or nq < np
p4: critical section q4: critical section
p5: np ← 0 q5: nq ← 0
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Algorithm 5.2: Bakery algorithm (N processes)
integer array[1..n] number ← [0,. . . ,0]

loop forever
p1: non-critical section
p2: number[i] ← 1 + max(number)
p3: for all other processes j
p4: await (number[j] = 0) or (number[i] ≪ number[j])
p5: critical section
p6: number[i] ← 0
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Algorithm 5.3: Bakery algorithm without atomic assignment
boolean array[1..n] choosing ← [false,. . . ,false]
integer array[1..n] number ← [0,. . . ,0]

loop forever
p1: non-critical section
p2: choosing[i] ← true
p3: number[i] ← 1 + max(number)
p4: choosing[i] ← false
p5: for all other processes j
p6: await choosing[j] = false
p7: await (number[j] = 0) or (number[i] ≪ number[j])
p8: critical section
p9: number[i] ← 0
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Algorithm 5.4: Fast algorithm for two processes (outline)
integer gate1 ← 0, gate2 ← 0

p q
loop forever loop forever

non-critical section non-critical section
p1: gate1 ← p q1: gate1 ← q
p2: if gate2 6= 0 goto p1 q2: if gate2 6= 0 goto q1
p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q
p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0



Fast Algorithm - No Contention (1)
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Fast Algorithm - No Contention (2)
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Fast Algorithm - Contention At Gate 1 (1)
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Fast Algorithm - Contention At Gate 1 (2)
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Algorithm 5.5: Fast algorithm for two processes (outline)
integer gate1 ← 0, gate2 ← 0

p q
loop forever loop forever

non-critical section non-critical section
p1: gate1 ← p q1: gate1 ← q
p2: if gate2 6= 0 goto p1 q2: if gate2 6= 0 goto q1
p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q
p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0
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Algorithm 5.6: Fast algorithm for two processes
integer gate1 ← 0, gate2 ← 0
boolean wantp ← false, wantq ← false

p q
p1: gate1 ← p q1: gate1 ← q

wantp ← true wantq ← true
p2: if gate2 6= 0 q2: if gate2 6= 0

wantp ← false wantq ← false
goto p1 goto q1

p3: gate2 ← p q3: gate2 ← q
p4: if gate1 6= p q4: if gate1 6= q

wantp ← false wantq ← false
await wantq = false await wantp = false

p5: if gate2 6= p goto p1 q5: if gate2 6= q goto q1
else wantp ← true else wantq ← true

critical section critical section
p6: gate2 ← 0 q6: gate2 ← 0

wantp ← false wantq ← false
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Algorithm 5.7: Fisher’s algorithm
integer gate ← 0

loop forever
non-critical section
loop

p1: await gate = 0
p2: gate ← i
p3: delay
p4: until gate = i

critical section
p5: gate ← 0
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Algorithm 5.8: Lamport’s one-bit algorithm
boolean array[1..n] want ← [false,. . . ,false]

loop forever
non-critical section

p1: want[i] ← true
p2: for all processes j ¡ i
p3: if want[j]
p4: want[i] ← false
p5: await not want[j]

goto p1
p6: for all processes j ¿ i
p7: await not want[j]

critical section
p8: want[i] ← false
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Algorithm 5.9: Manna-Pnueli central server algorithm
integer request ← 0, respond ← 0

client process i
loop forever

non-critical section
p1: while respond 6= i
p2: request ← i

critical section
p3: respond ← 0

server process
loop forever

p4: await request 6= 0
p5: respond ← request
p6: await respond = 0
p7: request ← 0



State Changes of a Process
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Algorithm 6.1: Critical section with semaphores (two processes)
binary semaphore S ← (1, ∅)

p q
loop forever loop forever

p1: non-critical section q1: non-critical section
p2: wait(S) q2: wait(S)
p3: critical section q3: critical section
p4: signal(S) q4: signal(S)
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Algorithm 6.2: Critical section with semaphores (two proc., abbrev.)
binary semaphore S ← (1, ∅)

p q
loop forever loop forever

p1: wait(S) q1: wait(S)
p2: signal(S) q2: signal(S)



State Diagram for the Semaphore Solution
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Algorithm 6.3: Critical section with semaphores (N proc.)
binary semaphore S ← (1, ∅)

loop forever
p1: non-critical section
p2: wait(S)
p3: critical section
p4: signal(S)
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Algorithm 6.4: Critical section with semaphores (N proc., abbrev.)
binary semaphore S ← (1, ∅)

loop forever
p1: wait(S)
p2: signal(S)



Scenario for Starvation

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.7

n Process p Process q Process r S

1 p1: wait(S) q1: wait(S) r1: wait(S) (1, ∅)
2 p2: signal(S) q1: wait(S) r1: wait(S) (0, ∅)

3 p2: signal(S) q1: blocked r1: wait(S) (0, {q})
4 p1: signal(S) q1: blocked r1: blocked (0, {q, r})

5 p1: wait(S) q1: blocked r2: signal(S) (0, {q})
6 p1: blocked q1: blocked r2: signal(S) (0, {p, q})

7 p2: signal(S) q1: blocked r1: wait(S) (0, {q})
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Algorithm 6.5: Mergesort
integer array A
binary semaphore S1 ← (0, ∅)
binary semaphore S2 ← (0, ∅)

sort1 sort2 merge
p1: sort 1st half of A q1: sort 2nd half of A r1: wait(S1)
p2: signal(S1) q2: signal(S2) r2: wait(S2)
p3: q3: r3: merge halves of A
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Algorithm 6.6: Producer-consumer (infinite buffer)
infinite queue of dataType buffer ← empty queue
semaphore notEmpty ← (0, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: d ← produce q1: wait(notEmpty)
p2: append(d, buffer) q2: d ← take(buffer)
p3: signal(notEmpty) q3: consume(d)



Partial State Diagram for Producer-Consumer

with Infinite Buffer
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Algorithm 6.7: Producer-consumer (infinite buffer, abbreviated)
infinite queue of dataType buffer ← empty queue
semaphore notEmpty ← (0, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: append(d, buffer) q1: wait(notEmpty)
p2: signal(notEmpty) q2: d ← take(buffer)
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Algorithm 6.8: Producer-consumer (finite buffer, semaphores)
finite queue of dataType buffer ← empty queue
semaphore notEmpty ← (0, ∅)
semaphore notFull ← (N, ∅)
producer consumer

dataType d dataType d
loop forever loop forever

p1: d ← produce q1: wait(notEmpty)
p2: wait(notFull) q2: d ← take(buffer)
p3: append(d, buffer) q3: signal(notFull)
p4: signal(notEmpty) q4: consume(d)



Scenario with Busy Waiting
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n Process p Process q S

1 p1: wait(S) q1: wait(S) 1

2 p2: signal(S) q1: wait(S) 0

3 p2: signal(S) q1: wait(S) 0

4 p1: wait(S) q1: wait(S) 1



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.14

Algorithm 6.9: Dining philosophers (outline)

loop forever
p1: think
p2: preprotocol
p3: eat
p4: postprotocol



The Dining Philosophers
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Algorithm 6.10: Dining philosophers (first attempt)
semaphore array [0..4] fork ← [1,1,1,1,1]

loop forever
p1: think
p2: wait(fork[i])
p3: wait(fork[i+1])
p4: eat
p5: signal(fork[i])
p6: signal(fork[i+1])
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Algorithm 6.11: Dining philosophers (second attempt)
semaphore array [0..4] fork ← [1,1,1,1,1]
semaphore room ← 4

loop forever
p1: think
p2: wait(room)
p3: wait(fork[i])
p4: wait(fork[i+1])
p5: eat
p6: signal(fork[i])
p7: signal(fork[i+1])
p8: signal(room)
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Algorithm 6.12: Dining philosophers (third attempt)
semaphore array [0..4] fork ← [1,1,1,1,1]

philosopher 4
loop forever

p1: think
p2: wait(fork[0])
p3: wait(fork[4])
p4: eat
p5: signal(fork[0])
p6: signal(fork[4])
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Algorithm 6.13: Barz’s algorithm for simulating general semaphores
binary semaphore S ← 1
binary semaphore gate ← 1
integer count ← k

loop forever
non-critical section

p1: wait(gate)
p2: wait(S) // Simulated wait
p3: count ← count − 1
p4: if count > 0 then
p5: signal(gate)
p6: signal(S)

critical section
p7: wait(S) // Simulated signal
p8: count ← count + 1
p9: if count = 1 then
p10: signal(gate)
p11: signal(S)
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Algorithm 6.14: Udding’s starvation-free algorithm
semaphore gate1 ← 1, gate2 ← 0
integer numGate1 ← 0, numGate2 ← 0

p1: wait(gate1)
p2: numGate1 ← numGate1 + 1
p3: signal(gate1)
p4: wait(gate1)
p5: numGate2 ← numGate2 + 1

numGate1 ← numGate1 − 1 // Statement is missing in the
book
p6: if numGate1 ¿ 0
p7: signal(gate1)
p8: else signal(gate2)
p9: wait(gate2)
p10: numGate2 ← numGate2 − 1

critical section
p11: if numGate2 ¿ 0
p12: signal(gate2)
p13: else signal(gate1)



