
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 3: Introduction to SQL

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan3.2Database System Concepts - 7th Edition

Outline

 Overview of The SQL Query Language
 SQL Data Definition
 Basic Query Structure of SQL Queries
 Additional Basic Operations
 Set Operations
 Null Values
 Aggregate Functions
 Nested Subqueries
 Modification of the Database

©Silberschatz, Korth and Sudarshan3.3Database System Concepts - 7th Edition

History

 IBM Sequel language developed as part of System R project at
the IBM San Jose Research Laboratory

 Renamed Structured Query Language (SQL)
 ANSI and ISO standard SQL:

• SQL-86
• SQL-89
• SQL-92
• SQL:1999 (language name became Y2K compliant!)
• SQL:2003

 Commercial systems offer most, if not all, SQL-92 features, plus
varying feature sets from later standards and special proprietary
features.
• Not all examples here may work on your particular system.

©Silberschatz, Korth and Sudarshan3.4Database System Concepts - 7th Edition

SQL Parts

 DML -- provides the ability to query information from the
database and to insert tuples into, delete tuples from, and
modify tuples in the database.

 integrity – the DDL includes commands for specifying
integrity constraints.

 View definition -- The DDL includes commands for defining
views.

 Transaction control –includes commands for specifying the
beginning and ending of transactions.

 Embedded SQL and dynamic SQL -- define how SQL
statements can be embedded within general-purpose
programming languages.

 Authorization – includes commands for specifying access
rights to relations and views.

©Silberschatz, Korth and Sudarshan3.5Database System Concepts - 7th Edition

Data Definition Language

 The schema for each relation.
 The type of values associated with each attribute.
 The Integrity constraints
 The set of indices to be maintained for each relation.
 Security and authorization information for each relation.
 The physical storage structure of each relation on disk.

The SQL data-definition language (DDL) allows the specification
of information about relations, including:

©Silberschatz, Korth and Sudarshan3.6Database System Concepts - 7th Edition

Domain Types in SQL

 char(n). Fixed length character string, with user-specified length n.
 varchar(n). Variable length character strings, with user-specified

maximum length n.
 int. Integer (a finite subset of the integers that is machine-

dependent).
 smallint. Small integer (a machine-dependent subset of the

integer domain type).
 numeric(p,d). Fixed point number, with user-specified precision of

p digits, with d digits to the right of decimal point. (ex.,
numeric(3,1), allows 44.5 to be stores exactly, but not 444.5 or
0.32)

 real, double precision. Floating point and double-precision
floating point numbers, with machine-dependent precision.

 float(n). Floating point number, with user-specified precision of at
least n digits.

 More are covered in Chapter 4.

©Silberschatz, Korth and Sudarshan3.7Database System Concepts - 7th Edition

Create Table Construct

 An SQL relation is defined using the create table command:
create table r

(A1 D1, A2 D2, ..., An Dn,
(integrity-constraint1),

...,
(integrity-constraintk))

• r is the name of the relation
• each Ai is an attribute name in the schema of relation r
• Di is the data type of values in the domain of attribute Ai

 Example:
create table instructor (

ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))

©Silberschatz, Korth and Sudarshan3.8Database System Concepts - 7th Edition

Integrity Constraints in Create Table

 Types of integrity constraints
• primary key (A1, ..., An)
• foreign key (Am, ..., An) references r
• not null

 SQL prevents any update to the database that violates an
integrity constraint.

 Example:
create table instructor (

ID char(5),
name varchar(20) not null,
dept_name varchar(20),
salary numeric(8,2),
primary key (ID),
foreign key (dept_name) references

department);

©Silberschatz, Korth and Sudarshan3.9Database System Concepts - 7th Edition

And a Few More Relation Definitions

 create table student (
ID varchar(5),
name varchar(20) not null,
dept_name varchar(20),
tot_cred numeric(3,0),
primary key (ID),
foreign key (dept_name) references department);

 create table takes (
ID varchar(5),
course_id varchar(8),
sec_id varchar(8),
semester varchar(6),
year numeric(4,0),
grade varchar(2),
primary key (ID, course_id, sec_id, semester, year) ,
foreign key (ID) references student,
foreign key (course_id, sec_id, semester, year) references

section);

