Principles of Concurrent and
Distributed Programming

(Second Edition)

Addison-Wesley, 2006

Mordechai (Moti) Ben-Ari

http://www.weizmann.ac.il/sci-tea/benari/

http://www.weizmann.ac.il/sci-tea/benari/

Computer Time

-~
I I I I I I

0 100 200 300 400 500
time (nanoseconds) —

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 1.2

Human Time

I I I I I I
0 100 200 300 400 500

time (seconds) —

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 1.3

Concurrency in an Operating System

/0 —

Computation

ot

start /O end I/O

time —

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 1.4

Interleaving as Choosing Among Processes

p3, ...
+cpp

pl, rl, p2, gl <«— g2, ...
+cpq

2, ...
+Cp’l“

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.1

Possible Interleavings

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.2

Algorithm 2.1: Trivial concurrent program

integer n <— 0

p

q

pl:

integer k1 <— 1
n < kl

integer k2 <— 2
ql: n < k2

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.3

N

Algorithm 2.2: Trivial sequential program
integer n <— 0

integer k1 <— 1
integer k2 < 2
pl: n < kil
p2: n < k2

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.4

State Diagram for a Sequential Program

pl: n < kl\ p2: n < kQ\ (end)
kl=1,k2 =2 Bl =1,k2 =2 Bl =1,k2 =2
n=7_0 n=1 n =2

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.5

State Diagram for a Concurrent Program

|

pl: n « kil
ql: n < k2
kl=1,k2 =2
n=>0
(end) pl: n «+ ki
ql: n < k2 (end)
kl=1,k2 =2 kl=1,k2 =2
nll 7112
(end) (end)
(end)) C (end)
kl=1,k2 =2 kl1=1,k2 =2
n =2 n=1

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.6

Scenario for a Concurrent Program

Processp | Processq | n | kl | k2
pl: n—kl | ql: nk2 |0 | 1 | 2
(end) ql: nk2 | 1| 1 | 2
(end) (end) 211] 2

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.7

Multitasking System

s

R,
e
e

- :

- :

i . R. . .
Operating e Program 1 |e Program 2 [e Program 3 |e Program 4
System |g- g g' g

R.
e CPU
g

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.8

Multiprocessor Computer

Global
Memory
CPU CPU CPU
Local Local Local
Memory Memory Memory

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.9

Inconsistency Caused by Overlapped Execution

N

Global memory

0000 0000 0000 0011

7 ™~

0000 0000 0000 0001 0000 0000 0000 0010

Local memory Local memory

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.10

Distributed Systems Architecture

Node ’ d Node Node |« Node
yy yy yy

Y Y Y

Node - . Node Node > Node

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.11

Algorithm 2.3: Atomic assignment statements
integer n <— 0

P q
pl: n<+ n—+1 ql: n< n+1

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.12

Scenario for Atomic Assighment Statements

N

Process p Process g n
pl: ncn+1 | ql: n<n+1 | 0
(end) ql: n<n+1 | 1
(end) (end) 2
Process p Process g n
pl: n<n+1 | ql: n<n+1 | 0
pl: nn+1 | (end) 1
(end) (end) 2

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

N

Slide — 2.13

N

Algorithm 2.4: Assignment statements with one global reference
integer n <— 0

P q
integer temp integer temp
pl: temp <—n ql: temp <—n
p2: n < temp + 1 q2: n < temp + 1

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.14

Correct Scenario for Assignment Statements

N

Process p Process q n | p.temp | q.temp
pl: temp<«n ql: temp<—n 0 ? ?
p2: n<—temp+1 | ql: temp<—n 0 0 ?
(end) ql: temp<—n 1 0 ?
(end) q2: n+temp+1 | 1 0 1
(end) (end) 2 0 1

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

N

Slide — 2.15

Incorrect Scenario for Assignment Statements

N

Process p Process g n | p.temp | g.temp
pl: temp<«n ql: temp<—n 0 ? ?
p2: n<temp+1 | ql: temp<—n 0 0 ?
p2: n<temp+1 | g2: n<temp+1 | O 0 0
(end) q2: n+temp+1 | 1 0 0
(end) (end) 1 0 0

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

N

Slide — 2.16

N

Algorithm 2.5: Stop the loop A

integer n <— 0
boolean flag < false

P q
pl: while flag = false ql: flag < true
p2: n<1-—n q2:

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.17

N

Algorithm 2.6: Assignment statement for a register machine

integer n <— 0

p

q

pl: load R1,n
p2: add R1,#1
p3: store R1,n

ql: load R1,n
q2: add R1,#1
q3: store R1,n

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.18

Register Machine

Memory Memory Memory
ol --- ol - o1
Load l T Store
0 1 1
Registers Registers Registers

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.19

Scenario for a Register Machine

Process p Process g n| p.R1 | gq.R1
pl: load R1,n ql: load R1,n 0 ? ?
p2: add R1,#1 | ql: load R1,n 0 0 ?
p2: add R1,#1 | q2: add R1,#1 | 0 0 0
p3: store R1,n g2: add R1,#1 | O 1 0
p3: store R1,n | g3: store R1,n 0 1 1
(end) q3: store R1,n | 1| 1 1
(end) (end) 1| 1 1

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.20

N

Algorithm 2.7: Assignment statement for a stack machine

integer n <— 0

P q
pl: push n ql: push n
p2: push #1 q2: push #1
p3: add q3: add
p4: pop n gq4: pop n

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.21

Stack Machine

Memory Memory Memory
. lol - . lol - S T
Push \ \POP
. ol 1 . 1 . 1
Stack Stack Stack

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.22

Algorithm 2.8: Volatile variables

integer n <— 0

p q
integer locall, local2 integer local
pl: n < some expression ql: local «+—n + 6
p2: computation not using n q2:
p3: locall <~ (n +5) = 7 q3:
p4: local2 < n + 5 q4:
p5: n < locall * local2 q5:

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.23

Algorithm 2.9: Concurrent counting algorithm
integer n <— 0
P q
integer temp integer temp
pl: do 10 times ql: do 10 times
p2: temp < n q2: temp <—n
p3: n < temp + 1 q3: n < temp + 1

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.24

Concurrent Program in Pascal
1 program count;

2 var n: integer = 0;

3

4 procedure p;

5 var temp, i: integer;

6 begin

7 for i :=1to 10 do

8 begin

9 temp :=n; n :=temp + 1
10 end

11 end;

12

13 procedure q;

14 wvar temp, i: integer;

15 begin

16 for i :=1to 10 do

17 begin

18 temp :=n; n :=temp + 1
19 end

20 end;

21

22 begin

23 cobegin p; q coend;

24 writeln (' The value of nis ', n)

25 end. Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.25

Concurrent Program in C

1 int n=0;

2

3 wvoid p() {

4 int temp, i;

5 for (i =0;i <10;i++) {
6 temp = n;

7 n = temp + 1;
8

9 }

10

11 void q() {

12 int temp, i;
13 for (i =0;i <10;i++) {

14 temp = n;

15 n = temp + 1;
16 }

17}

18

19 void main() {

20 cobegin { p(); q(); }

21 cout << "The valueof nis " << n << "\n";
22}

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.26

Concurrent Program in Ada

1 with Ada.Text_lO; use Ada.Text_IO;
2 procedure Count is

3 N: Integer := 0;

4 pragma Volatile(N);

5

6 task type Count_Task;
7 task body Count_Task is
8 Temp: Integer;

9 begin

10 for | in 1..10 loop
11 Temp := N;

12 N := Temp + 1;
13 end loop;

14 end Count_Task;

15

16 begin

17 declare

18 P, Q: Count_Task:
19 begin

20 null ;

21 end;

22 Put_Line(" The value of N is " & Integer’' Image(N));

23 end Count;
Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.27

Concurrent Program in Java

1 class Count extends Thread {

2 static volatile int n = 0;

3

4 public void run() {

5 int temp;

6 for (int i =0;i <10;i++) {

I temp = n;

8 n = temp + 1;

9 }

10 }

11

12 public static void main(String[] args) {
13 Count p = new Count();

14 Count g = new Count();

15 p.start ();

16 q.start ();

17 try {

18 p.join ();

19 q.join ();

20 }

21 catch (InterruptedException e) { }

22 System.out.println (" The value of nis " + n);
23 }

24 } Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.28

Concurrent Program in Promela

1 #include "for.h"

2 #define TIMES 10

3 byte n = 0;

4

5 proctype P() {

6 byte temp;

7 for (i,1, TIMES)
8 temp = n;

9 n=temp + 1
10 rof (i)

11}

12

13 init {

14 atomic {

15 run P();

16 run P()

17 }

18 (_nrpr == 1);
19 printf ("MSC: The value is %d\n", n)
20 }

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.29

Frog Puzzle

CHRCHCRCHNORCRONGEG

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.30

One Step of the Frog Puzzle

CHRCHCRCNCECRONGEG

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.31

Final State of the Frog Puzzle

CRCECRCGEONCRCNONG

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.32

(Partial) State Diagram for the Frog Puzzle

A/(I\/lMl_lFF)\A
(U MMFF }¢——M LI MFF)
’ l
A/(l\/IFMuF)\A
A/(I\/IFI_IMF)\A (MFMF L)
(L FMMF) (MFFM U) (MF&FM)
/ — e
Y & a
(Fu MMF) (MFFU M) (LUFMFM)
X X
(FuMFM)
Y
(FEFMU M)
Y
(FFLu MM)
X

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.33

N

Algorithm 2.10: Incrementing and decrementing

integer n <— 0

P q
integer temp integer temp
pl: do K times ql: do K times
p2: temp < n q2: temp <—n
p3: n < temp + 1 q3: n < temp — 1

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.34

Algorithm 2.11: Zero A

boolean found

p

q

integer 1 < 0

- found <« false
- while not found

<1+ 1
found < f(i)

integer j < 1
ql: found < false
q2: while not found
q3: j+—J—1
=0 q4: found < f(j) =0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.35

Algorithm 2.12: Zero B
boolean found < false
p q
integer 1 < 0 integer | < 1
pl: while not found ql: while not found
p2: 1 <1+ 1 q2: j+—J—1
p3: found < f(i) = 0 q3: found < f(j) = 0

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.36

Algorithm 2.13: Zero C

boolean found « false

p q
integer 1 < 0 integer | < 1
pl: while not found ql: while not found
p2: 1 <1+ 1 q2: j+—J—1
p3: if f(i) =0 q3: if f(j) =0
p4: found < true q4: found < true

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.37

Algorithm 2.14: Zero D

boolean found <« false
integer turn < 1

p

q

integer 1 < 0
while not found
await turn = 1
turn < 2
l— 1+ 1
if f(i) =0
found < true

q3:
q4-:
q5:

Integer | < 1

ql: while not found
q2:

await turn = 2

turn < 1
J«<J1-1
if f(j) =0

found < true

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.38

Algorithm 2.15: Zero E

boolean found <« false
integer turn < 1

P q
Integer 1 < 0 Integer | < 1
pl: while not found ql: while not found
p2: await turn =1 q2: await turn = 2
turn < 2 turn < 1
p3: 1141 q3: J—J—1
p4: if f(i) =0 q4: if f(J) =0
p5: found < true q5: found < true
p6: turn < 2 q6: turn <« 1

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.39

N

Algorithm 2.16: Concurrent algorithm A
integer array [1..10] C < ten distinct initial values
integer array [1..10] D
integer myNumber, count
pl: myNumber < C]i]
p2: count <— number of elements of C less than myNumber
p3: D[count + 1] < myNumber

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.40

Algorithm 2.17: Concurrent algorithm B
integer n <— 0
P q
pl: while n < 2 ql: n< n+1
p2: write(n) q2: n<n+1

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.41

Algorithm 2.18: Concurrent algorithm C
integer n <— 1

P q
pl: whilen <1 ql: whilen >=0
p2: n<n-+1 q2: n<n-—1

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.42

N

Algorithm 2.19: Stop the loop B
integer n <— 0
boolean flag < false

P q
pl: while flag = false ql: while flag = false
p2: n<1-—n q2: ifn=20
p3: q3: flag < true

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.43

N

Algorithm 2.20: Stop the loop C

integer n <— 0
boolean flag < false

p

q

p2: n<1-—n

pl: while flag = false

q2: flag < true

ql: while n =0 // Do nothing

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 2.44

N

Algorithm 2.21: Welfare crook problem
integer array[0..N] a, b, ¢ <— ... (as required)
integeri < 0, j < 0, k<0

loop
pl: If condition-1
p2: <1+ 1
p3: else if condition-2
p4: J+—J)+1
p5: else if condition-3
p6: k+— k+1

else exit loop

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 2.45

Algorithm 3.1: Critical section problem
global variables
P q
local variables local variables
loop forever loop forever
non-critical section non-critical section
preprotocol preprotocol
critical section critical section
postprotocol postprotocol