Udding’s Starvation-Free Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 6.21

�� @@

�� @@

m

�� @@

�� @@

m

�� @@

�� @@

m

�� @@

�� @@

m

�� @@

�� @@

m
numGate1 gate1 numGate2 gate2 CS
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n Process p Process q gate1 gate2 nGate1 nGate2

1 p4: wait(g1) q4: wait(g1) 1 0 2 0

2 p9: wait(g2) q9: wait(g2) 0 1 0 2

3 CS q9: wait(g2) 0 0 0 1

4 p12: signal(g2) q9: wait(g2) 0 0 0 1

5 p1: wait(g1) CS 0 0 0 0

6 p1: wait(g1) q13: signal(g1) 0 0 0 0

7 p1: blocked q13: signal(g1) 0 0 0 0

8 p4: wait(g1) q1: wait(g1) 1 0 1 0

9 p4: wait(g1) q4: wait(g1) 1 0 2 0



Semaphores in Java
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1 import java. util . concurrent. Semaphore;
2 class CountSem extends Thread {
3 static volatile int n = 0;
4 static Semaphore s = new Semaphore(1);
5

6 public void run() {
7 int temp;
8 for (int i = 0; i < 10; i ++) {
9 try {

10 s. acquire ();
11 }
12 catch (InterruptedException e) {}
13 temp = n;
14 n = temp + 1;
15 s. release ();
16 }
17 }
18

19 public static void main(String[] args) {
20 /∗ As before ∗/
21 }
22 }



Semaphores in Ada
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1 protected type Semaphore(Initial : Natural) is
2 entry Wait;
3 procedure Signal;
4 private
5 Count: Natural := Initial ;
6 end Semaphore;
7

8 protected body Semaphore is
9 entry Wait when Count > 0 is

10 begin
11 Count := Count − 1;
12 end Wait;
13

14 procedure Signal is
15 begin
16 Count := Count + 1;
17 end Signal;
18 end Semaphore;



Busy-Wait Semaphores in Promela
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1 inline wait( s ) {
2 atomic { s > 0 ; s−− }
3 }
4

5 inline signal ( s ) { s++ }



Weak Semaphores in Promela (3 processes) (1)
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1 typedef Semaphore {
2 byte count;
3 bool blocked[NPROCS];
4 };
5

6 inline initSem(S, n) {
7 S.count = n
8 }



Weak Semaphores in Promela (3 processes) (2)
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1 inline wait(S) {
2 atomic {
3 if
4 :: S.count >= 1 −> S.count−−
5 :: else −>

6 S.blocked[ pid−1] = true;
7 ! S.blocked[ pid−1]
8 fi
9 }

10 }
11

12 inline signal (S) {
13 atomic {
14 if
15 :: S.blocked[0] −> S.blocked[0] = false
16 :: S.blocked[1] −> S.blocked[1] = false
17 :: S.blocked[2] −> S.blocked[2] = false
18 :: else −> S.count++
19 fi
20 }
21 }



Weak Semaphores in Promela (N processes) (1)
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1 typedef Semaphore {
2 byte count;
3 bool blocked[NPROCS];
4 byte i , choice ;
5 };
6

7 inline initSem(S, n) {
8 S.count = n
9 }

10

11 inline wait(S) {
12 atomic {
13 if
14 :: S.count >= 1 −> S.count−−
15 :: else −>

16 S.blocked[ pid−1] = true;
17 ! S.blocked[ pid−1]
18 fi
19 }
20 }



Weak Semaphores in Promela (N processes) (2)
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1 inline signal (S) {
2 atomic {
3 S.i = 0;
4 S.choice = 255;
5 do
6 :: (S.i == NPROCS) −> break
7 :: (S.i < NPROCS) && !S.blocked[S.i] −> S.i++
8 :: else −>

9 if
10 :: (S.choice == 255) −> S.choice = S.i
11 :: (S.choice != 255) −> S.choice = S.i
12 :: (S.choice != 255) −>

13 fi ;
14 S.i ++
15 od;
16 if
17 :: S.choice == 255 −> S.count++
18 :: else −> S.blocked[S.choice] = false
19 fi
20 }
21 }



Barz’s Algorithm in Promela (N processes, K in CS)
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1 byte gate = 1;
2 int count = K;
3

4 active [ N] proctype P () {
5 do ::
6 atomic { gate > 0; gate−−; }
7 d step {
8 count−−;
9 if

10 :: count > 0 −> gate++
11 :: else
12 fi
13 }
14 /∗ Critical section ∗/
15 d step {
16 count++;
17 if
18 :: count == 1 −> gate++
19 :: else
20 fi
21 }
22 od
23 }
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Algorithm 6.15: Semaphore algorithm A
semaphore S ← 1, semaphore T ← 0
p q

p1: wait(S) q1: wait(T)
p2: write(”p”) q2: write(”q”)
p3: signal(T) q3: signal(S)
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Algorithm 6.16: Semaphore algorithm B
semaphore S1 ← 0, S2 ← 0

p q r
p1: write(”p”) q1: wait(S1) r1: wait(S2)
p2: signal(S1) q2: write(”q”) r2: write(”r”)
p3: signal(S2) q3: r3:
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Algorithm 6.17: Semaphore algorithm with a loop
semaphore S ← 1
boolean B ← false

p q
p1: wait(S) q1: wait(S)
p2: B ← true q2: while not B
p3: signal(S) q3: write(”*”)
p4: q4: signal(S)
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Algorithm 6.18: Critical section problem (k out of N processes)
binary semaphore S ← 1, delay ← 0
integer count ← k

integer m
loop forever

p1: non-critical section
p2: wait(S)
p3: count ← count − 1
p4: m ← count
p5: signal(S)
p6: if m ≤ −1 wait(delay)
p7: critical section
p8: wait(S)
p9: count ← count + 1
p10: if count ≤ 0 signal(delay)
p11: signal(S)



Circular Buffer
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Algorithm 6.19: Producer-consumer (circular buffer)
dataType array [0..N] buffer
integer in, out ← 0
semaphore notEmpty ← (0, ∅)
semaphore notFull ← (N, ∅)

producer consumer
dataType d dataType d
loop forever loop forever

p1: d ← produce q1: wait(notEmpty)
p2: wait(notFull) q2: d ← buffer[out]
p3: buffer[in] ← d q3: out ← (out+1) modulo N
p4: in ← (in+1) modulo N q4: signal(notFull)
p5: signal(notEmpty) q5: consume(d)
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Algorithm 6.20: Simulating general semaphores
binary semaphore S ← 1, gate ← 0
integer count ← 0

wait
p1: wait(S)
p2: count ← count − 1
p3: if count < 0
p4: signal(S)
p5: wait(gate)
p6: else signal(S)

signal
p7: wait(S)
p8: count ← count + 1
p9: if count ≤ 0
p10: signal(gate)
p11: signal(S)