©Silberschatz, Korth and Sudarshan3.10Database System Concepts - 7th Edition

And more still

 create table course (
course_id varchar(8),
title varchar(50),
dept_name varchar(20),
credits numeric(2,0),
primary key (course_id),
foreign key (dept_name) references department);

©Silberschatz, Korth and Sudarshan3.11Database System Concepts - 7th Edition

Updates to tables
 Insert

• insert into instructor values ('10211', 'Smith', 'Biology', 66000);
 Delete

• Remove all tuples from the student relation
 delete from student

 Drop Table
• drop table r

 Alter
• alter table r add A D

 where A is the name of the attribute to be added to relation
r and D is the domain of A.

 All exiting tuples in the relation are assigned null as the
value for the new attribute.

• alter table r drop A

 where A is the name of an attribute of relation r
 Dropping of attributes not supported by many databases.

©Silberschatz, Korth and Sudarshan3.12Database System Concepts - 7th Edition

Basic Query Structure

 A typical SQL query has the form:

select A1, A2, ..., An
from r1, r2, ..., rm
where P

• Ai represents an attribute
• Ri represents a relation
• P is a predicate.

 The result of an SQL query is a relation.

©Silberschatz, Korth and Sudarshan3.13Database System Concepts - 7th Edition

The select Clause

 The select clause lists the attributes desired in the result of a
query
• corresponds to the projection operation of the relational

algebra

 Example: find the names of all instructors:
select name
from instructor

 NOTE: SQL names are case insensitive (i.e., you may use
upper- or lower-case letters.)
• E.g., Name ≡ NAME ≡ name
• Some people use upper case wherever we use bold font.

©Silberschatz, Korth and Sudarshan3.14Database System Concepts - 7th Edition

The select Clause (Cont.)

 SQL allows duplicates in relations as well as in query
results.

 To force the elimination of duplicates, insert the keyword
distinct after select.

 Find the department names of all instructors, and remove
duplicates

select distinct dept_name
from instructor

 The keyword all specifies that duplicates should not be
removed.

select all dept_name
from instructor

©Silberschatz, Korth and Sudarshan3.15Database System Concepts - 7th Edition

The select Clause (Cont.)

 An asterisk in the select clause denotes “all attributes”
select *
from instructor

 An attribute can be a literal with no from clause
select '437'

• Results is a table with one column and a single row with
value “437”

• Can give the column a name using:
select '437' as FOO

 An attribute can be a literal with from clause
select 'A'
from instructor

• Result is a table with one column and N rows (number of
tuples in the instructors table), each row with value “A”

©Silberschatz, Korth and Sudarshan3.16Database System Concepts - 7th Edition

The select Clause (Cont.)

 The select clause can contain arithmetic expressions
involving the operation, +, –, ∗, and /, and operating on
constants or attributes of tuples.
• The query:

select ID, name, salary/12
from instructor

would return a relation that is the same as the instructor
relation, except that the value of the attribute salary is
divided by 12.

• Can rename “salary/12” using the as clause:
select ID, name, salary/12 as monthly_salary

©Silberschatz, Korth and Sudarshan3.17Database System Concepts - 7th Edition

The where Clause

 The where clause specifies conditions that the result must
satisfy
• Corresponds to the selection predicate of the relational algebra.

 To find all instructors in Comp. Sci. dept
select name
from instructor
where dept_name = 'Comp. Sci.'

 SQL allows the use of the logical connectives and, or, and not
 The operands of the logical connectives can be expressions

involving the comparison operators <, <=, >, >=, =, and <>.
 Comparisons can be applied to results of arithmetic expressions
 To find all instructors in Comp. Sci. dept with salary > 80000

select name
from instructor
where dept_name = 'Comp. Sci.' and salary > 80000

©Silberschatz, Korth and Sudarshan3.18Database System Concepts - 7th Edition

The from Clause

 The from clause lists the relations involved in the query
• Corresponds to the Cartesian product operation of the

relational algebra.