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.1

Critical Section

v /R

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.2

N

Algorithm 3.2: First attempt

Integer turn <— 1

p q
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: await turn =1 q2: await turn = 2
p3: critical section q3: critical section
p4: turn < 2 q4: turn < 1

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.3

N

Algorithm 3.3: History in a sequential algorithm
integer a <— 1, b < 2
pl: Millions of statements
p2: a < (a+b)*5
p3:

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.4

N

Algorithm 3.4: History in a concurrent algorithm
integer a <— 1, b < 2

p q
pl: Millions of statements ql: Millions of statements
p2: a < (a+b)*b q2: b < (a+b)*5
p3: ... q3:

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.5

N

First States of the State Diagram

o—(pLal1) ><p1,q2,lb
(v2a1) <p2,q2,lb

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.6

State Diagram for the First Attempt

=p2,94,2
Princip & oncurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.7

Alternate Layout for First Attempt (Not in book)

N

p2,92,2

p4,q2,1 p2,93,2 p2,q94,2

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.8

N

Algorithm 3.5: First attempt (abbreviated)
Integer turn <— 1

p q
loop forever loop forever
pl: await turn =1 ql: await turn = 2
p2: turn < 2 q2: turn <« 1

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.9

State Diagram for the Abbreviated First Attempt

pl: await turn=1,
gl: await turn=2,
turn = 2

pl: await turn=1,
q2: turn<1,
turn = 2

N

B

pl: await turn=1,
gl: await turn=2,
turn = 1

p2: turn<-2,
ql: await turn=2,
turn = 1

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 3.10

Fragment of the State Diagram for the First Attempt

pl: NCS, \ pl: NCS,

ql: NCS, q2: await turn=2,
turn = 2 turn = 2

Y Y

p2: await turn=1,
g2: await turn=2,
turn = 2

p2: await turn=1,
ql: NCS,
turn = 2

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.11

Algorithm 3.6: Second attempt

boolean wantp < false, wantq < false

p

q

loop forever
non-critical section
await wantq = false
wantp < true
critical section
wantp < false

loop forever
non-critical section
await wantp = false
wantq < true
critical section
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.12

N

Algorithm 3.7: Second attempt (abbreviated)

boolean wantp < false, wantq < false

P q
loop forever loop forever
pl: await wantq = false ql: await wantp = false
p2: wantp <— true q2: wantq <— true
p3: wantp < false q3: wantq < false

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.13

Fragment of State Diagram for the Second Attempt

N

pl: await !wantq, \—>/ p2: wantp<—true, p2: wantp<—true,
ql: await !wantp, ql: await !wantp, g2: wantg<—true,
false, false false, false false, false

T

p3: wantp<—false,
g2: wantg<—true,
true,false

p3: wantp<—false,

q3: wantq<—false,
true,true

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.14

Scenario: Mutual Exclusion Does Not Hold

N

Process p Process g wantp | wantq
pl: await wantg=false | ql: await wantp=false false | false
p2: wantp<true ql: await wantp=false | false | false
p2: wantp<true q2: wantq<—true false | false
p3: wantp<—false q3: wantq<true true | false
p3: wantp<false q3: wantqg<—false true true

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 3.15

Algorithm 3.8: Third attempt

boolean wantp < false, wantq < false

p

q

loop forever
non-critical section
wantp < true
await wantq = false
critical section
wantp < false

loop forever
non-critical section
wantq < true
await wantp = false
critical section
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.16

Scenario Showing Deadlock in the Third Attempt

N

Process p Process g wantp | wantq
pl: non-critical section | ql: non-critical section false | false
p2: wantp<true ql: non-critical section | false | false
p2: wantp<true q2: wantq<—true false | false
p3: await wantq=false gq2: wantq<true true | false
p3: await wantq=false q3: await wantp=false true true

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 3.17

N

Fragment of the State Diagram Showing Deadlock

p2: wantp<—true, \—> p3: await !wantq,
g2: wantq<—true, g2: wantq<—true,
alse, false true,false

!

p3: await !wantq,
q3: await !wantp,
true,true

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.18

Algorithm 3.9: Fourth attempt

boolean wantp < false, wantq < false

p

q

loop forever
non-critical section
wantp < true
while wantq
wantp < false
wantp <— true
critical section
wantp < false

loop forever
non-critical section
wantq < true
while wantp
wantq < false
wantq < true
critical section
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.19

Cycle in the State Diagram for the Fourth Attempt

!

p3: while wanﬁ
q3: while wantp,
true,true

)\

N

. wantp<false)

. wantqg<—false,
true,true

p3: while wanﬁ
q4: wantqg<false,

true,true

Y
5: wantp<—true)\ DH: wantp<—true)\ . wantp<—false)
q3: while wantp, gb: wantqg<—true, . wantqg<—true,
false,true false, false true, false

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.20

Algorithm 3.10: Dekker’s algorithm

boolean wantp < false, wantq < false

Integer turn < 1

p

q

loop forever
non-critical section
wantp < true
while wantq
if turn = 2
wantp < false
await turn = 1
wantp < true
critical section
turn < 2
wantp < false

loop forever
non-critical section
wantq < true
while wantp
if turn = 1
wantq < false
await turn = 2
wantq <— true
critical section
turn < 1
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.21

N

Algorithm 3.11: Critical section problem with test-and-set
integer common < 0
P q

integer locall integer local2

loop forever loop forever
pl: non-critical section ql: non-critical section

repeat repeat
p2: test-and-set(q2: test-and-set(
common, locall) common, local2)

p3: until locall =0 q3: until local2 = 0
p4: critical section q4: critical section
p5: common < 0 q5: common < 0

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.22

N

Algorithm 3.12: Critical section problem with exchange

integer common < 1

P q

integer locall <~ 0 integer local2 < 0

loop forever loop forever
pl: non-critical section ql: non-critical section

repeat repeat
p2: exchange(common, lo- | q2: exchange(common, lo-
call) cal2)
p3: until locall =1 q3: until local2 =1
p4: critical section q4: critical section
p5: exchange(common, locall) q5: exchange(common, local2)
Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.23

Algorithm 3.13: Peterson’s algorithm

boolean wantp < false, wantq < false

integer last < 1

p

q

loop forever
non-critical section
wantp < true
last < 1
await wantq = false or
last = 2
critical section
wantp < false

loop forever
non-critical section
wantq < true
last « 2
await wantp = false or
last =1
critical section
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.24

N

Algorithm 3.14: Manna-Pnueli algorithm
integer wantp <— 0, wantq < 0
P q
loop forever loop forever
pl: non-critical section ql: non-critical section
p2: if wantq = —1 q2: if wantp = —1
wantp < —1 wantq < 1
else wantp < 1 else wantq <+ —1
p3: await wantq # wantp q3: await wantp #* — wantq
p4: critical section q4: critical section
p5: wantp < 0 q5: wantq < 0

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.25

Algorithm 3.15: Doran-Thomas algorithm

boolean wantp < false, wantq < false

Integer turn < 1

p

q

loop forever
non-critical section
wantp < true
if wantq
if turn = 2
wantp < false
await turn =1
wantp < true
await wantq = false
critical section
wantp < false
turn < 2

loop forever
non-critical section
wantq < true
If wantp
if turn = 1
wantq < false
await turn = 2
wantq <— true
await wantp = false
critical section
wantq < false
turn < 1

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.26

Algorithm 4.1: Third attempt

boolean wantp < false, wantq < false

p

q

loop forever
non-critical section
wantp < true
await wantq = false
critical section
wantp < false

loop forever
non-critical section
wantq < true
await wantp = false
critical section
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 4.1

OA

true

false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.2

CA

true

false

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 4.3

Duality: - OA

true

false

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 4.4

Duality: - <A

true

false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.5

OCOA

true

false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.6

O0CA

true

false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.7

AUB

true

false ——

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.8

COA1L AN COA2

A]. , A2 Skz Skl
} |
true
false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.9

OCA1 ANOOCA2

Al,A2

true

false —

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 4.10

Overtaking: iry, —

P q

CS

try

ncs

(Tesq) W (esqg) W (mesg) W (csp)

|
I
o 1 2 3 4 5 6 7 8 9 10 11 12 13

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 4.11

Algorithm 4.2: Dekker’s algorithm

boolean wantp < false, wantq < false

Integer turn < 1

p

q

loop forever
non-critical section
wantp < true
while wantq
if turn = 2
wantp < false
await turn = 1
wantp < true
critical section
turn < 2
wantp < false

loop forever
non-critical section
wantq < true
while wantp
if turn = 1
wantq < false
await turn = 2
wantq <— true
critical section
turn < 1
wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 4.12

Dekker’s Algorithm in Promela

1 bool wantp = false, wantq = false;

2 byte turn = 1;

3

4 active proctype p() {

5 do :: wantp = true;

6 do :: !'wantq —> break;

7 else —>

8 if = (turn ==1)

9 (turn == 2) —>
10 wantp = false; (turn == 1); wantp = true
11 fi
12 od:;

13 printf ("MSC: p in CS\n") ;
14 turn = 2; wantp = false

15 od

16 }

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 4.13

Specifying Correctness in Promela

1 byte critical = 0;

2

3 bool PinCS = false;

4

5 #tdefine nostarve PinCS /x LTL claim <> nostarve */
6

7 active proctype p() {

8 do ::

9 /* preprotocol x/

10 critical ++;

11 assert (critical <= 1);
12 PinCS = true;

13 critical ——;

14 /* postprotocol */

15 od

16 }

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.14

LTL Translation to Never Claims

1 never { /% !(<>nostarve) x/

2 accept_init :

3 TO.init:

4 if

5 (! ((nostarve))) —> goto TO.init

6 fi ;

7}

38

9 never { /x !([]J<>nostarve) x/

10 TO.init:

11 if

12 2 (! ((nostarve))) —> goto accept_S4
13 2 (1) —> goto TO.init

14 fi ;

15 accept_S4:

16 if

17 (! ((nostarve))) —> goto accept_S4
18 fi ;

19 }

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 4.15

N

Algorithm 5.1: Bakery algorithm (two processes)
integer np <— 0, nq < 0
P q
loop forever loop forever

pl: non-critical section ql: non-critical section
p2: np<nq+ 1 q2: ng < np + 1
p3: await nq = 0 or np < nq q3: await np = 0 or nq < np
p4: critical section q4: critical section
p5: np < 0 q5: nqg < 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.1

N

Algorithm 5.2: Bakery algorithm (/N processes)
integer array[1l..n] number < [0,...,0]
loop forever
pl: non-critical section
p2: number[i] <— 1 + max(number)
p3: for all other processes |j
p4: await (number[j] = 0) or (number[i] < number]j])
p5: critical section
p6: number]|i] < 0

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.2

N

Algorithm 5.3: Bakery algorithm without atomic assignment

boolean array[1..n] choosing < [false,. .. false]
integer array[l..n] number < [0,...,0]

loop forever

non-critical section
choosing][i] < true

number|i

< 1 4+ max(number)

choosing|i] < false
for all other processes |
await choosing[j] = false
await (number[j] = 0) or (number[i] < number]j])
critical section
number]i] < 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 5.3

N

Algorithm 5.4: Fast algorithm for two processes (outline)

integer gatel < 0, gate2 <— 0

p

q

loop forever
non-critical section
gatel < p
if gate2 # 0 goto pl
gate2 < p
if gatel # p
if gate2 # p goto pl
critical section
gate2 <— 0

loop forever
non-critical section
gatel < ¢
if gate2 # 0 goto ql
gate2 < q
if gatel # q
if gate2 # g goto ql
critical section
gate2 < 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 5.4

Fast Algorithm - No Contention (1)

(a) (b)

(c) (d)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.5

Fast Algorithm - No Contention (2)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.6

Fast Algorithm - Contention At Gate 2

(a) (b)

(c) (d)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.7

Fast Algorithm - Contention At Gate 1 (1)

N

(a) (b)

(c) (d)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.8

N

Fast Algorithm - Contention At Gate 1 (2)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 5.9

N

Algorithm 5.5: Fast algorithm for two processes (outline)

integer gatel < 0, gate2 <— 0

p

q

loop forever
non-critical section
gatel < p
if gate2 # 0 goto pl
gate2 < p
if gatel # p
if gate2 # p goto pl
critical section
gate2 <— 0

loop forever
non-critical section
gatel < ¢
if gate2 # 0 goto ql
gate2 < q
if gatel # q
if gate2 # g goto ql
critical section
gate2 < 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 5.10