Weak Semaphores in Promela with Channels
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1 typedef Semaphore {
2 byte count;
3 chan ch = [NPROCS] of { pid };
4 byte temp, i ;
5 };
6 inline initSem(S, n) { S.count = n }
7 inline wait(S) {
8 atomic {
9 if

10 :: S.count >= 1 −> S.count−−;
11 :: else −> S.ch ! pid; !( S.ch ?? [ eval( pid )])
12 fi
13 }
14 }
15 inline signal (S) {
16 atomic {
17 S.i = len(S.ch);
18 if
19 :: S.i == 0 −> S.count++ /∗No blocked process, increment count∗/
20 :: else −>

21 do
22 :: S.i == 1 −> S.ch ? ; break /∗Remove only blocked process∗/
23 :: else −> S.i−−;
24 S.ch ? S.temp;
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Algorithm 6.21: Readers and writers with semaphores
semaphore readerSem ← 0, writerSem ← 0
integer delayedReaders ← 0, delayedWriters ← 0
semaphore entry ← 1
integer readers ← 0, writers ← 0

SignalProcess
if writers = 0 or delayedReaders > 0

delayedReaders ← delayedReaders − 1
signal(readerSem)

else if readers = 0 and writers = 0 and delayedWriters > 0
delayedWriters ← delayedWriters − 1
signal(writerSem)

else signal(entry)
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Algorithm 6.21: Readers and writers with semaphores

StartRead
p1: wait(entry)
p2: if writers > 0
p3: delayedReaders ← delayedReaders + 1
p4: signal(entry)
p5: wait(readerSem)
p6: readers ← readers + 1
p7: SignalProcess

EndRead
p8: wait(entry)
p9: readers ← readers − 1
p10: SignalProcess
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Algorithm 6.21: Readers and writers with semaphores

StartWrite
p11: wait(entry)
p12: if writers > 0 or readers > 0
p13: delayedWriters ← delayedWriters + 1
p14: signal(entry)
p15: wait(writerSem)
p16: writers ← writers + 1
p17: SignalProcess

EndWrite
p18: wait(entry)
p19: writers ← writers − 1
p20: SignalProcess
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Algorithm 7.1: Atomicity of monitor operations

monitor CS
integer n ← 0

operation increment
integer temp
temp ← n
n ← temp + 1

p q
p1: CS.increment q1: CS.increment



Executing a Monitor Operation
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Algorithm 7.2: Semaphore simulated with a monitor

monitor Sem
integer s ← k
condition notZero
operation wait

if s = 0
waitC(notZero)

s ← s − 1
operation signal

s ← s + 1
signalC(notZero)

p q
loop forever loop forever

non-critical section non-critical section
p1: Sem.wait q1: Sem.wait

critical section critical section
p2: Sem.signal q2: Sem.signal

Marc Smith




Condition Variable in a Monitor
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Algorithm 7.3: Producer-consumer (finite buffer, monitor)

monitor PC
bufferType buffer ← empty
condition notEmpty
condition notFull
operation append(datatype V)

if buffer is full
waitC(notFull)

append(V, buffer)
signalC(notEmpty)

operation take()
datatype W
if buffer is empty

waitC(notEmpty)
W ← head(buffer)
signalC(notFull)
return W
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Algorithm 7.3: Producer-consumer (finite buffer, monitor) (continued)

producer consumer
datatype D datatype D
loop forever loop forever

p1: D ← produce q1: D ← PC.take
p2: PC.append(D) q2: consume(D)



The Immediate Resumption Requirement
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Algorithm 7.4: Readers and writers with a monitor

monitor RW
integer readers ← 0
integer writers ← 0
condition OKtoRead, OKtoWrite
operation StartRead

if writers 6= 0 or not empty(OKtoWrite)
waitC(OKtoRead)

readers ← readers + 1
signalC(OKtoRead)

operation EndRead
readers ← readers − 1
if readers = 0

signalC(OKtoWrite)
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Algorithm 7.4: Readers and writers with a monitor (continued)

operation StartWrite
if writers 6= 0 or readers 6= 0

waitC(OKtoWrite)
writers ← writers + 1

operation EndWrite
writers ← writers − 1
if empty(OKtoRead)

then signalC(OKtoWrite)
else signalC(OKtoRead)

reader writer
p1: RW.StartRead q1: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite
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Algorithm 7.5: Dining philosophers with a monitor

monitor ForkMonitor
integer array[0..4] fork ← [2, . . . , 2]
condition array[0..4] OKtoEat
operation takeForks(integer i)

if fork[i] 6= 2
waitC(OKtoEat[i])

fork[i+1] ← fork[i+1] − 1
fork[i−1] ← fork[i−1] − 1

operation releaseForks(integer i)
fork[i+1] ← fork[i+1] + 1
fork[i−1] ← fork[i−1] + 1
if fork[i+1] = 2

signalC(OKtoEat[i+1])
if fork[i−1] = 2

signalC(OKtoEat[i−1])
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Algorithm 7.5: Dining philosophers with a monitor (continued)

philosopher i
loop forever

p1: think
p2: takeForks(i)
p3: eat
p4: releaseForks(i)



Scenario for Starvation of Philosopher 2
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n phil1 phil2 phil3 f0 f1 f2 f3 f4

1 take(1) take(2) take(3) 2 2 2 2 2

2 release(1) take(2) take(3) 1 2 1 2 2

3 release(1) take(2) and release(3) 1 2 0 2 1
waitC(OK[2])

4 release(1) (blocked) release(3) 1 2 0 2 1

5 take(1) (blocked) release(3) 2 2 1 2 1

6 release(1) (blocked) release(3) 1 2 0 2 1

7 release(1) (blocked) take(3) 1 2 1 2 2



Readers and Writers in C
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1 monitor RW {
2 int readers = 0, writing = 1;
3 condition OKtoRead, OKtoWrite;
4

5 void StartRead() {
6 if (writing || ! empty(OKtoWrite)) waitc(OKtoRead);
7 readers = readers + 1;
8 signalc (OKtoRead);
9 }

10 void EndRead() {
11 readers = readers − 1;
12 if (readers == 0) signalc (OKtoWrite);
13 }
14

15 void StartWrite () {
16 if (writing || (readers != 0)) waitc(OKtoWrite);
17 writing = 1;
18 }
19 void EndWrite() {
20 writing = 0;
21 if (empty(OKtoRead)) signalc(OKtoWrite);
22 else signalc (OKtoRead);
23 }
24 }
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Algorithm 7.6: Readers and writers with a protected object

protected object RW
integer readers ← 0
boolean writing ← false
operation StartRead when not writing

readers ← readers + 1
operation EndRead

readers ← readers − 1
operation StartWrite when not writing and readers = 0

writing ← true

operation EndWrite
writing ← false

reader writer
loop forever loop forever

p1: RW.StartRead q1: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite



Context Switches in a Monitor
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Process reader Process writer

waitC(OKtoRead) operation EndWrite

(blocked) writing ← false

(blocked) signalC(OKtoRead)

readers ← readers + 1 return from EndWrite

signalC(OKtoRead) return from EndWrite

read the data return from EndWrite

read the data . . .



Context Switches in a Protected Object
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Process reader Process writer

when not writing operation EndWrite

(blocked) writing ← false

(blocked) when not writing

(blocked) readers ← readers + 1

read the data . . .