 Find the Cartesian product instructor X teaches
select ∗
from instructor, teaches

• generates every possible instructor – teaches pair, with all
attributes from both relations.

• For common attributes (e.g., ID), the attributes in the resulting
table are renamed using the relation name (e.g.,
instructor.ID)

 Cartesian product not very useful directly, but useful combined
with where-clause condition (selection operation in relational
algebra).

©Silberschatz, Korth and Sudarshan3.19Database System Concepts - 7th Edition

Examples

 Find the names of all instructors who have taught some course and
the course_id
• select name, course_id

from instructor , teaches
where instructor.ID = teaches.ID

 Find the names of all instructors in the Art department who have
taught some course and the course_id
• select name, course_id

from instructor , teaches
where instructor.ID = teaches.ID and instructor. dept_name = 'Art'

©Silberschatz, Korth and Sudarshan3.20Database System Concepts - 7th Edition

The Rename Operation

 The SQL allows renaming relations and attributes using the as
clause:

old-name as new-name

 Find the names of all instructors who have a higher salary than
some instructor in 'Comp. Sci'.
• select distinct T.name

from instructor as T, instructor as S
where T.salary > S.salary and S.dept_name = 'Comp. Sci.'

 Keyword as is optional and may be omitted
instructor as T ≡ instructor T

©Silberschatz, Korth and Sudarshan3.21Database System Concepts - 7th Edition

Self Join Example

 Relation emp-super

 Find the supervisor of “Bob”
 Find the supervisor of the supervisor of “Bob”
 Can you find ALL the supervisors (direct and indirect) of

“Bob”?

©Silberschatz, Korth and Sudarshan3.22Database System Concepts - 7th Edition

Self Join Example (CHECK

 Relation emp-super

 Find the supervisor of “Bob”
 Find the supervisor of the supervisor of “Bob”
 Can you find ALL the supervisors (direct and indirect) of “Bob”?

©Silberschatz, Korth and Sudarshan3.23Database System Concepts - 7th Edition

String Operations

 SQL includes a string-matching operator for comparisons on
character strings. The operator like uses patterns that are
described using two special characters:
• percent (%). The % character matches any substring.
• underscore (_). The _ character matches any character.

 Find the names of all instructors whose name includes the substring
“dar”.

select name
from instructor
where name like '%dar%'

 Match the string “100%”
like '100 \%' escape '\'

in that above we use backslash (\) as the escape character.

©Silberschatz, Korth and Sudarshan3.24Database System Concepts - 7th Edition

String Operations (Cont.)

 Patterns are case sensitive.
 Pattern matching examples:

• 'Intro%' matches any string beginning with “Intro”.
• '%Comp%' matches any string containing “Comp” as a substring.
• '_ _ _' matches any string of exactly three characters.
• '_ _ _ %' matches any string of at least three characters.

 SQL supports a variety of string operations such as
• concatenation (using “||”)
• converting from upper to lower case (and vice versa)
• finding string length, extracting substrings, etc.

©Silberschatz, Korth and Sudarshan3.25Database System Concepts - 7th Edition

Ordering the Display of Tuples

 List in alphabetic order the names of all instructors
select distinct name
from instructor
order by name

 We may specify desc for descending order or asc for ascending
order, for each attribute; ascending order is the default.
• Example: order by name desc

 Can sort on multiple attributes
• Example: order by dept_name, name

©Silberschatz, Korth and Sudarshan3.26Database System Concepts - 7th Edition

Where Clause Predicates

 SQL includes a between comparison operator
 Example: Find the names of all instructors with salary between

$90,000 and $100,000 (that is, ≥ $90,000 and ≤ $100,000)
• select name

from instructor
where salary between 90000 and 100000

 Tuple comparison
• select name, course_id

from instructor, teaches
where (instructor.ID, dept_name) = (teaches.ID, 'Biology');

©Silberschatz, Korth and Sudarshan3.27Database System Concepts - 7th Edition

Set Operations (CHECK)