Algorithm 5.6: Fast algorithm for two processes

integer gatel < 0, gate2 <— 0
boolean wantp <+ false, wantq < false

P q
pl: gatel < p ql: gatel < ¢
wantp < true wantq <— true
p2: if gate2 # 0 q2: if gate2 # 0
wantp < false wantq < false
goto pl goto ql
p3: gate2 <— p q3: gate2 < ¢
p4: if gatel # p q4: if gatel # g
wantp < false wantq < false
await wantq = false await wantp = false
p5: if gate2 # p goto pl q5: if gate2 # g goto ql
else wantp < true else wantq < true
critical section critical section
p6: gate2 «+ 0 q6: gate2 «+ 0

wantp < false

wantq < false

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 5.11

N

Algorithm 5.7: Fisher’s algorithm
integer gate <— 0

loop forever
non-critical section

loop
pl: await gate = 0
p2: gate < |
p3: delay

p4: until gate =i
critical section
p5: gate + 0

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 5.12

N

Algorithm 5.8: Lamport’s one-bit algorithm
boolean array[l..n] want < [false,. .. false]
loop forever
non-critical section

pl: want[i] « true

p2: for all processes j j i

p3: if want][j]

p4: want][i] < false

p5: await not want|j]
goto pl

pb6: for all processes j j i

pT7: await not want|j]

critical section
p8: want[i] + false

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 5.13

Algorithm 5.9: Manna-Pnueli central server algorithm

integer request < 0, respond < 0

client process i

loop forever
non-critical section

pl: while respond # i
p2: request < |

critical section
p3: respond < 0

server process
loop forever

p4: await request #= 0
p5: respond < request
p6: await respond = 0
p7: request < 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 5.14

State Changes of a Process

running » completed

l

blocked

Inactive » ready

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.1

N

Algorithm 6.1: Critical section with semaphores (two processes)
binary semaphore S < (1, 0)
P q

loop forever loop forever
pl: non-critical section ql: non-critical section
p2: wait(S) q2: Wait(S)
p3: critical section q3: critical section
p4: signal(S) q4: signal(S)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.2

N

Algorithm 6.2: Critical section with semaphores (two proc., abbrev.)
binary semaphore S < (1, 0)

P q
loop forever loop forever
pl: wait(S) ql: wait(S)
p2: signal(S) q2: signal(S)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.3

N

State Diagram for the Semaphore Solution

pl: wait(Sm p2: S|gnal(

ql: wait(S), 1 Walt
(1,0)

p2: signal(S),
ql: blocked,
(0,{a})

pl: wait(S),

q2: signal(S),
00)

pl: blocked,
q2: signal(S),
(0,{pr})

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.4

N

Algorithm 6.3: Critical section with semaphores (/V proc.)
binary semaphore S < (1, 0)

loop forever

pl: non-critical section
p2: Wait(S)

p3: critical section

p4: signal(S)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.5

N

Algorithm 6.4: Critical section with semaphores (N proc., abbrev.)

binary semaphore S < (1, 0)

loop forever
pl: Wait(S)
p2: signal(S)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 6.6

Scenario for Starvation

Process p Process g Process r S
pl: wait(S) | ql: wait(S) | rl: wait(S) (1,0)
p2: signal(S) | ql: wait(S) | rl: wait(S) (0,0)

p2: signal(S) | ql: blocked | rl: wait(S) (0,{q})
pl: signal(S) | ql: blocked | rl: blocked (0,{q,7})
pl: wait(S) | ql: blocked | r2: signal(S) (0,{q})
pl: blocked ql: blocked | r2: signal(S) | (0,{p,q})
p2: signal(S) | ql: blocked | rl: wait(S) (0,{q})

N[O C B~ WIN| S5

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.7

N

Algorithm 6.5: Mergesort

integer array A
binary semaphore S1 < (0,0)
binary semaphore S2 < (0, ()

sortl sort2 merge
pl: sort 1st half of A | q1: sort 2nd half of A | r1: wait(S1)
p2: signal(S1) q2: signal(S52) r2: wait(52)
p3: q3: r3: merge halves of A

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 6.8

N

Algorithm 6.6: Producer-consumer (infinite buffer)

infinite queue of dataType buffer < empty queue
semaphore notEmpty < (0, ()

producer

consumer

dataType d

loop forever
pl: d < produce
p2: append(d, buffer)
p3: signal(notEmpty)

dataType d

loop forever
ql: wait(notEmpty)
q2: d < take(buffer)
q3: consume(d)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 6.9

Partial State Diagram for Producer-Consumer

with Infinite Buffer
pl: append,
ql: wait(S),
(1,0), [x]

pl: appenﬂ p2: signal(%
q1 Walt ql: wait(S)
| l

00,141)
p2: signal(% pl: append,
ql: blocked q2 take,

<o,'{con}>,[j 0.0). [«]

N

N2

pl: appenh
ql: blocked,
0. {eon)). 1)

=/

&

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.10

N

Algorithm 6.7: Producer-consumer (infinite buffer, abbreviated)
infinite queue of dataType buffer < empty queue
semaphore notEmpty < (0, ()

producer consumer
dataType d dataType d
loop forever loop forever
pl: append(d, buffer) ql: wait(notEmpty)
p2: signal(notEmpty) q2: d < take(buffer)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.11

N

Algorithm 6.8: Producer-consumer (finite buffer, semaphores)
finite queue of dataType buffer <— empty queue
semaphore notEmpty <+ (0, ()
semaphore notFull «+ (N, ()

producer consumer
dataType d dataType d
loop forever loop forever
pl: d < produce ql: wait(notEmpty)
p2: wait(notFull) q2: d < take(buffer)
p3: append(d, buffer) q3: signal(notFull)
p4: signal(notEmpty) q4: consume(d)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.12

Scenario with Busy Waiting

Process p Process g

pl: wait(S) | ql: wait(S)
p2: signal(S) | gql: wait(S)
p2: signal(S) | ql: wait(S)
pl: wait(S) | ql: wait(S)

— OOl = WD

RIWI N =S

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.13

N

Algorithm 6.9: Dining philosophers (outline)

loop forever

pl: think
p2: preprotocol
p3: eat

p4: postprotocol

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.14

The Dining Philosophers

fork\x @ fork3

. Spaghetti .

fork fork2

) 1 @2

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.15

N

Algorithm 6.10: Dining philosophers (first attempt)
semaphore array [0..4] fork < [1,1,1,1,1]
loop forever
pl: think
p2: wait(forkl[i])
p3: wait(fork[i+1])
p4: eat
p5: signal(fork]i])
p6: signal(fork[i+1])

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.16

N

Algorithm 6.11: Dining philosophers (second attempt)
semaphore array [0..4] fork < [1,1,1,1,1]
semaphore room < 4
loop forever

pl: think

p2: wait(room)

p3: wait(fork[i])

p4: wait(fork[i+1])

p5: eat

p6: signal(fork]i])

p7: signal(fork[i+1])

p8: signal(room)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.17

N

Algorithm 6.12: Dining philosophers (third attempt)
semaphore array [0..4] fork < [1,1,1,1,1]
philosopher 4
loop forever
pl: think
p2: wait(fork[0])
p3: wait(fork[4])
p4: eat
p5: signal(fork[0])
p6: signal(fork[4])

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.18

N

Algorithm 6.13: Barz’s algorithm for simulating general semaphores
binary semaphore S «+ 1
binary semaphore gate < 1
integer count < k

loop forever
non-critical section
pl: wait(gate)
p2: wait(S) // Simulated wait
p3: count < count — 1
p4: if count > 0 then

p5: signal(gate)
p6: signal(S)
critical section
p7: wait(S) // Simulated signal

count < count 4 1
if count = 1 then

signal(gate)
signal(S)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.19

N

Algorithm 6.14: Udding’s starvation-free algorithm
semaphore gatel < 1, gate2 < 0
integer numGatel <+ 0, numGate2 + 0
pl: wait(gatel)
p2: numGatel < numGatel + 1
p3: signal(gatel)
p4: wait(gatel)
p5: numGate?2 < numGate2 + 1

numGatel < numGatel — 1 // Statement is missing in the
book
p6: if numGatel j O
pT7: signal(gatel)

p8: else signal(gate2)

p9: wait(gate2)

p10: numGate2 < numGate2 — 1

critical section

if numGate2 j 0
signal(gate2)

else signal(gatel)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.20

Udding’s Starvation-Free Algorithm

N

numGatel gatel numGate2 gate2 CS

@
Za\
20\

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.21

Scenario for Starvation in Udding’s Algorithm

N

n | Process p Process q gatel | gate2 | nGatel | nGate2
1 | p4: wait(gl) q4: wait(gl) 1 0 2 0
2 | p9: wait(g2) q9: wait(g2) 0 1 0 2
3| CS q9: wait(g2) 0 0 0 1
4 | pl12: signal(g2) | q9: wait(g2) 0 0 0 1
5 | pl: wait(gl) CS 0 0 0 0
6 | pl: wait(gl) ql3: signal(gl) | O 0 0 0
7 | pl: blocked ql3: signal(gl) | O 0 0 0
8 | p4: wait(gl) ql: wait(gl) 1 0 1 0
9 | p4: wait(gl) q4: wait(gl) 1 0 2 0

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 6.22

Semaphores in Java

1 import java. util . concurrent. Semaphore;
2 class CountSem extends Thread {

3 static volatile int n = 0;

4 static Semaphore s = new Semaphore(1);
5

6 public void run() {

7 int temp;

8 for (int i =0;i <10;i++) {

9 try {

10 s. acquire ();

11 }

12 catch (InterruptedException e) {}
13 temp = n;

14 n = temp + 1;

15 s. release ();

16 }

17 }

18

19 public static void main(String[] args) {
20 /* As before x/

21}

22}

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.23

Semaphores in Ada

1 protected type Semaphore(Initial : Natural) is
2 entry Wait;

3 procedure Signal;

4 private

5 Count: Natural := Initial ;

6 end Semaphore;

.

8 protected body Semaphore is

9 entry Wait when Count > 0 is
10 begin
11 Count := Count — 1;
12 end Wait;
13
14 procedure Signal is
15 begin
16 Count := Count + 1;
17 end Signal;
18 end Semaphore;

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.24

Busy-Wait Semaphores in Promela

1 inline wait(s) {

2 atomic { s >0; s— }
3}

4

5

inline signal (s) { s++}

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.25

Weak Semaphores in Promela (3 processes) (1)

N

typedef Semaphore {

byte count;
bool blocked[NPROCS];

};

inline initSem(S, n) {
S.count = n

}

0 ~NO 1B W DN

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.26

Weak Semaphores in Promela (3 processes) (2)

N

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

inline wait(S) {
atomic {
if
S.count >=1 —> S.count——
else —>
S.blocked[_pid —1] = true;
I'S.blocked[_pid —1]
fi
}
}
inline signal (S) {
atomic {
if
S.blocked[0] —> S.blocked[0] = false
S.blocked[1] —> S.blocked[1] = false
S.blocked[2] —> S.blocked[2] = false
;1 else —> S.count+-+
fi
}
t

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

N

Slide — 6.27

Weak Semaphores in Promela (/N processes) (1)

N

1 typedef Semaphore {

2 byte count;

3 bool blocked[NPROCS];

4 byte i, choice;

5 }

6

7 inline initSem(S, n) {

8 S.count = n

9 }

10

11 inline wait(S) {

12 atomic {

13 if

14 S.count >=1 —> S.count——
15 else —>

16 S.blocked[_pid —1] = true;
17 IS blocked[_pid —1]

18 fi

19 }
20 }

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.28

Weak Semaphores in Promela (N processes) (2)

N

1
2
3
4
5
6
4
8
9

10
11
12
13
14
15
16
17
18
19
20
21

inline signal (S) {

}

atomic {
S.i =0;
S.choice = 255;
do
. (S.i == NPROCS) —> break

}

od;
if

fi

(S.i < NPROCS) &4& !S.blocked[S.i] —> S.i++
else —>

if

.2 (S.choice == 255) —> S.choice = S.i
:: (S.choice != 255) —> S.choice = S.i
.. (S.choice != 255) —>

fi ;

S.i++

S.choice == 255 —> S.count++
else —> S.blocked[S.choice] = false

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

N

Slide — 6.29

Barz’'s Algorithm in Promela (N processes, K in CS)

1 byte gate = 1;

2 int count = K;

