
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 1: Introduction

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan1.4Database System Concepts - 7th Edition

Database Applications Examples

 Enterprise Information
• Sales: customers, products, purchases
• Accounting: payments, receipts, assets
• Human Resources: Information about employees, salaries, payroll taxes.

 Manufacturing: management of production, inventory, orders, supply
chain.

 Banking and finance
• customer information, accounts, loans, and banking transactions.
• Credit card transactions
• Finance: sales and purchases of financial instruments (e.g., stocks and

bonds; storing real-time market data

 Universities: registration, grades

©Silberschatz, Korth and Sudarshan1.5Database System Concepts - 7th Edition

Database Applications Examples (Cont.)

 Airlines: reservations, schedules
 Telecommunication: records of calls, texts, and data usage,

generating monthly bills, maintaining balances on prepaid calling
cards

 Web-based services
• Online retailers: order tracking, customized recommendations
• Online advertisements

 Document databases
 Navigation systems: For maintaining the locations of varies places of

interest along with the exact routes of roads, train systems, buses,
etc.

©Silberschatz, Korth and Sudarshan1.6Database System Concepts - 7th Edition

Purpose of Database Systems

In the early days, database applications were built directly on top of file
systems, which leads to:
 Data redundancy and inconsistency: data is stored in multiple file

formats resulting induplication of information in different files
 Difficulty in accessing data

• Need to write a new program to carry out each new task

 Data isolation
• Multiple files and formats

 Integrity problems
• Integrity constraints (e.g., account balance > 0) become “buried” in

program code rather than being stated explicitly
• Hard to add new constraints or change existing ones

©Silberschatz, Korth and Sudarshan1.7Database System Concepts - 7th Edition

Purpose of Database Systems (Cont.)

 Atomicity of updates
• Failures may leave database in an inconsistent state with partial updates

carried out
• Example: Transfer of funds from one account to another should either

complete or not happen at all

 Concurrent access by multiple users
• Concurrent access needed for performance
• Uncontrolled concurrent accesses can lead to inconsistencies
 Ex: Two people reading a balance (say 100) and updating it by

withdrawing money (say 50 each) at the same time

 Security problems
• Hard to provide user access to some, but not all, data

Database systems offer solutions to all the above problems

©Silberschatz, Korth and Sudarshan1.10Database System Concepts - 7th Edition

Data Models

 A collection of tools for describing
• Data
• Data relationships
• Data semantics
• Data constraints

 Relational model
 Entity-Relationship data model (mainly for database design)
 Object-based data models (Object-oriented and Object-relational)
 Semi-structured data model (XML)
 Other older models:

• Network model
• Hierarchical model

©Silberschatz, Korth and Sudarshan1.11Database System Concepts - 7th Edition

Relational Model

 All the data is stored in various tables.
 Example of tabular data in the relational model

Columns

Rows

Ted Codd
Turing Award 1981

©Silberschatz, Korth and Sudarshan1.12Database System Concepts - 7th Edition

A Sample Relational Database

©Silberschatz, Korth and Sudarshan1.14Database System Concepts - 7th Edition

View of Data

An architecture for a database system

©Silberschatz, Korth and Sudarshan1.15Database System Concepts - 7th Edition

Instances and Schemas

 Similar to types and variables in programming languages
 Logical Schema – the overall logical structure of the database

• Example: The database consists of information about a set of
customers and accounts in a bank and the relationship between
them
 Analogous to type information of a variable in a program

 Physical schema– the overall physical structure of the database
 Instance – the actual content of the database at a particular point in

time
• Analogous to the value of a variable

©Silberschatz, Korth and Sudarshan1.16Database System Concepts - 7th Edition

Physical Data Independence

 Physical Data Independence – the ability to modify the physical
schema without changing the logical schema
• Applications depend on the logical schema
• In general, the interfaces between the various levels and

components should be well defined so that changes in some parts
do not seriously influence others.

©Silberschatz, Korth and Sudarshan1.17Database System Concepts - 7th Edition

Data Definition Language (DDL)

 Specification notation for defining the database schema
Example: create table instructor (

ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

 DDL compiler generates a set of table templates stored in a data
dictionary

 Data dictionary contains metadata (i.e., data about data)
• Database schema
• Integrity constraints
 Primary key (ID uniquely identifies instructors)

• Authorization
 Who can access what

©Silberschatz, Korth and Sudarshan1.18Database System Concepts - 7th Edition

Data Manipulation Language (DML)

 Language for accessing and updating the data organized by the
appropriate data model
• DML also known as query language

 Two classes of languages
• Pure – used for proving properties about computational power

and for optimization
 Relational Algebra
 Tuple relational calculus
 Domain relational calculus

• Commercial – used in commercial systems
 SQL is the most widely used commercial language

©Silberschatz, Korth and Sudarshan1.19Database System Concepts - 7th Edition

Data Manipulation Language (Cont.)