Simple Readers and Writers in Ada
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1 protected RW is
2 procedure Write(I: Integer );
3 function Read return Integer ;
4 private
5 N: Integer := 0;
6 end RW;
7

8 protected body RW is
9 procedure Write(I: Integer ) is

10 begin
11 N := I;
12 end Write;
13 function Read return Integer is
14 begin
15 return N;
16 end Read;
17 end RW;



Readers and Writers in Ada (1)
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1 protected RW is
2 entry StartRead;
3 procedure EndRead;
4 entry Startwrite ;
5 procedure EndWrite;
6 private
7 Readers: Natural :=0;
8 Writing: Boolean := false ;
9 end RW;



Readers and Writers in Ada (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 7.20

1 protected body RW is
2 entry StartRead
3 when not Writing is
4 begin
5 Readers := Readers + 1;
6 end StartRead;
7

8 procedure EndRead is
9 begin

10 Readers := Readers − 1;
11 end EndRead;
12

13 entry StartWrite
14 when not Writing and Readers = 0 is
15 begin
16 Writing := true ;
17 end StartWrite;
18

19 procedure EndWrite is
20 begin
21 Writing := false ;
22 end EndWrite;
23 end RW;
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1 class PCMonitor {
2 final int N = 5;
3 int Oldest = 0, Newest = 0;
4 volatile int Count = 0;
5 int Buffer [] = new int[N];
6

7 synchronized void Append(int V) {
8 while (Count == N)
9 try {

10 wait();
11 } catch (InterruptedException e) {}
12 Buffer [Newest] = V;
13 Newest = (Newest + 1) % N;
14 Count = Count + 1;
15 notifyAll ();
16 }
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1 synchronized int Take() {
2 int temp;
3 while (Count == 0)
4 try {
5 wait();
6 } catch (InterruptedException e) {}
7 temp = Buffer[Oldest];
8 Oldest = (Oldest + 1) % N;
9 Count = Count − 1;

10 notifyAll ();
11 return temp;
12 }
13 }
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Java Monitor for RW (try-catch omitted)
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1 class RWMonitor {
2 volatile int readers = 0;
3 volatile boolean writing = false;
4

5 synchronized void StartRead() {
6 while (writing ) wait();
7 readers = readers + 1;
8 notifyAll ();
9 }

10 synchronized void EndRead() {
11 readers = readers − 1;
12 if (readers == 0) notifyAll();
13 }
14

15 synchronized void StartWrite() {
16 while (writing || (readers != 0)) wait();
17 writing = true;
18 }
19

20 synchronized void EndWrite() {
21 writing = false;
22 notifyAll ();
23 }
24 }
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1 bool lock = false;
2

3 typedef Condition {
4 bool gate;
5 byte waiting ;
6 }
7

8 #define emptyC(C) (C.waiting == 0)
9

10 inline enterMon() {
11 atomic {
12 ! lock;
13 lock = true;
14 }
15 }
16

17 inline leaveMon() {
18 lock = false;
19 }



Simulating Monitors in Promela (2)
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1 inline waitC(C) {
2 atomic {
3 C.waiting++;
4 lock = false; /∗ Exit monitor ∗/
5 C.gate; /∗ Wait for gate ∗/
6 lock = true; /∗ IRR ∗/
7 C.gate = false; /∗ Reset gate ∗/
8 C.waiting−−;
9 }

10 }
11

12 inline signalC (C) {
13 atomic {
14 if
15 /∗ Signal only if waiting ∗/
16 :: (C.waiting > 0) −>

17 C.gate = true;
18 ! lock; /∗ IRR − wait for released lock ∗/
19 lock = true; /∗ Take lock again ∗/
20 :: else
21 fi ;
22 }
23 }
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1 protected RW is
2 entry Start Read;
3 procedure End Read;
4 entry Start Write ;
5 procedure End Write;
6 private
7 Waiting To Read : integer := 0;
8 Readers : Natural := 0;
9 Writing : Boolean := false ;

10 end RW;



Readers and Writers in Ada (2)
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1 protected RW is
2 entry StartRead;
3 procedure EndRead;
4 entry Startwrite ;
5 procedure EndWrite;
6 function NumberReaders return Natural;
7 private
8 entry ReadGate;
9 entry WriteGate;

10 Readers: Natural :=0;
11 Writing: Boolean := false ;
12 end RW;
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Algorithm 8.1: Producer-consumer (channels)
channel of integer ch

producer consumer
integer x integer y
loop forever loop forever

p1: x ← produce q1: ch ⇒ y
p2: ch ⇐ x q2: consume(y)
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Algorithm 8.2: Conway’s problem
constant integer MAX ← 9
constant integer K ← 4
channel of integer inC, pipe, outC

compress output
char c, previous ← 0 char c
integer n ← 0 integer m ← 0
inC ⇒ previous
loop forever loop forever

p1: inC ⇒ c q1: pipe ⇒ c
p2: if (c = previous) and q2: outC ⇐ c

(n < MAX − 1)
p3: n ← n + 1 q3: m ← m + 1

else
p4: if n > 0 q4: if m >= K
p5: pipe⇐ intToChar(n+1) q5: outC ⇐ newline
p6: n ← 0 q6: m ← 0
p7: pipe ⇐ previous q7:

p8: previous ← c q8:



Conway’s Problem
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Algorithm 8.3: Multiplier process with channels
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
p1: North ⇒ SecondElement
p2: East ⇒ Sum
p3: Sum ← Sum + FirstElement · SecondElement
p4: South ⇐ SecondElement
p5: West ⇐ Sum
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Algorithm 8.4: Multiplier with channels and selective input
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
either

p1: North ⇒ SecondElement
p2: East ⇒ Sum

or
p3: East ⇒ Sum
p4: North ⇒ SecondElement
p5: South ⇐ SecondElement
p6: Sum ← Sum + FirstElement · SecondElement
p7: West ⇐ Sum
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Algorithm 8.5: Dining philosophers with channels
channel of boolean forks[5]

philosopher i fork i
boolean dummy boolean dummy
loop forever loop forever

p1: think q1: forks[i] ⇐ true
p2: forks[i] ⇒ dummy q2: forks[i] ⇒ dummy
p3: forks[i+1] ⇒ dummy q3:

p4: eat q4:

p5: forks[i] ⇐ true q5:

p6: forks[i+1] ⇐ true q6:



Conway’s Problem in Promela (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.9

1 #define N 9
2 #define K 4
3

4 chan inC, pipe, outC = [0] of { byte };
5

6 active proctype Compress() {
7 byte previous , c, count = 0;
8 inC ? previous ;
9 do

10 :: inC ? c −>

11 if
12 :: (c == previous) && (count < N−1) −> count++
13 :: else −>

14 if
15 :: count > 0 −>

16 pipe ! count+1;
17 count = 0
18 :: else
19 fi ;
20 pipe ! previous ;
21 previous = c;
22 fi
23 od
24 }



Conway’s Problem in Promela (2)
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1 active proctype Output() {
2 byte c, count = 0;
3 do
4 :: pipe ? c;
5 outC ! c;
6 count++;
7 if
8 :: count >= K −>

9 outC ! ’ \n’;
10 count = 0
11 :: else
12 fi
13 od
14 }



Multiplier Process in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.11

1 proctype Multiplier (byte Coeff;
2 chan North; chan East; chan South; chan West) {
3 byte Sum, X;
4 for (i ,0, SIZE−1)
5 if :: North ? X −> East ? Sum;
6 :: East ? Sum −> North ? X;
7 fi ;
8 South ! X;
9 Sum = Sum + X∗Coeff;

10 West ! Sum;
11 rof (i )
12 }



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 8.12

Algorithm 8.6: Rendezvous

client server
integer parm, result integer p, r
loop forever loop forever

p1: parm ← . . . q1:

p2: server.service(parm, result) q2: accept service(p, r)
p3: use(result) q3: r ← do the service(p)



Timing Diagram for a Rendezvous
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1 task body Buffer is
2 B: Buffer Array ;
3 In Ptr , Out Ptr, Count: Index := 0;
4

5 begin
6 loop
7 select
8 when Count < Index’Last =>

9 accept Append(I: in Integer ) do
10 B(In Ptr) := I ;
11 end Append;
12 Count := Count + 1; In Ptr := In Ptr + 1;
13 or
14 when Count > 0 =>