3

4 active [N] proctype P () {

5 do ::

6 atomic { gate > 0; gate——; }
7 d_step {

8 count——;

9 if

10 count > 0 —> gate4+
11 . else

12 fi

13 }

14 /% Critical section x/
15 d_step {

16 count+-+;

17 if

18 count == 1 —> gate++
19 . else
20 fi
21 }
22 od
23}

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.30

N

Algorithm 6.15: Semaphore algorithm A
semaphore S < 1, semaphore T + 0

p q
pl: wait(S) ql: Wait(T)

p2: write("p") q2: write("q")
p3: signal(T) q3: signal(S)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.31

N

Algorithm 6.16: Semaphore algorithm B
semaphore S1 <+ 0, S2 < 0

p q r
pl: write("p") ql: wait(S1) rl: wait(52)
p2: signal(S1) q2: write("q") r2: write("r")
p3: signal(S2) q3: r3:

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.32

N

Algorithm 6.17: Semaphore algorithm with a loop
semaphore S + 1
boolean B « false

p q
pl: wait(S) ql: wait(S)

p2: B « true q2: while not B
p3: signal(S) q3: write("*")
p4: q4: signal(S)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.33

N

Algorithm 6.18: Critical section problem (k out of NV processes)
binary semaphore S < 1, delay <~ 0
integer count < k
Integer m
loop forever
pl: non-critical section
p2: wait(S)
p3: count < count — 1
p4: m <— count
p5: signal(S)
p6: if m < —1 wait(delay)
p7: critical section
pS: wait(S)
pO: count < count + 1
p10: if count < 0 signal(delay)
pll: signal(S)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 6.34

Circular Buffer

N out

out N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.35

N

Algorithm 6.19: Producer-consumer (circular buffer)
dataType array [0..N] buffer
integer in, out <— 0
semaphore notEmpty < (0, ()
semaphore notFull «+ (N,)
producer consumer
dataType d dataType d
loop forever loop forever
pl: d < produce ql: wait(notEmpty)
p2: wait(notFull) q2: d < buffer[out]
p3: buffer[in] + d q3: out < (out+1) modulo N
p4: in < (in+1) modulo N q4: signal(notFull)
p5: signal(notEmpty) q5: consume(d)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.36

N

Algorithm 6.20: Simulating general semaphores
binary semaphore S < 1, gate < 0
integer count <— 0

wait

pl: wait(S)

p2: count < count — 1

p3: If count < 0

p4: signal(S)

p5: wait(gate)

p6: else signal(S)
signal

p7: wait(S)

p8: count < count + 1

p9: if count <0

pl0: signal(gate)

pll: signal(S)

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.37

N

Weak Semaphores in Promela with Channels

1 typedef Semaphore {

2 byte count;

3 chan ch = [NPROCS] of { pid };

4 byte temp, i;

5 };

6 inline initSem(S, n) { S.count =n }

7 inline wait(S) {

8 atomic {

9 if

10 S.count >= 1 —> S.count——;

11 ;. else —> S.ch! pid; !(S.ch 77 [eval(_pid)])
12 fi

13 }

14 }

15 inline signal (S) {

16 atomic {

17 S.i = len(S.ch);

18 if

19 :: S.i == 0 —> S.count++ /«No blocked process, increment countx/
20 :: else —>
21 do
22 . S.i ==1—> S.ch? _; break /«Remove only blocked processx /
23 else —> S.i——;

oA qP(r‘ilp\cip}esd)ffgorr:‘cgr_ren% and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.38

N

Algorithm 6.21: Readers and writers with semaphores

semaphore readerSem < 0, writerSem <+ 0
integer delayedReaders < 0, delayedWriters <— 0
semaphore entry <— 1

integer readers <— 0, writers < 0

SignalProcess

if writers = 0 or delayedReaders > 0
delayedReaders < delayedReaders — 1
signal(readerSem)

else if readers = 0 and writers = 0 and delayedWriters > 0
delayedWriters <— delayedWriters — 1
signal(writerSem)

else signal(entry)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 6.39

N

Algorithm 6.21: Readers and writers with semaphores

StartRead
pl: wait(entry)
p2: If writers > 0
p3: delayedReaders < delayedReaders + 1
p4: signal(entry)
p5: wait(readerSem)
p6: readers < readers + 1
p7: SignalProcess
EndRead
p8: wait(entry)
p9: readers < readers — 1
p10: SignalProcess

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 6.40

N

Algorithm 6.21: Readers and writers with semaphores

StartWrite

: wait(entry)
- if writers > 0 or readers > 0

delayedWriters <— delayedWriters + 1
signal(entry)
wait(writerSem)

. writers <— writers + 1
: SignalProcess

EndWrite

- wait(entry)
. writers <— writers — 1
: SignalProcess

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 6.41

N

Algorithm 7.1: Atomicity of monitor operations

monitor CS
integer n <— 0

operation increment
Integer temp

temp < n
n < temp + 1
p q
pl: CS.increment ql: CS.increment

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 7.1

Executing a Monitor Operation

¥

\
monitor CS
n 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.2

N

Algorithm 7.2: Semaphore simulated with a monitor
monitor Sem
integer s < k
condition notZero
operation wait
ifs=20
waitC(notZero)
s<s—1
operation signal
s< s+ 1
signalC(notZero)
p q
loop forever loop forever
non-critical section non-critical section
pl: Sem.wait ql: Sem.wait
critical section critical section
Sem.signal q2: Sem.signal

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.3

Marc Smith

Condition Variable in a Monitor

o

monitor Sem / notZero
S 0

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.4

State Diagram for the Semaphore Simulation

pl: Sem.wait,\ p2: Sem.signal\
ql: Sem.wait, ql: Sem.wait,

1, <> 0 <> J
))\

N

p2: Sem.signal;
blocked,
0, <qg>

Y
pl: Sem.wait, blocked,
q2: Sem.signal, q2: Sem.signal
0, <> J 0, <p>

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.5

N

Algorithm 7.3: Producer-consumer (finite buffer, monitor)

monitor PC
bufferType buffer <— empty
condition notEmpty
condition notFull
operation append(datatype V)

if buffer is full
waitC(notFull)
append(V, buffer)

signalC(notEmpty)

operation take()

datatype W

if buffer is empty
waitC(notEmpty)

W < head(buffer)

signalC(notFull)

return W

-

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 7.6

N

Algorithm 7.3: Producer-consumer (finite buffer, monitor) (continued)
producer consumer
datatype D datatype D
loop forever loop forever
pl: D < produce ql: D + PC.take
p2: PC.append(D) q2: consume(D)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.7

The Immediate Resumption Requirement

s

condition 1 N waiting

%%% monitor %%
T

condition 2 \ / signaling

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.8

N

Algorithm 7.4: Readers and writers with a monitor

monitor RW
integer readers < 0
integer writers <— 0
condition OKtoRead, OKtoWrite
operation StartRead
if writers # 0 or not empty(OKtoWrite)
waitC(OKtoRead)
readers < readers + 1
signalC(OKtoRead)
operation EndRead
readers < readers — 1

if readers = 0
signal C(OKtoWrite)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.9

N

Algorithm 7.4: Readers and writers with a monitor (continued)

operation StartWrite
if writers # 0 or readers # 0

waitC(OKtoWrite)
writers < writers + 1

operation EndWrite
writers <— writers — 1
if empty(OKtoRead)
then signalC(OKtoWrite)
else signalC(OKtoRead)

reader writer
pl: RW.StartRead ql: RW.StartWrite
p2: read the database q2: write to the database
p3: RW.EndRead q3: RW.EndWrite

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.10

N

Algorithm 7.5: Dining philosophers with a monitor

monitor ForkMonitor

integer array[0..4] fork < [2, ..., 2]
condition array[0..4] OKtoEat
operation takeForks(integer i)

if fork[i] # 2

waitC(OKtoEat][i])
fork[i+1] < fork[i+1] — 1
fork[i—1] < fork[i—1] — 1

operation releaseForks(integer i)
fork[i+1] < fork[i+1] + 1
fork[i—1] < fork[i—1] + 1
if fork[i+1] =

signal C(OKtoEat[i+1])
if fork[i—1] =

signal C(OKtoEat[i—1])

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.11

N

Algorithm 7.5: Dining philosophers with a monitor (continued)

philosopher i

pl:
p2:

p4:

loop forever
think
takeForks(i)
eat
releaseForks(i)

N

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 7.12

Scenario for Starvation of Philosopher 2

n | phill phil2 phil3 fo | f1] f21 f3] f4
1 | take(1) take(2) take(3) 2 1 22| 2| 2
2 | release(l) | take(2) take(3) 1 [2] 1] 2] 2
3 | release(l) | take(2) and release(3) 1 {2]0] 2|1
waitC(OK]2])
4 | release(1) | (blocked) release(3) 1 {2]0] 2|1
5 | take(1) (blocked) release(3) | 2 | 2 | 1 | 2 | 1
6 | release(1l) | (blocked) release(3) | 1 | 2 | 0 | 2 | 1
7 | release(1l) | (blocked) take(3) 1 [2] 1] 2]2
‘ Principles of Concurrent and Distributed Programming. Slides © 2006 by M. Ben-Ari. Slide — 7.13

Readers and Writers in C

© 00 N O 1 &~ W DN R

N NN NNRRRRRRRR R (=
P WODNNEFE O OOWONO Ol A WDNH O

monitor RW {
int readers = 0, writing = 1;
condition OKtoRead, OKtoWrite;

void StartRead() {
if (writing || !empty(OKtoWrite)) waitc(OKtoRead);
readers — readers + 1;
signalc (OKtoRead);

}
void EndRead() {

readers = readers — 1;
if (readers == 0) signalc (OKtoWrite);
}

void StartWrite() {
if (writing || (readers !=0)) waitc(OKtoWrite);

writing = 1;
}
void EndWrite() {
writing = 0;
if (empty(OKtoRead)) signalc(OKtoWrite);
else signalc (OKtoRead);
t

} Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 7.14

N

Algorithm 7.6: Readers and writers with a protected object

protected object RW
integer readers <— 0
boolean writing < false
operation StartRead when not writing
readers <— readers + 1
operation EndRead
readers < readers — 1
operation StartWrite when not writing and readers = 0

writing < true

operation EndWrite
writing <— false

reader writer
loop forever loop forever
pl: RW.StartRead ql: RW.StartWrite
p2: read the database q2: write to the database

p3: RW.EndRead q3: RW.EndWrite
Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.15

Context Switches in a Monitor

Process reader Process writer
waitC(OKtoRead) operation EndWrite
(blocked) writing < false
(blocked) signalC(OKtoRead)

readers < readers - 1 | return from EndWrite
signalC(OKtoRead) return from EndWrite

read the data return from EndWrite
read the data

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.16

Context Switches in a Protected Object

Process reader Process writer

when not writing | operation EndWrite
(blocked) writing < false
(blocked) when not writing
(blocked) readers < readers + 1
read the data

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.17

Simple Readers and Writers in Ada

1 protected RW is

2 procedure Write(l: Integer);

3 function Read return Integer ;
4 private

5 N: Integer := 0;

6 end RW;

.

8 protected body RW is

9 procedure Write(l: Integer) is
10 begin

11 N :=I;

12 end Write;

13 function Read return Integer is
14 begin

15 return N;

16 end Read;

17 end RW;

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.18

Readers and Writers in Ada (1)

protected RW is
entry StartRead;
procedure EndRead;
entry Startwrite ;
procedure EndWrite;
private
Readers: Natural :=0;
Writing: Boolean := false ;
end RW;

© 00 ~NO 1 &~ WDN R

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.19

Readers and Writers in Ada (2)

1 protected body RW is

2 entry StartRead

3 when not Writing is

4 begin

5 Readers := Readers + 1;
6 end StartRead;

.