 There are basically two types of data-manipulation language
• Procedural DML -- require a user to specify what data are

needed and how to get those data.
• Declarative DML -- require a user to specify what data are

needed without specifying how to get those data.
 Declarative DMLs are usually easier to learn and use than are

procedural DMLs.
 Declarative DMLs are also referred to as non-procedural DMLs
 The portion of a DML that involves information retrieval is called a

query language.

©Silberschatz, Korth and Sudarshan1.20Database System Concepts - 7th Edition

SQL Query Language

 SQL query language is nonprocedural. A query takes as input
several tables (possibly only one) and always returns a single table.

 Example to find all instructors in Comp. Sci. dept
select name
from instructor
where dept_name = 'Comp. Sci.'

 SQL is NOT a Turing machine equivalent language
 To be able to compute complex functions SQL is usually embedded in

some higher-level language
 Application programs generally access databases through one of

• Language extensions to allow embedded SQL

• Application program interface (e.g., ODBC/JDBC) which allow
SQL queries to be sent to a database

©Silberschatz, Korth and Sudarshan1.21Database System Concepts - 7th Edition

Database Access from Application
Program

 Non-procedural query languages such as SQL are not as powerful as
a universal Turing machine.

 SQL does not support actions such as input from users, output to
displays, or communication over the network.

 Such computations and actions must be written in a host language,
such as C/C++, Java or Python, with embedded SQL queries that
access the data in the database.

 Application programs -- are programs that are used to interact with
the database in this fashion.

©Silberschatz, Korth and Sudarshan1.22Database System Concepts - 7th Edition

Database Design

The process of designing the general structure of the database:
 Logical Design – Deciding on the database schema. Database

design requires that we find a “good” collection of relation schemas.
• Business decision – What attributes should we record in the database?
• Computer Science decision – What relation schemas should we have

and how should the attributes be distributed among the various relation
schemas?

 Physical Design – Deciding on the physical layout of the database

©Silberschatz, Korth and Sudarshan1.23Database System Concepts - 7th Edition

Database Engine

 A database system is partitioned into modules that deal with each of
the responsibilities of the overall system.

 The functional components of a database system can be divided into
• The storage manager,
• The query processor component,
• The transaction management component.

©Silberschatz, Korth and Sudarshan1.24Database System Concepts - 7th Edition

Storage Manager

 A program module that provides the interface between the low-level
data stored in the database and the application programs and queries
submitted to the system.

 The storage manager is responsible to the following tasks:
• Interaction with the OS file manager
• Efficient storing, retrieving and updating of data\

 The storage manager components include:
• Authorization and integrity manager
• Transaction manager
• File manager
• Buffer manager

©Silberschatz, Korth and Sudarshan1.25Database System Concepts - 7th Edition

Storage Manager (Cont.)

 The storage manager implements several data structures as part of
the physical system implementation:
• Data files -- store the database itself
• Data dictionary -- stores metadata about the structure of the database, in

particular the schema of the database.
• Indices -- can provide fast access to data items. A database index

provides pointers to those data items that hold a particular value.

©Silberschatz, Korth and Sudarshan1.26Database System Concepts - 7th Edition

Query Processor

 The query processor components include:
• DDL interpreter -- interprets DDL statements and records the definitions

in the data dictionary.
• DML compiler -- translates DML statements in a query language into an

evaluation plan consisting of low-level instructions that the query
evaluation engine understands.
 The DML compiler performs query optimization; that is, it picks the

lowest cost evaluation plan from among the various alternatives.
• Query evaluation engine -- executes low-level instructions generated by

the DML compiler.

©Silberschatz, Korth and Sudarshan1.27Database System Concepts - 7th Edition

Query Processing

1. Parsing and translation
2. Optimization
3. Evaluation

©Silberschatz, Korth and Sudarshan1.28Database System Concepts - 7th Edition

Transaction Management

 A transaction is a collection of operations that performs a single
logical function in a database application

 Transaction-management component ensures that the database
remains in a consistent (correct) state despite system failures (e.g.,
power failures and operating system crashes) and transaction
failures.

 Concurrency-control manager controls the interaction among the
concurrent transactions, to ensure the consistency of the database.