15 accept Take(I: out Integer ) do
16 I := B(Out Ptr);
17 end Take;
18 Count := Count − 1; Out Ptr := Out Ptr + 1;
19 or
20 terminate;
21 end select;
22 end loop;
23 end Buffer;
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Algorithm 9.1: Critical section problem in Linda

loop forever
p1: non-critical section
p2: removenote(’s’)
p3: critical section
p4: postnote(’s’)
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Algorithm 9.2: Client-server algorithm in Linda

client server
constant integer me ← . . . integer client
serviceType service serviceType s
dataType result, parm dataType r, p

p1: service ← // Service requested q1: removenote(’S’, client, s, p)
p2: postnote(’S’, me, service, parm) q2: r ← do (s, p)
p3: removenote(’R’, me, result) q3: postnote(’R’, client, r)
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Algorithm 9.3: Specific service

client server
constant integer me ← . . . integer client
serviceType service serviceType s
dataType result, parm dataType r, p

p1: service ← // Service requested q1: s ← // Service provided
p2: postnote(’S’, me, service, parm) q2: removenote(’S’, client, s=, p)
p3: q3: r ← do (s, p)
p4: removenote(’R’, me, result) q4: postnote(’R’, client, r)
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Algorithm 9.4: Buffering in a space

producer consumer
integer count ← 0 integer count ← 0
integer v integer v
loop forever loop forever

p1: v ← produce q1: removenote(’B’, count=, v)
p2: postnote(’B’, count, v) q2: consume(v)
p3: count ← count + 1 q3: count ← count + 1
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Algorithm 9.5: Multiplier process with channels in Linda
parameters: integer FirstElement
parameters: integer North, East, South, West
integer Sum, integer SecondElement
integer Sum, integer SecondElement

loop forever
p1: removenote(’E’, North=, SecondElement)
p2: removenote(’S’, East=, Sum)
p3: Sum ← Sum + FirstElement · SecondElement
p4: postnote(’E’, South, SecondElement)
p5: postnote(’S’, West, Sum)



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 9.7

Algorithm 9.6: Matrix multiplication in Linda
constant integer n ← . . .

master worker
integer i, j, result integer r, c, result
integer r, c integer array[1..n] vec1, vec2

loop forever
p1: for i from 1 to n q1: removenote(’T’, r, c)
p2: for j from 1 to n q2: readnote(’A’, r=, vec1)
p3: postnote(’T’, i, j) q3: readnote(’B’, c=, vec2)
p4: for i from 1 to n q4: result ← vec1 · vec2
p5: for j from 1 to n q5: postnote(’R’, r, c, result)
p6: removenote(’R’, r, c, re-
sult)

q6:

p7: print r, c, result q7:
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Algorithm 9.7: Matrix multiplication in Linda with granularity
constant integer n ← . . .
constant integer chunk ← . . .

master worker
integer i, j, result integer r, c, k, result
integer r, c integer array[1..n] vec1, vec2

loop forever
p1: for i from 1 to n q1: removenote(’T’, r, k)
p2: for j from 1 to n step by chunk q2: readnote(’A’, r=, vec1)
p3: postnote(’T’, i, j) q3: for c from k to k+chunk-1
p4: for i from 1 to n q4: readnote(’B’, c=, vec2)
p5: for j from 1 to n q5: result ← vec1 · vec2
p6: removenote(’R’, r, c, re-
sult)

q6: postnote(’R’, r, c, result)

p7: print r, c, result q7:
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1 public class Note {
2 public String id ;
3 public Object[] p;
4

5 // Constructor for an array of objects
6 public Note (String id , Object[] p) {
7 this . id = id;
8 if (p != null ) this . p = p.clone();
9 }

10

11 // Constructor for a single integer
12 public Note (String id , int p1) {
13 this (id , new Object[]{new Integer(p1)});
14 }
15

16 // Accessor for a single integer value
17 public int get(int i ) {
18 return (( Integer )p[ i ]). intValue ();
19 }
20 }
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1 private class Worker extends Thread {
2 public void run() {
3 Note task = new Note(”task”);
4 while (true) {
5 Note t = space.removenote(task);
6 int row = t.get(0), col = t.get(1);
7 Note r = space.readnote(match(”a”, row));
8 Note c = space.readnote(match(”b”, col));
9 int ip = 0;

10 for (int i = 1; i <= SIZE; i++)
11 ip = ip + r.get(i )∗c. get(i );
12 space. postnote(new Note(”result”, row, col , ip ));
13 }
14 }
15 }



Matrix Multiplication in Promela
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1 chan space = [25] of { byte, short, short, short, short };
2

3 active [WORKERS] proctype Worker() {
4 short row, col , ip , r1, r2, r3, c1, c2, c3;
5 do
6 :: space ?? ’ t’ , row, col , , ;
7 space ?? <’a’, eval(row), r1, r2, r3>;
8 space ?? <’b’, eval(col ), c1, c2, c3>;
9 ip = r1∗c1 + r2∗c2 + r3∗c3;

10 space ! ’ r ’ , row, col , ip , 0;
11 od;
12 }
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Algorithm 9.8: Matrix multiplication in Linda (exercise)
constant integer n ← . . .

master worker
integer i, j, result integer i, r, c, result
integer r, c integer array[1..n] vec1, vec2

loop forever
p1: postnote(’T’, 0) q1: removenote(’T’ i)
p2: q2: if i ¡ (n · n) − 1
p3: q3: postnote(’T’, i+1)
p4: q4: r ← (i / n) + 1
p5: q5: c ← (i modulo n) + 1
p6: for i from 1 to n q6: readnote(’A’, r=, vec1)
p7: for j from 1 to n q7: readnote(’B’, c=, vec2)
p8: removenote(’R’, r, c, re-
sult)

q8: result ← vec1 · vec2

p9: print r, c, result q9: postnote(’R’, r, c, result)
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node 5

integer k ← 20
send(request, 3, k, 30)

node 3

integer m, n
receive(request, m, n)

-
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node 5

send(request, 3, myID)

node 3

integer source
receive(request, source)
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Algorithm 10.1: Ricart-Agrawala algorithm (outline)
integer myNum ← 0
set of node IDs deferred ← empty set

main
p1: non-critical section
p2: myNum ← chooseNumber
p3: for all other nodes N
p4: send(request, N, myID, myNum)
p5: await reply’s from all other nodes
p6: critical section
p7: for all nodes N in deferred
p8: remove N from deferred
p9: send(reply, N, myID)

receive
integer source, reqNum

p10: receive(request, source, reqNum)
p11: if reqNum < myNum
p12: send(reply,source,myID)
p13: else add source to deferred
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Algorithm 10.2: Ricart-Agrawala algorithm
integer myNum ← 0
set of node IDs deferred ← empty set
integer highestNum ← 0
boolean requestCS ← false

Main
loop forever

p1: non-critical section
p2: requestCS ← true
p3: myNum ← highestNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: await reply’s from all other nodes
p7: critical section
p8: requestCS ← false
p9: for all nodes N in deferred
p10: remove N from deferred
p11: send(reply, N, myID)
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Algorithm 10.2: Ricart-Agrawala algorithm (continued)

Receive
integer source, requestedNum
loop forever

p1: receive(request, source, requestedNum)
p2: highestNum ← max(highestNum, requestedNum)
p3: if not requestCS or requestedNum ≪ myNum
p4: send(reply, source, myID)
p5: else add source to deferred
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1 proctype Main( byte myID ) {
2 do ::
3 atomic {
4 requestCS[myID] = true ;
5 myNum[myID] = highestNum[myID] + 1 ;
6 }
7 for (J,0, NPROCS−1)
8 if
9 :: J != myID −>

10 ch[J] ! request , myID, myNum[myID];
11 :: else
12 fi
13 rof (J);
14 for (K,0,NPROCS−2)
15 ch[myID] ?? reply , , ;
16 rof (K);
17 critical section ();
18 requestCS[myID] = false;
19 byte N;
20 do
21 :: empty(deferred[myID]) −> break;
22 :: deferred [myID] ? N −> ch[N] ! reply, 0, 0
23 od
24 od
25 }
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1 proctype Receive( byte myID ) {
2 byte reqNum, source;
3 do ::
4 ch[myID] ?? request, source, reqNum;
5 highestNum[myID] =
6 (( reqNum > highestNum[myID]) −>

7 reqNum : highestNum[myID]);
8 atomic {
9 if

10 :: requestCS[myID] &&
11 ( (myNum[myID] < reqNum) ||
12 ( (myNum[myID] == reqNum) &&
13 (myID < source)
14 ) ) −>