8 procedure EndRead is

9 begin

10 Readers := Readers — 1;
11 end EndRead;

12

13 entry StartWrite

14 when not Writing and Readers = 0 is
15 begin

16 Writing := true;

17 end StartWrite:

18

19 procedure EndWrite is

20 begin

21 Writing := false ;

22 end EndWrite;

23 end RW;

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.20

Producer-Consumer in Java (1)

1 class PCMonitor {

2 final int N = 5;

3 int Oldest = 0, Newest = 0;

4 volatile int Count = 0O;

5 int Buffer[] = new int[N];

6

7 synchronized void Append(int V) {
8 while (Count == N)

9 try {

10 wait();

11 } catch (InterruptedException e) {}
12 Buffer [Newest] = V;

13 Newest = (Newest + 1) % N;

14 Count = Count + 1;

15 notifyAll ();

16 }

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 7.21

Producer-Consumer in Java (2)

1 synchronized int Take() {

2 int temp;

3 while (Count == 0)

4 try {

5 wait();

6 } catch (InterruptedException e) {}
7 temp = Buffer[Oldest];

8 Oldest = (Oldest + 1) % N;
9 Count = Count — 1;

10 notifyAll ();

11 return temp;

12 }

13}

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.22

A Monitor in Java With notifyAll

.
: >\‘

object waiting

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.23

Java Monitor for RW (try-catch omitted)

© 00 N O 1 &~ W DN K

NN NNNRRRRRRRR R (=
P WONNEFEF O OOWONO Ol A WDNH O

class RWMonitor {
volatile int readers = 0O;
volatile boolean writing = false;

synchronized void StartRead() {
while (writing) wait();
readers = readers + 1;
notifyAll ();

}

synchronized void EndRead() {
readers — readers — 1;
if (readers == 0) notifyAll();

t

synchronized void StartWrite() {
while (writing || (readers !'=0)) wait();
writing = true;

}

synchronized void EndWrite() {
writing = false;
notifyAll ();

}

} Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 7.24

Simulating Monitors in Promela (1)

1 bool lock = false;
2

3 typedef Condition {
4 bool gate;

5 byte waiting ;
6}

.

8 #tdefine emptyC(C) (C.waiting == 0)
9
10 inline enterMon() {
11 atomic {
12 llock;
13 lock = true;
14 }
15 }
16
17 inline leaveMon() {

18 lock = false;

}

=
e

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.25

Simulating Monitors in Promela (2)

1 inline waitC(C) {

2 atomic {

3 C.waiting ++;

4 lock = false; /* Exit monitor x/
5 C.gate; /* Wait for gate */
6 lock = true; /% IRR %/

7 C.gate = false; /x Reset gate x/

8 C.waiting ——;

°O 1}

10 }

11

12 inline signalC(C) {

13 atomic {

14 if

15 /* Signal only if waiting */

16 . (C.waiting > 0) —>

17 C.gate = true;

18 lock; /* IRR — wait for released lock */
19 lock = true; /x Take lock again x/
20 ;o else

21 fi ;

22 }

23}

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.26

Readers and Writers in Ada (1)

protected RW is
entry Start_Read;
procedure End_Read;
entry Start_Write;
procedure End_Write;
private
Waiting_To_Read : integer := 0;
Readers : Natural := 0;

Writing : Boolean := false ;
end RW;

© 00 ~NO 1 &~ WDN R

=
o

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.27

Readers and Writers in Ada (2)

protected RW is
entry StartRead;
procedure EndRead;
entry Startwrite ;
procedure EndWrite;
function NumberReaders return Natural;
private
entry ReadGate;
entry WriteGate;
Readers: Natural :=0;
Writing: Boolean := false ;
end RW;

© 00 N O 1 &~ WDN R

T T
N = O

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 7.28

Algorithm 8.1: Producer-consumer (channels)
channel of integer ch
producer consumer
Integer x Integer y
loop forever loop forever
pl: X <— produce ql: ch =1y
p2: ch < x q2: consume(y)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.1

N

Algorithm 8.2: Conway’s problem
constant integer MAX < 9
constant integer K < 4
channel of integer inC, pipe, outC
compress output
char c, previous <— 0 char c
integer n <— 0 integer m <— 0
inC = previous
loop forever loop forever
pl: inC = ¢ ql: pipe = C
p2: if (c = previous) and q2: outC «<c
(n < MAX — 1)
p3: n<n-+1 q3: m<+<m-+4 1
else
p4: ifn>20 q4: ifm>=K
pipe < intToChar(n+1) | g5: outC < newline
n<+< 0 q6: m <+ 0
pipe < previous q7:
previous <— C q8:

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.2

Conway’s Problem

' Ipe
inC » compress PP » output outC

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.3

Process Array for Matrix Multiplication

N

Source

2
1
0

Source

0
0
1

300

oD

000

OO

Zero

.00

oD

000

|
|

OO

Zero

.00

2
1
0

|
|

000

Source
2
0
1
Resultfﬂ 1 43274
2
0
1
Result 5,18 4 4—6’5’10
2
0
1
Result 8,3 7 4—9’8’16
2
0
1
Sink

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Sink

0
0
1

Zero

Sink

Slide — 8.4

Computation of One Element

Result

|2

30

|2

16

/ero

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.5

N

Algorithm 8.3: Multiplier process with channels
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever
pl: North = SecondElement
p2: East = Sum
p3: Sum < Sum + FirstElement - SecondElement
p4: South < SecondElement
p5: West <= Sum

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.6

N

Algorithm 8.4: Multiplier with channels and selective input
integer FirstElement
channel of integer North, East, South, West
integer Sum, integer SecondElement

loop forever

either
pl: North = SecondElement
p2: East = Sum
or
p3: East = Sum
p4: North = SecondElement

p5: South < SecondElement
p6: Sum < Sum + FirstElement - SecondElement
p7: West < Sum

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.7

Algorithm 8.5: Dining philosophers with channels

channel of boolean forks[5]

philosopher i

fork i

boolean dummy

loop forever
think
forks[i] = dummy
forks[i+1] = dummy
eat
forks|i] <= true
forks[i+1] < true

boolean dummy
loop forever
forks|i] <= true
forks[i] = dummy

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 8.8

Conway’s Problem in Promela (1)

1 F#define N 9

2 H#define K 4

3

4 chan inC, pipe, outC = [0] of { byte };
5

6 active proctype Compress() {

7 byte previous, c, count = 0;

8 inC 7 previous ;

9 do

10 inC ? ¢c —>

11 if

12 .. (c == previous) && (count < N—1) —> count++
13 else —>

14 if

15 count > 0 —>

16 pipe ! count+1;

17 count = 0

18 . else

19 fi ;
20 pipe | previous;
21 previous = ¢;
22 fi
23 od
24 } Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.9

Conway’s Problem in Promela (2)

1 active proctype Output() {
2 byte ¢, count = 0;

3 do

4 ;1 pipe ? ¢;

5 outC ! c;

6 count++;

7 if

8 . count >= K —>
9 outC ! "\n’;

10 count =0

11 . else

12 fi

13 od

14 }

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 8.10

N

Multiplier Process in Promela

1 proctype Multiplier (byte Coeff;

2 chan North; chan East; chan South; chan West) {
3 byte Sum, X;

4 for (i,0, SIZE—1)

5 if :: North ? X —> East ? Sum;
6 - East ? Sum —> North 7 X;
7 fi ;

8 South ! X;

9 Sum = Sum 4+ XxCoeff:

10 West | Sum;

11 rof (i)

12 }

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.11

Algorithm 8.6: Rendezvous

client server
integer parm, result integer p, r
loop forever loop forever
pl: parm <— ... ql:
p2: server.service(parm, result) q2: accept service(p, r)
p3: use(result) q3: r < do the service(p)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 8.12

Timing Diagram for a Rendezvous

t 9 t3
calling F e e — — o — — — +
parameters results
accepting Y
time —

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 8.13

Bounded Buffer in Ada

1 task body Buffer is

2 B: Buffer_Array ;

3 In_Ptr, Out_Ptr, Count: Index := 0;

4

5 begin

6 loop

7 select

8 when Count < Index'Last =>

9 accept Append(l: in Integer) do
10 B(In_Ptr) :=1I;

11 end Append;

12 Count := Count + 1; In_Ptr := In_Ptr + 1;
13 or

14 when Count > 0 =>

15 accept Take(l: out Integer) do
16 | := B(Out_Ptr);

17 end Take;

18 Count := Count — 1; Out_Ptr := Out_Ptr + 1;
19 or
20 terminate;
21 end select;
22 end loop;
23 end Buffer;

brinciples of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 8.14

Remote Procedure Call

' Remote | Cli ' Remote |
' - lent program Server program ' -
5 interface 5 Prog Prog 5 interface 5
Sending stub Receiving stub
Communications » Communications

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 8.15

Pipeline Sort

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 8.16

Hoare’s Game

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 8.17

A Space

o)

(('a’,true,50))
C -+ 1020)) (('a’,false,40))

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 9.1

Algorithm 9.1: Critical section problem in Linda

loop forever
non-critical section
removenote('s’)
critical section
postnote(’s’)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 9.2

N

Algorithm 9.2: Client-server algorithm in Linda

client server
constant integer me « ... integer client
service [ype service service [ype s
dataType result, parm dataTyper, p

pl: service < // Service requested | ql: removenote('S’, client, s, p)
p2: postnote(’'S’, me, service, parm) | q2: r < do (s, p)
p3: removenote('R’, me, result) q3: postnote('R’, client, r)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 9.3

N

Algorithm 9.3: Specific service

client

server

constant integer me <— ...
service [ype service

dataType result, parm

service <— // Service requested
postnote('S’, me, service, parm)

removenote('R’, me, result)

integer client

service [ype s

dataTyper, p

s < // Service provided
removenote('S’, client, s=, p)
r < do (s, p)

postnote('R’, client, r)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 9.4

N

Algorithm 9.4: Buffering in a space
producer consumer
integer count < 0 integer count < 0
Integer v Integer v
loop forever loop forever
pl: v < produce ql: removenote('B’, count=, v)
p2: postnote('B’, count, v) q2: consume(v)
p3: count < count + 1 q3: count < count + 1

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 9.5

Algorithm 9.5: Multiplier process with channels in Linda

parameters: integer FirstElement
parameters: integer North, East, South, West
integer Sum, integer SecondElement

integer Sum, integer SecondElement

loop forever
removenote('E’, North=, SecondElement)
removenote('S’, East=, Sum)
Sum < Sum + FirstElement - SecondElement
postnote('E’, South, SecondElement)
postnote('S’, West, Sum)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 9.6

N

Algorithm 9.6: Matrix multiplication in Linda
constant integer n <— ...
master worker
integer i, j, result integer r, c, result
integer r, c integer array[l..n] vecl, vec2
loop forever

pl: for i from 1 to n ql: removenote('T’, r, c)
p2: for j from 1 to n q2: readnote('A’, r=, vecl)
p3: postnote('T", i, j) q3: readnote('B’, c=, vec2)
p4: forifrom 1 ton q4: result < vecl - vec?2
p5: for j from 1 to n q5: postnote('R’, r, c, result)
p6: removenote('R’, r, ¢, re- | g6:
sult)
p7: print r, c, result q7:

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 9.7

N

Algorithm 9.7: Matrix multiplication in Linda with granularity
constant integer n <— ...
constant integer chunk <« ...
master worker
integer i, j, result integer r, c, k, result
integer r, c integer array[l..n] vecl, vec2
loop forever
pl: for i from 1 to n ql: removenote(' T, r, k)
p2: for j from 1 to n step by chunk | q2: readnote('A’, r=, vecl)
p3: postnote('T', i, j) q3: for c from k to k+chunk-1
p4: for i from 1 to n q4-: readnote('B’, c=, vec?)
p5: for j from 1 to n q5: result <— vecl - vec?2
p6: removenote('R’, r, ¢, re- | q6: postnote('R’, r, c, result)
sult)
p7: print r, c, result q7:

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 9.8

Definition of Notes in Java

N

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

public class Note {
public String id;
public Object[] p;

// Constructor for an array of objects
public Note (String id, Object]] p) {
this.id = id;
if (p != null) this.p = p.clone();

}

// Constructor for a single integer
public Note (String id, int pl) {

this (id, new Object[]{new Integer(pl)});
t

// Accessor for a single integer value
public int get(int i) {

return ((Integer)p[i]). intValue();
}

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 9.9

Matrix Multiplication in Java

1 private class Worker extends Thread {

2 public void run() {

3 Note task = new Note("task”);

4 while (true) {

5 Note t = space.removenote(task);

6 int row = t.get(0), col = t.get(1);

7 Note r = space.readnote(match("a"”, row));
8 Note ¢ = space.readnote(match("b", col));
9 int ip =0;

10 for (int i =1;i <= SIZE; i++)

11 ip = ip + r.get(i)x*c.get(i);

12 space. postnote(new Note("result”, row, col, ip));
13 }

14 }

15 }

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 9.10

Matrix Multiplication in Promela

N

1 chan space = [25] of { byte, short, short, short, short };
2

3 active[WORKERS] proctype Worker() {

4 short row, col, ip, rl, r2, r3, cl, c2, c3;
5 do

6 space ?? 't’', row, col, _, _;