©Silberschatz, Korth and Sudarshan1.29Database System Concepts - 7th Edition

Database Architecture

 Centralized databases
• One to a few cores, shared memory

 Client-server,
• One server machine executes work on behalf of multiple client machines.

 Parallel databases
• Many core shared memory
• Shared disk
• Shared nothing

 Distributed databases
• Geographical distribution
• Schema/data heterogeneity

©Silberschatz, Korth and Sudarshan1.30Database System Concepts - 7th Edition

Database Applications

Database applications are usually partitioned into two or three parts
 Two-tier architecture -- the application resides at the client machine,

where it invokes database system functionality at the server machine
 Three-tier architecture -- the client machine acts as a front end and

does not contain any direct database calls.
• The client end communicates with an application server, usually through a

forms interface.
• The application server in turn communicates with a database system to

access data.

©Silberschatz, Korth and Sudarshan1.31Database System Concepts - 7th Edition

Two-tier and three-tier architectures

©Silberschatz, Korth and Sudarshan1.32Database System Concepts - 7th Edition

Database Users

There are four different types of database-system users
 Naive users -- unsophisticated users who interact with the system by

invoking one of the application programs that have been written
previously.

 Application programmers -- are computer professionals who write
application programs.

 Sophisticated users -- interact with the system without writing
programs
• using a database query language or by
• using tools such as data analysis software.

 Specialized users --write specialized database applications that do
not fit into the traditional data-processing framework. For example,
CAD, graphic data, audio, video.

©Silberschatz, Korth and Sudarshan1.33Database System Concepts - 7th Edition

Database Administrator

A person who has central control over the system is called a database
administrator (DBA), whose functions are:
 Schema definition
 Storage structure and access-method definition
 Schema and physical-organization modification
 Granting of authorization for data access
 Routine maintenance
 Periodically backing up the database
 Ensuring that enough free disk space is available for normal

operations, and upgrading disk space as required
 Monitoring jobs running on the database and ensuring that

performance is not degraded by very expensive tasks submitted by
some users

©Silberschatz, Korth and Sudarshan1.34Database System Concepts - 7th Edition

History of Database Systems

 1950s and early 1960s:
• Data processing using magnetic tapes for storage
 Tapes provided only sequential access

• Punched cards for input

 Late 1960s and 1970s:
• Hard disks allowed direct access to data
• Network and hierarchical data models in widespread use
• Ted Codd defines the relational data model
 Would win the ACM Turing Award for this work
 IBM Research begins System R prototype
 UC Berkeley (Michael Stonebraker) begins Ingres prototype
 Oracle releases first commercial relational database

• High-performance (for the era) transaction processing

©Silberschatz, Korth and Sudarshan1.35Database System Concepts - 7th Edition

History of Database Systems (Cont.)

 1980s:
• Research relational prototypes evolve into commercial systems
 SQL becomes industrial standard

• Parallel and distributed database systems
 Wisconsin, IBM, Teradata

• Object-oriented database systems

 1990s:
• Large decision support and data-mining applications
• Large multi-terabyte data warehouses
• Emergence of Web commerce

©Silberschatz, Korth and Sudarshan1.36Database System Concepts - 7th Edition

History of Database Systems (Cont.)

 2000s
• Big data storage systems
 Google BigTable, Yahoo PNuts, Amazon,
 “NoSQL” systems.

• Big data analysis: beyond SQL
 Map reduce and friends

 2010s
• SQL reloaded
 SQL front end to Map Reduce systems
 Massively parallel database systems
 Multi-core main-memory databases

©Silberschatz, Korth and Sudarshan1.37Database System Concepts - 7th Edition

End of Chapter 1

©Silberschatz, Korth and Sudarshan1.38Database System Concepts - 7th Edition

END OF CHAPTER 1

	Chapter 1: Introduction
	Database Applications Examples
	Database Applications Examples (Cont.)
	Purpose of Database Systems
	Purpose of Database Systems (Cont.)
	Data Models
	Relational Model
	A Sample Relational Database
	View of Data
	Instances and Schemas
	Physical Data Independence
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Data Manipulation Language (Cont.)
	SQL Query Language
	Database Access from Application Program
	Database Design
	Database Engine
	Storage Manager
	Storage Manager (Cont.)
	Query Processor
	Query Processing
	Transaction Management	
	Database Architecture
	Database Applications
	Two-tier and three-tier architectures
	Database Users
	Database Administrator
	History of Database Systems
	History of Database Systems (Cont.)
	History of Database Systems (Cont.)
	End of Chapter 1
	End of Chapter 1