15 deferred [myID] ! source
16 :: else −>

17 ch[source] ! reply , 0, 0
18 fi
19 }
20 od
21 }
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Algorithm 10.3: Ricart-Agrawala token-passing algorithm
boolean haveToken ← true in node 0, false in others
integer array[NODES] requested ← [0,. . . ,0]
integer array[NODES] granted ← [0,. . . ,0]
integer myNum ← 0
boolean inCS ← false

sendToken
if exists N such that requested[N] > granted[N]

for some such N
send(token, N, granted)
haveToken ← false
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Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)

Main
loop forever

p1: non-critical section
p2: if not haveToken
p3: myNum ← myNum + 1
p4: for all other nodes N
p5: send(request, N, myID, myNum)
p6: receive(token, granted)
p7: haveToken ← true
p8: inCS ← true
p9: critical section
p10: granted[myID] ← myNum
p11: inCS ← false
p12: sendToken
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Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)

Receive
integer source, reqNum
loop forever

p13: receive(request, source, reqNum)
p14: requested[source] ← max(requested[source], reqNum)
p15: if haveToken and not inCS
p16: sendToken
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Algorithm 10.4: Neilsen-Mizuno token-passing algorithm
integer parent ← (initialized to form a tree)
integer deferred ← 0
boolean holding ← true in the root, false in others

Main
loop forever

p1: non-critical section
p2: if not holding
p3: send(request, parent, myID, myID)
p4: parent ← 0
p5: receive(token)
p6: holding ← false
p7: critical section
p8: if deferred 6= 0
p9: send(token, deferred)
p10: deferred ← 0
p11: else holding ← true
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Algorithm 10.4: Neilsen-Mizuno token-passing algorithm (continued)

Receive
integer source, originator
loop forever

p12: receive(request, source, originator)
p13: if parent = 0
p14: if holding
p15: send(token, originator)
p16: holding ← false
p17: else deferred ← originator
p18: else send(request, parent, myID, originator)
p19: parent ← source
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Algorithm 11.1: Dijkstra-Scholten algorithm (preliminary)
integer array[incoming] inDeficit ← [0,. . . ,0]
integer inDeficit ← 0, integer outDeficit ← 0

send message
p1: send(message, destination, myID)
p2: increment outDeficit

receive message
p3: receive(message, source)
p4: increment inDeficit[source] and inDeficit

send signal
p5: when inDeficit > 1 or

(inDeficit = 1 and isTerminated and outDeficit = 0)
p6: E ← some edge E with inDeficit[E] 6= 0
p7: send(signal, E, myID)
p8: decrement inDeficit[E] and inDeficit

receive signal
p9: receive(signal, )
p10: decrement outDeficit
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Algorithm 11.2: Dijkstra-Scholten algorithm (env., preliminary)
integer outDeficit ← 0

computation
p1: for all outgoing edges E
p2: send(message, E, myID)
p3: increment outDeficit
p4: await outDeficit = 0
p5: announce system termination

receive signal
p6: receive(signal, source)
p7: decrement outDeficit
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Algorithm 11.3: Dijkstra-Scholten algorithm
integer array[incoming] inDeficit ← [0,. . . ,0]
integer inDeficit ← 0
integer outDeficit ← 0
integer parent ← −1

send message
p1: when parent 6= −1 // Only active nodes send messages
p2: send(message, destination, myID)
p3: increment outDeficit

receive message
p4: receive(message,source)
p5: if parent = −1
p6: parent ← source
p7: increment inDeficit[source] and inDeficit
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Algorithm 11.3: Dijkstra-Scholten algorithm (continued)

send signal
p8: when inDeficit > 1
p9: E ← some edge E for which

(inDeficit[E] > 1) or (inDeficit[E] = 1 and E 6= parent)
p10: send(signal, E, myID)
p11: decrement inDeficit[E] and inDeficit
p12: or when inDeficit = 1 and isTerminated and outDeficit = 0
p13: send(signal, parent, myID)
p14: inDeficit[parent] ← 0
p15: inDeficit ← 0
p16: parent ← −1

receive signal
p17: receive(signal, )
p18: decrement outDeficit



Partial Scenario for DS Algorithm
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Action node1 node2 node3 node4

1 ⇒ 2 (-1,[ ],0) (-1,[0,0],0) (-1,[0,0,0],0) (-1,[0],0)

2 ⇒ 4 (-1,[ ],1) (1,[1,0],0) (-1,[0,0,0],0) (-1,[0],0)

2 ⇒ 3 (-1,[ ],1) (1,[1,0],1) (-1,[0,0,0],0) (2,[1],0)

2 ⇒ 4 (-1,[ ],1) (1,[1,0],2) (2,[0,1,0],0) (2,[1],0)

1 ⇒ 3 (-1,[ ],1) (1,[1,0],3) (2,[0,1,0],0) (2,[2],0)

3 ⇒ 2 (-1,[ ],2) (1,[1,0],3) (2,[1,1,0],0) (2,[2],0)

4 ⇒ 3 (-1,[ ],2) (1,[1,1],3) (2,[1,1,0],1) (2,[2],0)

(-1,[ ],2) (1,[1,1],3) (2,[1,1,1],1) (2,[2],1)
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Algorithm 11.4: Credit-recovery algorithm (environment node)
float weight ← 1.0

computation
p1: for all outgoing edges E
p2: weight ← weight / 2.0
p3: send(message, E, weight)
p4: await weight = 1.0
p5: announce system termination

receive signal
p6: receive(signal, w)
p7: weight ← weight + w
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Algorithm 11.5: Credit-recovery algorithm (non-environment node)
constant integer parent ← 0 // Environment node
boolean active ← false
float weight ← 0.0

send message
p1: if active // Only active nodes send messages
p2: weight ← weight / 2.0
p3: send(message, destination, myID, weight)

receive message
p4: receive(message, source, w)
p5: active ← true
p6: weight ← weight + w

send signal
p7: when terminated
p8: send(signal, parent, weight)
p9: weight ← 0.0
p10: active ← false
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Algorithm 11.6: Chandy-Lamport algorithm for global snapshots
integer array[outgoing] lastSent ← [0, . . . , 0]
integer array[incoming] lastReceived ← [0, . . . , 0]
integer array[outgoing] stateAtRecord ← [−1, . . . , −1]
integer array[incoming] messageAtRecord ← [−1, . . . , −1]
integer array[incoming] messageAtMarker ← [−1, . . . , −1]

send message
p1: send(message, destination, myID)
p2: lastSent[destination] ← message

receive message
p3: receive(message,source)
p4: lastReceived[source] ← message



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 11.16

Algorithm 11.6: Chandy-Lamport algorithm (continued)

receive marker
p6: receive(marker, source)
p7: messageAtMarker[source] ← lastReceived[source]
p8: if stateAtRecord = [−1,. . . ,−1] // Not yet recorded
p9: stateAtRecord ← lastSent
p10: messageAtRecord ← lastReceived
p11: for all outgoing edges E
p12: send(marker, E, myID)

record state
p13: await markers received on all incoming edges
p14: recordState
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Action node1 node2

ls lr st rc mk ls lr st rc mk

[3,3] [3] [3]

1M⇒2 [3,3] [3,3] [3] [3]

1M⇒3 [3,3] [3,3] [3] [3]

2⇐1M [3,3] [3,3] [3] [3]

2M⇒3 [3,3] [3,3] [3] [3] [3] [3] [3]



Scenario for CL Algorithm (2)
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Action node3

ls lr st rc mk

3⇐2

3⇐2 [0,1]

3⇐2 [0,2]

3⇐2M [0,3]

3⇐1 [0,3] [0,3] [0,3]

3⇐1 [1,3] [0,3] [0,3]

3⇐1 [2,3] [0,3] [0,3]

3⇐1M [3,3] [0,3] [0,3]