7 space 7?7 <'a’, eval(row), rl, r2, r3>;
8 space 7?7 <'b’, eval(col), cl, c2, c3>;
9 ip = rlxcl 4+ r2xc2 + r3x%c3;

10 space ! 'r’, row, col, ip, O;

11 od;

12 }

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 9.11

N

Algorithm 9.8: Matrix multiplication in Linda (exercise)
constant integer n <— ...
master worker
integer i, j, result integer i, r, c, result
integer r, c integer array[l..n] vecl, vec2
loop forever

pl: postnote('T’, 0) ql: removenote(' T’ i)
p2: q2: ifij(n-n)—1
p3: q3: postnote(' T, i+1)
p4: q4: re(i/n)—l—l
pb: gb: C < (i modulo n) + 1
p6: for i from 1 to n q6: readnote('A’, r=, vecl)
p7: for j from 1 to n q7: readnote('B’, c=, vec2)
p8: removenote('R’, r, ¢, re- | g8: result «+— vecl - vec2
sult)
po: print r, c, result q9: postnote('R’, r, c, result)

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 9.12

Sending and Receiving Messages

node 5 node 3

integer k < 20 integer m, n
send(request, 3, k, 30) receive(request, m, n)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 10.1

Sending a Message and Expecting a Reply

node 5 node 3

Integer source
receive(request, source)

send(request, 3, myID) >

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.2

N

Algorithm 10.1: Ricart-Agrawala algorithm (outline)
integer myNum <« 0
set of node IDs deferred <— empty set

main
pl: non-critical section
p2: myNum < chooseNumber
p3: for all other nodes N
p4: send(request, N, mylD, myNum)
p5: await reply’s from all other nodes
p6: critical section
p7: for all nodes N in deferred
p8: remove N from deferred
pO: send(reply, N, myID)
receive

integer source, reqNum
receive(request, source, reqNum)
if regNum < myNum
send(reply,source,mylD)
else add source to deferred

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.3

RA Algorithm (1)

Aaron 10

SN

Becky Chloe 15

>
req

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 10.4

RA Algorithm (2)

Aaron 10
Chloe

reV \ply

Becky e 5 reply Chloe 15
Aaron, Chloe

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.5

Virtual Queue in the RA Algorithm

Becky [«—— Aaron [«—— Chloe

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.6

RA Algorithm (3)

Aaron e 10
Chloe

reV

Becky 5 reply Chloe 15

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.7

RA Algorithm (4)

Aaron 10

reply

Becky 5 Chloe o 15

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.8

Equal Ticket Numbers

Becky 5 |[Treq || Aaron 5
————
req
Becky 5 Aaron 5
Aaron Becky

Note: This figure is not in the book.

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.9

Choosing Ticket Numbers (1)

Becky 5 |[Treq || Aaron 10
————>
req
Becky o 5 ‘W Aaron 10
Aaron
Becky 5 Aaron e 10
—
reply

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.10

Choosing Ticket Numbers (2)

Becky 8 Aaron e 10
req
Becky e 8 ‘W Aaron e 10

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.11

Quiescent Nodes

Becky 5 Aaron 0
———>
req
Becky 5 Aaron 0
Becky

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.12

N

Algorithm 10.2: Ricart-Agrawala algorithm
integer myNum <« 0
set of node IDs deferred <— empty set
integer highestNum < 0
boolean requestCS <« false

Main
loop forever
pl: non-critical section
p2: requestCS <« true
p3: myNum < highestNum + 1

p4: for all other nodes N

p5: send(request, N, mylD, myNum)
p6: await reply’s from all other nodes
p7: critical section

p8: requestCS < false

p9: for all nodes N in deferred

remove N from deferred
send(reply, N, myID)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.13

N

Algorithm 10.2: Ricart-Agrawala algorithm (continued)

Receive

integer source, requestedNum

loop forever
pl: receive(request, source, requestedNum)
p2: highestNum < max(highestNum, requestedNum)
p3: if not requestCS or requestedNum < myNum
p4: send(reply, source, mylD)
p5: else add source to deferred

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 10.14

Correct of the RA Algorithm (Case 1)

send

] choose request

. receive
J ' request

reply — choose

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.15

Correct of the RA Algorithm (Case 2)

o . send __
I Main cnhoose request
. | receive
> —>

i receive request reply
. send
J main choose request

receive

J receive request reply

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 10.16

Channels in RA Algorithm in Promela

node |

ch[id]
node id

node |

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.17

N

RA Algorithm in Promela — Main Process
1 proctype Main(byte myID) {

2 do ::

3 atomic {

4 requestCS[mylID] = true ;

5 myNum[myID] = highestNum[myID] + 1 ;
6 }

7 for (J,0, NPROCS—1)

8 if

9 J 1= mylD —>

10 ch[J] ! request, mylD, myNum[mylID];
11 ;. else

12 fi

13 rof (J);

14 for (K,0,NPROCS—2)

15 ch[myID] 7?7 reply, _, _;

16 rof (K);

17 critical_section ();

18 requestCS[mylID]| = false;

19 byte N;

20 do

21 empty(deferred[mylID]) —> break;

22 deferred [myID] ? N —> ch[N] ! reply, 0, O
23 od

24 od

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.18

N
o
—

RA Algorithm in Promela — Receive Process

N

© 00 N O 1 &~ WDN R

10
11
12
13
14
15
16
17
18
19
20
21

proctype Receive(byte myID) {
byte reqNum, source;

do

od

ch[myID] 7?7 request, source, reqNum;
highestNum[myID] =
((reqNum > highestNum[myID]) —>
reqNum : highestNum[myID]);
atomic {
if
requestCS[mylID] &&
((myNum[myID] < reqNum) ||
((myNum[myID] == reqNum) &&
(myID < source)

)) —>
deferred [myID] ! source
else —>

ch[source] ! reply, 0, O
fi

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 10.19

Algorithm 10.3: Ricart-Agrawala token-passing algorithm
boolean haveToken <— true in node 0, false in others
integer array[NODES] requested < [0,...,0]
integer array[NODES] granted « [0,...,0]
integer myNum <« 0
boolean inCS < false

sendToken
if exists N such that requested[N] > granted[N]
for some such N
send(token, N, granted)
haveToken <« false

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.20

N

Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)
Main
loop forever

pl: non-critical section

p2: if not haveToken

p3: myNum < myNum + 1

p4: for all other nodes N

p5: send(request, N, myID, myNum)

p6: receive(token, granted)

p7: haveToken < true

p8: INCS <« true

p9: critical section

p10: granted[mylD] +— myNum

pll: inCS < false

pl2: sendToken

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.21

N

Algorithm 10.3: Ricart-Agrawala token-passing algorithm (continued)

Receive
integer source, reqNum
loop forever
p13: receive(request, source, reqNum)
pl4: requested[source] <— max(requested[source], reqNum)
pl5: if haveToken and not inCS
pl6: send Token

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.22

N

Data Structures for RA Token-Passing Algorithm

requested 4 3 0 5 1

granted 4 2 2 4 1

Aaron Becky Chloe Danielle Evan

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.23

Distributed System for Neilsen-Mizuno Algorithm

¢

> Danielle Evan

Chloe
Aaron [© >l Becky |«
X

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 10.24

Spanning Tree in Neilsen-Mizuno Algorithm

Danielle |« Evan

Chloe

Aaron » Becky

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.25

Neilsen-Mizuno Algorithm (1)

Aaron Becky ——| Chloe |[«— Danielle f&«—— Evan
Aaron [+«—— Becky Chloe |[f«—— Danielle f*—— Evan
A

Aaron [«— Becky [«—— Chloe [[«— Danielle f*—— Evan

Aaron Becky —| Chloe [Danielle ——{ Evan

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.26

Neilsen-Mizuno Algorithm (2)

Aaron (— Becky — Chloe [—{ Danielle —— Evan
L _ _ _ _ _ _ _ _ _ _ ______________£%

Aaron (— Becky —— Chloe [— Danielle —| Evan

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 10.27

N

Algorithm 10.4: Neilsen-Mizuno token-passing algorithm

integer parent <— (initialized to form a tree)
integer deferred < 0
boolean holding < true in the root, false in others

Main

loop forever

non-critical section

if not holding
send(request, parent, mylD, mylD)
parent < 0
receive(token)

holding < false

critical section

if deferred == 0
send(token, deferred)
deferred < 0

else holding < true

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 10.28

N

Algorithm 10.4: Neilsen-Mizuno token-passing algorithm (continued)

Receive

Integer source, originator

loop forever
pl2: receive(request, source, originator)
pl3: if parent = 0

pl4: if holding

p15: send(token, originator)
p16: holding <+ false

pl7: else deferred <— originator

pl8: else send(request, parent, mylD, originator)
pl9: parent < source

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 10.29

Distributed System with an Environment Node

/ - \
nodel node4d
\ — /

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 11.1

Back Edges

node2

\
/

nodel node4

[
\

node3

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.2

N

Algorithm 11.1: Dijkstra-Scholten algorithm (preliminary)

integer array[incoming]| inDeficit « [0,...,0]
integer inDeficit < 0, integer outDeficit < 0

send message

pl: send(message, destination, mylD)
p2: Iincrement outDeficit
receive message
p3: receive(message, source)
p4: increment inDeficit[source] and inDeficit
send signal
p5: when inDeficit > 1 or
(inDeficit = 1 and isTerminated and outDeficit = 0)
p6: E < some edge E with inDeficit[E] # 0
p7: send(signal, E, mylD)
p8: decrement inDeficit[E| and inDeficit

receive signal

receive(signal, _)

- decrement outDeficit

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 11.3

N

Algorithm 11.2: Dijkstra-Scholten algorithm (env., preliminary)
integer outDeficit <— 0

computation

pl: for all outgoing edges E

p2: send(message, E, mylD)

p3: increment outDeficit

p4: await outDeficit = 0

p5: announce system termination
receive signal

p6: receive(signal, source)

p7: decrement outDeficit

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 11.4

The Preliminary DS Algorithm is Unsafe

node2
s
nodel
S
node3

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.5

Spanning Tree

node2

nodel node4

node3

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.6

N

Algorithm 11.3: Dijkstra-Scholten algorithm
integer array[incoming]| inDeficit « [0,...,0]
integer inDeficit < 0
integer outDeficit <+ 0
integer parent <— —1

send message

pl: when parent # —1 // Only active nodes send messages
p2: send(message, destination, mylD)
p3: increment outDeficit

receive message
p4: receive(message,source)
p5: If parent = —1
p6: parent <— source
p7: increment inDeficit[source] and inDeficit

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.7

N

Algorithm 11.3: Dijkstra-Scholten algorithm (continued)

send signal
p8: when inDeficit > 1
p9: E < some edge E for which

(inDeficit[E] > 1) or (inDeficit|[E] = 1 and E # parent)

pl0: send(signal, E, myID)
pll: decrement inDeficit[E] and inDeficit
pl12: or when inDeficit = 1 and isTerminated and outDeficit = 0
p13: send(signal, parent, mylD)
pl4: inDeficit[parent] < 0
pl5: inDeficit + 0
pl6: parent <— —1

receive signal
pl7: receive(signal, _)
p18: decrement outDeficit

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.8

Partial Scenario for DS Algorithm

Action | nodel node2 node3 node4
1=21(-L[],0) | (-1,[0,0],0) | (-1,[0,0,0],0) | (-1,[0],0)
2=4|(1,[].1) | (1,[1,0],0) | (-1,[0,0,0],0) | (-1,[0],0)
2=31|(1[].1) | (1,[1,0],1) | (-1,[0,0,0],0) | (2,[1],0)
2=4|(1,[].1) | (1,[1,0],2) | (2,]0,1,0],0) | (2,[1],0)
1=31(-L[].1) | (1,[1,0],3) | (2,[0,1,0],0) | (2,[2],0)
3=2|(1[].2) | (1,[1,0],3) | (2,]1,1,0],0) | (2,[2].0)
4 =3 |(-1,[].2) | (1,[1,1],3) | (2,[1,1,0],1) | (2,[2],0)
(-1[12)] (1L,[11]3) | (2[111]1) | (2[2]1)

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.9

Data Structures After Partial Scenario

N

node2 (3)

e

nodel (2)

y

S

node4 (1)

.