[3,3] [0,3] [3,3]
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Algorithm 12.1: Consensus - one-round algorithm
planType finalPlan
planType array[generals] plan

p1: plan[myID] ← chooseAttackOrRetreat
p2: for all other generals G
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: finalPlan ← majority(plan)
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Algorithm 12.2: Consensus - Byzantine Generals algorithm
planType finalPlan
planType array[generals] plan, majorityPlan
planType array[generals, generals] reportedPlan

p1: plan[myID] ← chooseAttackOrRetreat
p2: for all other generals G // First round
p3: send(G, myID, plan[myID])
p4: for all other generals G
p5: receive(G, plan[G])
p6: for all other generals G // Second round
p7: for all other generals G’ except G
p8: send(G’, myID, G, plan[G])
p9: for all other generals G
p10: for all other generals G’ except G
p11: receive(G, G’, reportedPlan[G, G’])
p12: for all other generals G // First vote
p13: majorityPlan[G] ← majority(plan[G] ∪ reportedPlan[*, G])
p14: majorityPlan[myID] ← plan[myID] // Second vote
p15: finalPlan ← majority(majorityPlan)
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Data Stuctures for Leo and Zoe After First Round

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.14

Leo

general plans

Basil A

Leo R

Zoe A

majority A

Zoe

general plans

Basil R

Leo R

Zoe A

majority R



Data Stuctures for Leo After Second Round

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.15

Leo

general plans reported by majority

Basil Zoe

Basil A A A

Leo R R

Zoe A R R

majority R



Data Stuctures for Zoe After Second Round

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.16

Zoe

general plans reported by majority

Basil Leo

Basil A A A

Leo R R R

Zoe A A

majority A



Knowledge Tree About Zoe

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.17

Basil A

Basil A

Zoe A

����
HHHH

Leo R

Leo A
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Knowledge Tree About Loyal General Leo
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Knowledge Tree About Traitor Zoe
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Complexity of the Byzantine Generals Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.22

traitors generals messages

1 4 36

2 7 392

3 10 1790

4 13 5408



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.23

Algorithm 12.3: Consensus - flooding algorithm
planType finalPlan
set of planType plan ← { chooseAttackOrRetreat }
set of planType receivedPlan

p1: do t+ 1 times
p2: for all other generals G
p3: send(G, plan)
p4: for all other generals G
p5: receive(G, receivedPlan)
p6: plan ← plan ∪ receivedPlan
p7: finalPlan ← majority(plan)



Flooding Algorithm with No Crash:

Knowledge Tree About Leo
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Flooding Algorithm with Crash:

Knowledge Tree About Leo (1)
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Flooding Algorithm with Crash:

Knowledge Tree About Leo (2)
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Algorithm 12.4: Consensus - King algorithm
planType finalPlan, myMajority, kingPlan
planType array[generals] plan
integer votesMajority

p1: plan[myID] ← chooseAttackOrRetreat

p2: do two times
p3: for all other generals G // First and third rounds
p4: send(G, myID, plan[myID])
p5: for all other generals G
p6: receive(G, plan[G])
p7: myMajority ← majority(plan)
p8: votesMajority ← number of votes for myMajority
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Algorithm 12.4: Consensus - King algorithm (continued)

p9: if my turn to be king // Second and fourth rounds
p10: for all other generals G
p11: send(G, myID, myMajority)
p12: plan[myID] ← myMajority

else
p13: receive(kingID, kingPlan)
p14: if votesMajority ¿ 3
p15: plan[myID] ← myMajority

else
p16: plan[myID] ← kingPlan

p17: finalPlan ← plan[myID] // Final decision



Scenario for King Algorithm:

First King Loyal General Zoe (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.29

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R R R R 3

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R A R A 3

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R A R A 3

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

A A R R R R 3



Scenario for King Algorithm:

First King Loyal General Zoe (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.30

Basil

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

John

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

Leo

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R R

Zoe

Basil John Leo Mike Zoe myMajority votesMajority kingPlan

R



Scenario for King Algorithm:

First King Loyal General Zoe (3)
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Scenario for King Algorithm:

First King Traitor Mike (1)
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Scenario for King Algorithm:

First King Traitor Mike (2)
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Scenario for King Algorithm:

First King Traitor Mike (3)
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Byzantine Generals and King Algorithms

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.35

traitors generals messages

1 4 36

2 7 392

3 10 1790

4 13 5408

traitors generals messages

1 5 48

2 9 240

3 13 672

4 17 1440



Impossibility with Three Generals (1)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.36

Zoe X

JohnLeo
x1, . . . , xn

Leo
u1, . . . , um

�
��

@
@@

Leo Y

JohnZoe
y1, . . . , yn

Zoe
v1, . . . , vm

�
��

@
@@



Impossibility with Three Generals (2)

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.37

John

Zoe
x1, . . . , xn

Zoe
y1, . . . , yn

Leo
x1, . . . , xn

Leo
y1, . . . , yn

�
��

@
@@



Exercise for Byzantine Generals Algorithm

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 12.38

Zoe

general plan reported by majority

Basil John Leo

Basil R A R ?

John A R A ?

Leo R R R ?

Zoe A A

?



Release Time, Execution Time and

Relative Deadline

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.1

r

D� -

e� -



Periodic Task

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.2

r r r r

p� - p� - p� -



Deadline is a Multiple of the Period

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.3

D� -

r e� -



Architecture of Ariane Control System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.4

Sensors INS
Main

Computer Actuators- - -



Synchronization Window in the Space Shuttle

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.5

0 225 240 1000



Synchronous System

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Sample

Compute

Control

Telemetry

Self-test

T1 T2 T1 T2



Synchronous System Scheduling Table

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.7

0 1 2 3 4

Sample Compute Control Telemetry 1 Self-test

5 6 7 8 9

Sample Compute Control Telemetry 2 Telemetry 1

10 11 12 13 14

Sample Compute Control Telemetry 2 Self-test



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.8

Algorithm 13.1: Synchronous scheduler
taskAddressType array[0..numberFrames-1] tasks ←

[task address,. . . ,task address]
integer currentFrame ← 0

p1: loop
p2: await beginning of frame
p3: invoke tasks[currentFrame]
p4: increment currentFrame modulo numberFrames
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Algorithm 13.2: Producer-consumer (synchronous system)
queue of dataType buffer1, buffer2

sample compute control
dataType d dataType d1, d2 dataType d

p1: d ← sample q1: d1← take(buffer1) r1: d ← take(buffer2)
p2: append(d, buffer1) q2: d2← compute(d1) r2: control(d)
p3: q3: append(d2,

buffer2)
r3:
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Algorithm 13.3: Asynchronous scheduler
queue of taskAddressType readyQueue ← . . .
taskAddressType currentTask

loop forever
p1: await readyQueue not empty
p2: currentTask ← take head of readyQueue
p3: invoke currentTask



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.12

Algorithm 13.4: Preemptive scheduler
queue of taskAddressType readyQueue ← . . .
taskAddressType currentTask

loop forever
p1: await a scheduling event
p2: if currentTask.priority ¡ highest priority of a task on readyQueue
p3: save partial computation of currentTask and place on readyQueue
p4: currentTask ← take task of highest priority from readyQueue
p5: invoke currentTask
p6: else if currentTask’s timeslice is past and

currentTask.priority = priority of some task on readyQueue
p7: save partial computation of currentTask and place on readyQueue
p8: currentTask ← take a task of the same priority from readyQueue
p9: invoke currentTask
p10: else resume currentTask



Preemptive Scheduling

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Telemetry

Communications

Data management

Watchdog



Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.14

Algorithm 13.5: Watchdog supervision of response time
boolean ran ← false

data management watchdog
loop forever loop forever

p1: do data management q1: await ninth frame
p2: ran ← true q2: if ran is false
p3: rejoin readyQueue q3: notify response-time over-

flow
p4: q4: ran ← false
p5: q5: rejoin readyQueue
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Algorithm 13.6: Real-time buffering - throw away new data
queue of dataType buffer ← empty queue
sample compute

dataType d dataType d
loop forever loop forever

p1: d ← sample q1: await buffer not empty
p2: if buffer is full do nothing q2: d ← take(buffer)
p3: else append(d,buffer) q3: compute(d)
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Algorithm 13.7: Real-time buffering - overwrite old data
queue of dataType buffer ← empty queue
sample compute

dataType d dataType d
loop forever loop forever

p1: d ← sample q1: await buffer not empty
p2: append(d, buffer) q2: d ← take(buffer)
p3: q3: compute(d)
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1 mtype = { idle, blocked, nonCS, CS, long };
2

3 mtype data = idle, comm = idle, telem = idle;
4

5 #define ready(p) (p != idle && p != blocked)
6

7 active proctype Data() {
8 do
9 :: data = nonCS;

10 enterCS(data);
11 exitCS(data);
12 data = idle ;
13 od
14 }
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1 active proctype Comm() provided (!ready(data)) {
2 do
3 :: comm = long;
4 comm = idle;
5 od
6 }
7

8 active proctype Telem() provided (!ready(data) && !ready(comm)) {
9 do

10 :: telem = nonCS;
11 enterCS(telem);
12 exitCS(telem);
13 telem = idle ;
14 od
15 }
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1 bit sem = 1;
2

3 inline enterCS(state ) {
4 atomic {
5 if
6 :: sem == 0 −>

7 state = blocked;
8 sem != 0;
9 :: else −>

10 fi ;
11 sem = 0;
12 state = CS;
13 }
14 }
15

16 inline exitCS(state ) {
17 atomic {
18 sem = 1;
19 state = idle
20 }
21 }



Priority Inheritance in Promela

Principles of Concurrent and Distributed Programming. Slides c© 2006 by M. Ben-Ari. Slide – 13.24

1 #define inherit (p) (p == CS)
2

3 active proctype Data() {
4 do
5 :: data = nonCS;
6 assert( ! (telem == CS && comm == long) );
7 enterCS(data); exitCS(data);
8 data = idle ;
9 od

10 }
11

12 active proctype Comm()
13 provided (! ready(data) && !inherit (telem))
14 { ... }
15

16 active proctype Telem()
17 provided (! ready(data) && !ready(comm) || inherit(telem))
18 { ... }
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Algorithm 13.8: Simpson’s four-slot algorithm
dataType array[0..1,0..1] data ← default initial values
bit array[0..1] currentSlot ← { 0, 0 }
bit lastWrittenPair ← 1, lastReadPair ← 1

writer
bit writePair, writeSlot
dataType item
loop forever

p1: item ← produce
p2: writePair ← 1− lastReadPair
p3: writeSlot ← 1− currentSlot[writePair]
p4: data[writePair, writeSlot] ← item
p5: currentSlot[writePair] ← writeSlot
p6: lastWrittenPair ← writePair
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Algorithm 13.8: Simpson’s four-slot algorithm (continued)

reader
bit readPair, readSlot
dataType item
loop forever

p7: readPair ← lastWrittenPair
p8: lastReadPair ← readPair
p9: readSlot ← currentSlot[readPair]
p10: item ← data[readPair, readSlot]
p11: consume(item)
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Algorithm 13.9: Event signaling
binary semaphore s ← 0

p q
p1: if decision is to wait for event q1: do something to cause event
p2: wait(s) q2: signal(s)
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1 package Ada.Synchronous Task Control is
2 type Suspension Object is limited private ;
3 procedure Set True(S : in out Suspension Object);
4 procedure Set False(S : in out Suspension Object);
5 function Current State (S : Suspension Object)
6 return Boolean;
7 procedure Suspend Until True(
8 S : in out Suspension Object);
9 private

10 −− not specified by the language
11 end Ada.Synchronous Task Control;
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Algorithm 13.10: Suspension object - event signaling
Suspension Object SO ← (false by default)

p q
p1: if decision is to wait for event q1: do something to cause event
p2: Suspend Until True(SO) q2: Set True(SO)
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Algorithm 13.11: Periodic task
constant integer period ← . . .

integer next ← currentTime
loop forever

p1: delay next − currentTime
p2: compute
p3: next ← next + period
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A v(A1) v(A2) v(A)

¬A1 T F
¬A1 F T

A1 ∨A2 F F F
A1 ∨A2 otherwise T

A1 ∧A2 T T T
A1 ∧A2 otherwise F

A1→ A2 T F F
A1→ A2 otherwise T

A1↔ A2 v(A1) = v(A2) T
A1↔ A2 v(A1) 6= v(A2) F
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p3 p5 flag = 1 flag = 0
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Algorithm 2.1: Verification example
integer x1, integer x2
integer y1 ← 0, integer y2 ← 0, integer y3

p1: read(x1,x2)
p2: y3 ← x1
p3: while y3 6= 0
p4: if y2+1 = x2
p5: y1 ← y1 + 1
p6: y2 ← 0
p7: else
p8: y2 ← y2 + 1
p9: y3 ← y3 − 1
p10: write(y1,y2)
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1 −−# main program;
2 procedure Divide(X1,X2: in Integer ; Q,R : out Integer )
3 −−# derives Q, R from X1,X2;
4 −−# pre (X1 >= 0) and (X2 > 0);
5 −−# post (X1 = Q ∗ X2 + R) and (X2 > R) and (R >= 0);
6 is
7 N: Integer ;
8 begin
9 Q := 0; R := 0; N := X1;

10 while N /= 0
11 −−# assert (X1 = Q∗X2+R+N) and (X2 > R) and (R >= 0);
12 loop
13 if R+1 = X2 then
14 Q := Q + 1; R := 0;
15 else
16 R := R + 1;
17 end if ;
18 N := N − 1;
19 end loop;
20 end Divide;
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1 procedure Divide(X1,X2: in Integer ; Q,R : out Integer ) is
2 N: Integer ;
3 begin
4 −− pre (X1 >= 0) and (X2 > 0);
5 Q := 0; R := 0; N := X1;
6 while N /= 0
7 −− assert (X1 = Q∗X2+R+N) and (X2 > R) and (R >= 0);
8 loop
9 if R+1 = X2 then Q := Q + 1; R := 0;

10 else R := R + 1;
11 end if ;
12 N := N − 1;
13 end loop;
14 −− post (X1 = Q ∗ X2 + R) and (X2 > R) and (R >= 0);
15 end Divide;
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Precondition to assertion:

(X1 ≥ 0) ∧ (X2 > 0)→
(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0).

Assertion to postcondition:

(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0) ∧ (N = 0)→
(X1 = Q ·X2 +R) ∧ (X2 > R) ∧ (R ≥ 0).

Assertion to assertion by then branch:

(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0) ∧ (R+ 1 = X2)→
(X1 = Q′ ·X2 +R′ +N ′) ∧ (X2 > R′) ∧ (R′ ≥ 0).

Assertion to assertion by else branch:

(X1 = Q ·X2 +R+N) ∧ (X2 > R) ∧ (R ≥ 0) ∧ (R+ 1 6= X2)→
(X1 = Q′ ·X2 +R′ +N ′) ∧ (X2 > R′) ∧ (R′ ≥ 0).
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n producer consumer Buffer notEmpty

1 append(d, Buffer) wait(notEmpty) [ ] 0

2 signal(notEmpty) wait(notEmpty) [1] 0

3 append(d, Buffer) wait(notEmpty) [1] 1

4 append(d, Buffer) d ← take(Buffer) [1] 0

5 append(d, Buffer) wait(notEmpty) [ ] 0
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Algorithm 3.1: Barrier synchronization
global variables for synchronization

loop forever
p1: wait to be released
p2: computation
p3: wait for all processes to finish their computation
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Algorithm 3.2: Gale-Shapley algorithm for stable marriage
integer list freeMen ← {1,. . . ,n}
integer list freeWomen ← {1,. . . ,n}
integer pair-list matched ← ∅
integer array[1..n, 1..n] menPrefs ← . . .
integer array[1..n, 1..n] womenPrefs ← . . .
integer array[1..n] next ← 1

p1: while freeMen 6= ∅, choose some m from freeMen
p2: w ← menPrefs[m, next[m]]
p3: next[m] ← next[m] + 1
p4: if w in freeWomen
p5: add (m,w) to matched, and remove w from freeWomen
p6: else if w prefers m to m’ // where (m’,w) in matched
p7: replace (m’,w) in matched by (m,w), and remove m’ from freeMen
p8: else // w rejects m, and nothing is changed
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Cycles in a State Diagram
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