_—

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

N

Slide — 11.10

N

Algorithm 11.4: Credit-recovery algorithm (environment node)
float weight < 1.0

computation

pl: for all outgoing edges E

p2: weight < weight / 2.0

p3: send(message, E, weight)

p4: await weight = 1.0

p5: announce system termination
receive signal

p6: receive(signal, w)

p7: weight < weight + w

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.11

N

Algorithm 11.5: Credit-recovery algorithm (non-environment node)
constant integer parent <— 0 // Environment node
boolean active < false
float weight < 0.0

send message

pl: if active // Only active nodes send messages

p2: weight < weight / 2.0

p3: send(message, destination, mylD, weight)

receive message

p4: receive(message, source, w)

p5: active < true

p6: weight < weight + w

send signal

p7: when terminated

p8: send(signal, parent, weight)

p9: weight <— 0.0

pl0: active < false

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.12

Messages on a Channel

ml4, ml3, ml2, mll, ml0
nodel > node2

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.13

Sending a Marker

odel ml4, m13, m12, marker, m11l, m10 J noded

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 11.14

N

Algorithm 11.6: Chandy-Lamport algorithm for global snapshots

integer array[outgoing] lastSent « [0, ..., O]

integer array[incoming]| lastReceived < [0, ..., 0]

integer array[outgoing] stateAtRecord < [—1, ..., —1]
integer array[incoming| messageAtRecord < [—1, ..., —1]
integer array[incoming| messageAtMarker < [—1, ..., —1]

send message
pl: send(message, destination, mylD)
p2: lastSent[destination] <— message
receive message
p3: receive(message,source)
p4: lastReceived[source| <— message

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.15

N

Algorithm 11.6: Chandy-Lamport algorithm (continued)

receive marker
p6: receive(marker, source)
p7: messageAtMarker[source| < lastReceived[source]
p8: if stateAtRecord = [—1,...,—1] // Not yet recorded
p9: stateAtRecord < lastSent
pl0: messageAtRecord < lastReceived
pll: for all outgoing edges E
pl2: send(marker, E, mylD)

record state
p13: await markers received on all incoming edges
pl4: recordState

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.16

Messages and Markers for a Scenario

node2

M,3,2,1 M,3,2,1

M 321
nodel 3.2, > node3

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.17

Scenario for CL Algorithm (1)

Action nodel node?2
s Ir st rc | mk | Is Ir | st | rc | mk
3.3] 3] | 3]

IM=2 | [3,3] 3,3 3] | [3

IM=3 | [3,3] 3,3 3] | [3

2<1M | [3,3 3,3 3] | [3

2M=-3 | [3,3 3,3 31 1 3] 1 [3] | [3] | [3]

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.18

Scenario for CL Algorithm (2)

Action node3

s Ir st | rc mk
32
3<2 0,1
3<2 0,2
3<2M 0,3
3«1 0,3 0,3] | [0,3]
3«1 1,3 0,3] | [0,3]
3«1 2,3 0,3] | [0,3]
3<1M 3,3 0,3] | [0,3]

3.3 0,3] | [3.3]

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 11.19

Architecture for a Reliable System

N

Temperature
CPU
\ Throttle
CPU ——Com paratoD—»Q
Pressure /
CPU

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 12.1

N

Algorithm 12.1: Consensus - one-round algorithm

planType finalPlan
planType array|[generals]| plan

pl: plan[mylD] < chooseAttackOrRetreat

p2: for all other generals G

p3: send(G, mylD, plan[mylD])

p4: for all other generals G

p5: receive(G, plan[G])

p6: finalPlan <— majority(plan)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.2

Messages Sent in a One-Round Algorithm

Basil A
_/ \R
R
Zoe A [.| Leo R
A

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.3

Data Structures in a One-Round Algorithm

Leo Loe
general | plan general | plans
Basil A Basil —
Leo R Leo R
Loe A Loe A
majority | A majority R

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 12.4

Algorithm 12.2: Consensus - Byzantine Generals algorithm

planType finalPlan
planType array[generals] plan, majorityPlan
planType array[generals, generals| reportedPlan

. plan[myID] < chooseAttackOrRetreat
. for all other generals G // First round
send(G, myID, plan[mylD])
. for all other generals G
receive(G, plan[G])
. for all other generals G // Second round
for all other generals G' except G
send(G', myID, G, plan[G])
. for all other generals G
for all other generals G' except G

receive(G, G’, reportedPlan|[G, G'])

. for all other generals G // First vote
. majorityPlan[G] < majority(plan[G] U reportedPlan[*, G])
: majorityPlan[myID] < plan[myID] // Second vote

. finalPlan <— majority(majorityPlan)

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 12.5

Crash Failure - First Scenario (Leo)

Leo
general | plan | reported by | majority
Basil | Zoe
Basil A - A
Leo R R
ZLoe A — A
majority A

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.6

Crash Failure - First Scenario (Zoe)

/Loe
general | plan | reported by | majority
Basil | Leo
Basil - A A
Leo R - R
ZLoe A A
majority A

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.7

Crash Failure - Second Scenario (Leo)

Leo
general | plan | reported by | majority
Basil | Zoe
Basil A A A
Leo R R
ZLoe A A A
majority A

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.8

Crash Failure - Second Scenario (Zoe)

/Loe
general | plan | reported by | majority
Basil | Leo
Basil A A A
Leo R - R
ZLoe A A
majority A

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.9

Knowledge Tree about Basil - First Scenario

Basil A

/Zoe A Leo A

Leo A /oe A

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.10

Knowledge Tree about Basil - Second Scenario

Basil X

Leo X

Zoe X

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.11

Knowledge Tree about Leo

Leo X

/oe X Basil X

Basil X

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.12

Byzantine Failure with Three Generals

A

/oe A Leo R

-

A

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.13

Data Stuctures for Leo and Zoe After First Round

N

Leo
general | plans
Basil A
Leo R
/oe A
majority A

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

/oe
general | plans
Basil R
Leo R
/oe A
majority R

N

Slide — 12.14

Data Stuctures for Leo After Second Round

N

Leo
general | plans | reported by | majority
Basil | Zoe
Basil A A A
Leo R R
ZLoe A R R
majority R

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

N

Slide — 12.15

Data Stuctures for Zoe After Second Round

N

/Loe
general | plans | reported by | majority
Basil | Leo
Basil A A A
Leo R R R
ZLoe A A
majority A

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

N

Slide — 12.16

Knowledge Tree About Zoe

Zoe A

Leo A Basil A

Basil A Leo R

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.17

Four Generals: Data Structure of Basil (1)

N

Basil
general | plan reported by majority
John | Leo | Zoe
Basil A A
John A A ? A
Leo R R ? R
Loe ? ? ? ?
majority ?

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 12.18

Four Generals: Data Structure of Basil (2)

N

Basil
general | plans reported by majority
John | Leo | Zoe

Basil A A
John A A A
Leo R R R
/oe R A R R

R

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

N

Slide — 12.19

Knowledge Tree About Loyal General Leo

N

Leo X

John X Zoe X | iBasil X! | ZoeX | !BasilY! |JohnZ

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 12.20

Knowledge Tree About Traitor Zoe

/oe

Leo Y

John Z

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.21

Complexity of the Byzantine Generals Algorithm

N

traitors | generals | messages
1 4 36
2 7 392
3 10 1790
4 13 5408

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

N

Slide — 12.22

N

Algorithm 12.3: Consensus - flooding algorithm
planType finalPlan
set of planType plan < { chooseAttackOrRetreat }
set of planType receivedPlan
pl: dot+ 1 times

p2: for all other generals G

p3: send(G, plan)

p4: for all other generals G

p5: receive(G, receivedPlan)

p6: plan < plan U receivedPlan

p7: finalPlan <— majority(plan)

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.23

Flooding Algorithm with No Crash:
Knowledge Tree About Leo

Leo X

.

l

Basil X

/

/oe X
[oe X [+
/oe X [+—

N

Loe X

AN

John X

N

John X

/

Zoe X

l

Zoe X

AN

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Zoe X

Basil X

Y

Zoe X

l

Zoe X

Slide — 12.24

Flooding Algorithm with Crash:
Knowledge Tree About Leo (1)

Leo X

l

Basil X

N

Loe X John X

/oe X /oe X

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.25

Flooding Algorithm with Crash:
Knowledge Tree About Leo (2)

Leo X

l

Basil X

AN

John X

Zoe X

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.26

N

Algorithm 12.4: Consensus - King algorithm
planType finalPlan, myMajority, kingPlan
planType array[generals] plan
integer votesMajority

pl: plan[mylD] < chooseAttackOrRetreat

p2: do two times

p3: for all other generals G // First and third rounds
pé: send(G, mylD, plan[mylD])

p5: for all other generals G

p6: receive(G, plan[G])

p7: myMajority <— majority(plan)
pS: votesMajority <— number of votes for myMajority

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.27

N

Algorithm 12.4: Consensus - King algorithm (continued)
p9: if my turn to be king // Second and fourth rounds
p10: for all other generals G
pll: send(G, myID, myMajority)
p12: plan[myID] < myMajority

else
p13: receive(kinglD, kingPlan)
pl4: if votesMajority j 3
p15: plan[myID] < myMajority

else
p16: plan[myID] < kingPlan
p17: finalPlan < plan[myID] // Final decision

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 12.28

Scenario for King Algorithm:

N

First King Loyal General Zoe (1)

Basil
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A R R R R 3

John
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A R A R A 3

Leo
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A R A R A 3

Loe
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A R R R R 3

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.29

Scenario for King Algorithm:

First King Loyal General Zoe (2)

N

Basil
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R
John
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R
Leo
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R
Loe
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 12.30

Scenario for King Algorithm:
First King Loyal General Zoe (3)

N

Basil
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R R ? R R 4-5

John
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R R ? R R 4-5

Leo
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R R ? R R 4-5

Loe
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R R ? R R 4-5

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.31

Scenario for King Algorithm:
First King Traitor Mike (1)

N

Basil
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R
John
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A
Leo
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A
Loe
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R R

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 12.32

Scenario for King Algorithm:
First King Traitor Mike (2)

N

Basil
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R A A ? R ? 3

John
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R A A ? R ? 3

Leo
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R A A ? R ? 3

Loe
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
R A A ? R ? 3

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.33

Scenario for King Algorithm:
First King Traitor Mike (3)

N

Basil
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A
John
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A
Leo
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A A
Loe
Basil | John | Leo | Mike | Zoe || myMajority | votesMajority | kingPlan
A

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 12.34

Complexity of
Byzantine Generals and King Algorithms

N

traitors | generals | messages
1 4 36
2 7 392
3 10 1790
4 13 5408

traitors | generals | messages
1 5 48
2 9 240
3 13 672
4 17 1440

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.35

Impossibility with Three Generals (1)

loe X Leo Y
Leo /oe
L1y..oyIp JOhn Y1, -3 Yn JOhn
Leo /oe
1ye--9 Um Uly...3Um

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.36

Impossibility with Three Generals (2)

John
Leo /oe
LlyeeeyLn Y1y -5 Yn
/oe Leo
:cl,...,:cn yl,...,yn

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.37

N

Exercise for Byzantine Generals Algorithm

/Loe
general | plan reported by majority
Basil | John | Leo

Basil R A R ?
John A R A ?
Leo R R R ?
/oe A A

?

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 12.38

Release Time, Execution Time and
Relative Deadline

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 13.1

Periodic Task

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.2

Deadline is a Multiple of the Period

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.3

Architecture of Ariane Control System

Main

Computer — Actuators

Sensors |—> INS —>

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 13.4

Synchronization Window in the Space Shuttle

0 225 240 1000

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.5

Synchronous System

— . . . — . . . —
Sample

T e T =
e Sy s e S S—
Control - - - o

L T N
Y S Y s it O i

Self-test : : : : : : : : : : :
| | | | | | | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.6

Synchronous System Scheduling Table

N

0 1 2 3 4
Sample Compute Control Telemetry 1 Self-test
5 6 7 8 9
Sample Compute Control Telemetry 2 | Telemetry 1
10 11 12 13 14
Sample Compute Control Telemetry 2 Self-test
Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.7

N

Algorithm 13.1: Synchronous scheduler
taskAddressType array[0..numberFrames-1] tasks <
[task address,. .. task address]
integer currentFrame < 0

pl: loop

p2: await beginning of frame

p3: invoke tasks[currentFrame]

p4: increment currentFrame modulo numberFrames

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.8

N

Algorithm 13.2: Producer-consumer (synchronous system)
queue of dataType bufferl, buffer2
sample compute control
dataType d dataType d1, d2 dataType d
pl: d < sample ql: dl < take(bufferl) | r1: d < take(buffer2)
p2: append(d, bufferl) | q2: d2 < compute(dl) | r2: control(d)
p3: q3: append(d2, r3:
buffer2)

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.9

Asynchronous System

Data management

Communications

Telemetry

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.10

N

Algorithm 13.3: Asynchronous scheduler
queue of taskAddress Type readyQueue <« ...
taskAddressType currentTask

loop forever

pl: await readyQueue not empty
p2: current Task < take head of readyQueue
p3: invoke currentTask

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.11

N

Algorithm 13.4: Preemptive scheduler
queue of taskAddress Type readyQueue <« ...
taskAddressType currentTask
loop forever

pl: await a scheduling event
p2: if currentTask.priority j highest priority of a task on readyQueue
p3: save partial computation of currentTask and place on readyQueue
p4: current Task < take task of highest priority from readyQueue
p5: invoke currentTask
p6: else if currentTask’s timeslice is past and

current Task.priority = priority of some task on readyQueue
p7: save partial computation of currentTask and place on readyQueue
pS: current Task < take a task of the same priority from readyQueue
p9: invoke currentTask
pl0: else resume currentTask

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.12

Preemptive Scheduling

- - f —
Watchdog - -

Data management

— —-— — — —-— —

Communications

Telemetry -

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.13

N

Algorithm 13.5: Watchdog supervision of response time
boolean ran < false
data management watchdog
loop forever loop forever
pl: do data management ql: await ninth frame
p2: ran < true q2: if ran is false
p3: rejoin readyQueue q3: notify response-time over-
flow
p4: q4: ran < false
p5: q5: rejoin readyQueue

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 13.14

N

Algorithm 13.6: Real-time buffering - throw away new data

queue of dataType buffer <~ empty queue

sample compute
dataType d dataType d
loop forever loop forever
pl: d < sample ql: await buffer not empty
p2: if buffer is full do nothing q2: d < take(buffer)
p3: else append(d,buffer) q3: compute(d)

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 13.15

N

Algorithm 13.7: Real-time buffering - overwrite old data

queue of dataType buffer <~ empty queue

sample compute
dataType d dataType d
loop forever loop forever
pl: d < sample ql: await buffer not empty
p2: append(d, buffer) q2: d < take(buffer)
p3: q3: compute(d)

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 13.16

Interrupt Overflow on Apollo 11

B
Watchdog -

: i F - 4 - - 44—
Counter increments.

I\/IEain task : . Z
| | | | | | | | | | | | | | |

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.17

Priority Inversion (1)

-— (S —>
T
Data management .

— - A —
Télemétry . ' ' '

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.18

Priority Inversion (2)

-~ CS : : —>
N e TR S
Data management

Communications
~~ : : CS —>' . . .
S S SN S S
Telemétry . ' ' ' ' ' '

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.19

Priority Inheritance

-— (S —>
T
Data management .

Te:lemétry

. . . S 5. = = == |
Communications
-— (S —

I e e e e ool
Télemeétry : | | o

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.20

Priority Inversion in Promela (1)

1 mtype = { idle, blocked, nonCS, CS, long };
2

3 mtype data = idle, comm = idle, telem = idle;
4

5 #tdefine ready(p) (p !=idle && p != blocked)
6

7 active proctype Data() {

8 do

9 :» data = nonCS;

10 enterCS(data);

11 exitCS(data);

12 data = idle;

13 od

14 }

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.21

Priority Inversion in Promela (2)

1 active proctype Comm() provided (!ready(data)) {
2 do

3 comm = long;

4 comm = idle;

5 od

6 }

.

8 active proctype Telem() provided (!ready(data) && !ready(comm)) {
9 do

10 - telem = nonCS;

11 enterCS(telem);

12 exitCS(telem);

13 telem = idle;

14 od

15 }

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.22

Priority Inversion in Promela (3)

1 bit sem = 1;

2

3 inline enterCS(state) {
4 atomic {

5 if

6 sem == 0 —>
7 state = blocked:;
8 sem = 0;
9 . else —>

10 fi ;

11 sem = 0O;

12 state = CS;

13 }

14 }

15

16 inline exitCS(state) {
17 atomic {

18 sem = 1;

19 state = idle
20 }
21}

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.23

Priority Inheritance in Promela

1 #define inherit (p) (p == CS)

2

3 active proctype Data() {

4 do

5 .- data = nonCS:;

6 assert(! (telem == CS && comm == long));
7 enterCS(data); exitCS(data);
8 data = idle;

9 od

10 }

11

12 active proctype Comm()

13 provided (! ready(data) && linherit(telem))

14 {... }

15

16 active proctype Telem()

17 provided (!ready(data) && !ready(comm) || inherit(telem))
18 {... }

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 13.24

Data Structures in Simpson’s Algorithm

lastWrittenPair lastReadPair

currentSlot

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 13.25

N

Algorithm 13.8: Simpson’s four-slot algorithm
dataType array[0..1,0..1] data < default initial values
bit array[0..1] currentSlot « { 0, 0 }
bit lastWrittenPair <— 1, lastReadPair <— 1

writer
bit writePair, writeSlot
dataType item
loop forever
pl: item < produce
p2: writePair < 1— lastReadPair
p3: writeSlot < 1— currentSlot|writePair]
p4: data[writePair, writeSlot] < item
p5: currentSlot|writePair| < writeSlot
p6: lastWrittenPair < writePair

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.26

N

Algorithm 13.8: Simpson’s four-slot algorithm (continued)

reader

bit readPair, readSlot

dataType item

loop forever
p7: readPair <+ lastWrittenPair
p8: lastReadPair +— readPair
p9: readSlot < currentSlot[readPair]
plo: item < data[readPair, readSlot]
pll: consume(item)

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.27

N

Algorithm 13.9: Event signaling

binary semaphore s <— 0

p

q

pl:
p2:

if decision is to wait for event ql: do something to cause event

wait(s)

q2: signal(s)

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 13.28

Suspension Objects in Ada

1 package Ada.Synchronous_Task_Control is

2 type Suspension_Object is limited private;

3 procedure Set_True(S : in out Suspension_Object);
4 procedure Set_False(S : in out Suspension_Object);
5 function Current_State(S : Suspension_Object)

6 return Boolean;

7 procedure Suspend_Until _True(

8 S : in out Suspension_Object);

9 private

10 —— not specified by the language

11 end Ada.Synchronous_Task_Control;

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.29

N

Algorithm 13.10: Suspension object - event signaling

Suspension_Object SO < (false by default)

p

q

pl:
p2:

If decision is to wait for event
Suspend_Until_True(SO)

ql: do something to cause event
q2: Set_True(SO)

N

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari.

Slide — 13.30

Transition in UPPAAL

O clk >=12, ch? n:=n + 1 O

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.31

Feasible Priority Assignment

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.32

Infeasible Priority Assignment

Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 13.33

Algorithm 13.11: Periodic task
constant integer period <« ...
integer next <— currentTime
loop forever
pl: delay next — currentTime
p2: compute
p3: next < next + period

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 13.34

Semantics of Propositional Operators

A v(A1) | v(Asg) | v(A)

- Ay T F

- Ay F T
AV Ay F F F
AV Ay otherwise T
A N Ao T T T
Ay N Ay otherwise F
Al — AQ T F F
Ay — Ao otherwise T
Al < AQ ?J(Al) = ?J(AQ) T
Al < AQ ?J(Al) 7& ?J(AQ) F

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.1

Wason Selection Task

p3 po flag = flag =

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.2

N

Algorithm 2.1: Verification example
integer x1, integer x2
integer y1 <— 0O, integer y2 <— 0, integer y3

pl: read(x1,x2)

p2: y3 ¢ x1

p3: while y3 £ 0

p4: if y24+1 = x2
p5: yl vyl 4+ 1
p6: y2 < 0

p7: else

p8: y2 +—y2 + 1

p9: y3 <—vy3 —1
p10: write(y1l,y2)

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.3

Spark Program for Integer Division

N

© 00 ~NO 1 A~ WDN R

e
N = O

13
14
15
16
17
18
19
20

——7# main_program,

procedure Divide(X1,X2: in Integer ; Q,R : out Integer)
——7# derives Q, R from X1,X2;

——# pre (X1 >=0) and (X2 > 0);

——# post (X1 = Q * X2 + R) and (X2 > R) and (R >= 0);
is
N: Integer ;
begin
Q:=0; R:=0; N:= X1,
while N /=0
——+# assert (X1 = Q«xX24+R+N) and (X2 > R) and (R >= 0);
loop
if R+1 = X2 then
Q:=Q+ 1, R:=0;
else
R:=R + 1;
end if;
N:=N—-1;
end loop;
end Divide;

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

N

Slide — 2.4

Integer Division

O© 00 N O 1 A WDN R

e e el
clr A W DN = O

procedure Divide(X1,X2: in Integer ; Q,R : out Integer) is
N: Integer ;
begin
—— pre (X1 >=0) and (X2 > 0);
Q:=0;R:=0; N:= X1;
while N /=0
—— assert (X1 = QxX2+R+N) and (X2 > R) and (R >= 0);
loop
if R+1 = X2then Q :=Q + 1; R :=0;
else R:=R + 1;
end if;
N:=N - 1;
end loop;
—— post (X1 = Q * X2 + R) and (X2 > R) and (R >= 0);
end Divide;

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.5

N

Verification Conditions for Integer Division

Precondition to assertion:

(X1>0)A(X2>0)—
(X1=Q - X2+ R+ N)AN(X2>R)AN(R>0).

Assertion to postcondition:

(X1=Q X2+ R+ N)AN(X2>R)AN(R>0)AN(N=0)—
(X1=Q - X2+ R)AN(X2>R)N(R >0).

Assertion to assertion by then branch:

(X1=Q -X2+R+N)A(X2>RAN(R>0)A(R+1=X2)—
(X1=Q - X2+ R +N)YAN(X2>R)AN(R >0).

Assertion to assertion by else branch:

(X1=Q X2+ R+N)AN(X2>R)AN(R>0)AN(R+1#X2)—
(X1=Q - X2+ R + N)YAN(X2>R)AN(R >0).

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 2.6

The Sleeping Barber

N

n | producer consumer Buffer | notEmpty
1 | append(d, Buffer) | wait(notEmpty) [] 0
2 | signal(notEmpty) | wait(notEmpty) 1] 0
3 | append(d, Buffer) | wait(notEmpty) 1] 1
4 | append(d, Buffer) | d < take(Buffer) 1] 0
5 | append(d, Buffer) | wait(notEmpty) [] 0

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari.

Slide — 3.1

Synchronizing Precedence

////////)' = \\\\\\\\\s
nodel node4
\ ' /
node3

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.2

Algorithm 3.1: Barrier synchronization
global variables for synchronization

loop forever

pl: wait to be released
p2: computation
p3: wait for all processes to finish their computation

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.3

The Stable Marriage Problem

Man List of women Woman List of men
1 2 4 1 3 1 2 1 4 3
2 3 1 4 2 2 4 3 1 2
3 2 3 1 4 3 1 4 3 2
4 4 1 3 2 4 2 1 4 3

‘ Principles of Concurrent and Distributed Programming. Slides (© 2006 by M. Ben-Ari. Slide — 3.4

N

Algorithm 3.2: Gale-Shapley algorithm for stable marriage

integer list freeMen < {1,... n}
integer list freeWomen < {1,...,n}
integer pair-list matched « ()
integer array[1l..n, 1..n] menPrefs « ...
integer array[1l..n, 1..n] womenPrefs « ...
integer array[1l..n] next < 1

pl: while freeMen £ (), choose some m from freeMen

p2: W < menPrefs[m, next[ml]]

p3: next[m] < next[m] + 1

p4: if w in freeWomen

p5: add (m,w) to matched, and remove w from freeWomen

p6: else if w prefers m to m’ // where (m’,w) in matched

pT7: replace (m’,w) in matched by (m,w), and remove m’ from freeMen
p8: else // w rejects m, and nothing is changed

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.5

The n-Queens Problem

Q

w0 N O g A~ W N R
I

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 3.6

The Architecture of BACI

Editor

Pascal

/ source

N

source

—

Pascal
compiler

C

compiler

P-code

_>.

Interpreter

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.1

The Architecture of Spin

Editor

N

/
N\

Promela
source

f

LTL
translator

f

LTL
formula

_>.

Parser/
Generator

!

Verifier
C source

'

C

Compiler

N

Trail

f

Computer

f

Verifier
Executable

_>.

Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.2

Cycles in a State Diagram

criticalp :O\ criticalp O\ criticalp = 0
criticalq = y criticalg :y criticalg = 0

— 4

criticalp = 0 /cm'tz'calp = /cm'tz'calp =
criticalg = 0 erz’ticalq =1 erz’tz’calq =0

N

‘ Principles of Concurrent and Distributed Programming. Slides (©) 2006 by M. Ben-Ari. Slide — 4.3