 Find courses that ran in Fall 2017 or in Spring 2018

 Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)
union

(select course_id from section where sem = 'Spring' and year = 2018)

 Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)
intersect

(select course_id from section where sem = 'Spring' and year = 2018)

(select course_id from section where sem = 'Fall' and year = 2017)
except

(select course_id from section where sem = 'Spring' and year = 2018)

©Silberschatz, Korth and Sudarshan3.28Database System Concepts - 7th Edition

Set Operations

 Find courses that ran in Fall 2017 or in Spring 2018

 Find courses that ran in Fall 2017 but not in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)
union

(select course_id from section where sem = 'Spring' and year = 2018)

 Find courses that ran in Fall 2017 and in Spring 2018

(select course_id from section where sem = 'Fall' and year = 2017)
intersect

(select course_id from section where sem = 'Spring' and year = 2018)

(select course_id from section where sem = 'Fall' and year = 2017)
except

(select course_id from section where sem = 'Spring' and year = 2018)

©Silberschatz, Korth and Sudarshan3.29Database System Concepts - 7th Edition

Set Operations (Cont.)

 Set operations union, intersect, and except
• Each of the above operations automatically

eliminates duplicates

 To retain all duplicates use the
• union all,
• intersect all
• except all.

©Silberschatz, Korth and Sudarshan3.30Database System Concepts - 7th Edition

Null Values

 It is possible for tuples to have a null value, denoted by
null, for some of their attributes

 null signifies an unknown value or that a value does not
exist.

 The result of any arithmetic expression involving null is
null
• Example: 5 + null returns null

 The predicate is null can be used to check for null
values.
• Example: Find all instructors whose salary is null.

select name
from instructor
where salary is null

 The predicate is not null succeeds if the value on which
it is applied is not null.

©Silberschatz, Korth and Sudarshan3.31Database System Concepts - 7th Edition

Null Values (Cont.)

 SQL treats as unknown the result of any comparison
involving a null value (other than predicates is null and is
not null).
• Example: 5 < null or null <> null or null = null

 The predicate in a where clause can involve Boolean
operations (and, or, not); thus the definitions of the Boolean
operations need to be extended to deal with the value
unknown.
• and : (true and unknown) = unknown,

(false and unknown) = false,
(unknown and unknown) = unknown

• or: (unknown or true) = true,
(unknown or false) = unknown
(unknown or unknown) = unknown

 Result of where clause predicate is treated as false if it
evaluates to unknown

©Silberschatz, Korth and Sudarshan3.32Database System Concepts - 7th Edition

Aggregate Functions

 These functions operate on the multiset of values of a
column of a relation, and return a value

avg: average value
min: minimum value
max: maximum value
sum: sum of values
count: number of values

©Silberschatz, Korth and Sudarshan3.33Database System Concepts - 7th Edition

Aggregate Functions Examples

 Find the average salary of instructors in the Computer Science
department
• select avg (salary)

from instructor
where dept_name= 'Comp. Sci.';

 Find the total number of instructors who teach a course in the
Spring 2010 semester
• select count (distinct ID)

from teaches
where semester = 'Spring' and year = 2018;

 Find the number of tuples in the course relation
• select count (*)

from course;

©Silberschatz, Korth and Sudarshan3.34Database System Concepts - 7th Edition

Aggregate Functions – Group By

 Find the average salary of instructors in each department
• select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan3.35Database System Concepts - 7th Edition

Aggregation (Cont.)

 Attributes in select clause outside of aggregate functions must
appear in group by list
• /* erroneous query */

select dept_name, ID, avg (salary)
from instructor
group by dept_name;

©Silberschatz, Korth and Sudarshan3.36Database System Concepts - 7th Edition

Aggregate Functions – Having Clause

 Find the names and average salaries of all departments whose
average salary is greater than 42000

Note: predicates in the having clause are applied after the
formation of groups whereas predicates in the where
clause are applied before forming groups

select dept_name, avg (salary) as avg_salary
from instructor
group by dept_name
having avg (salary) > 42000;

©Silberschatz, Korth and Sudarshan3.37Database System Concepts - 7th Edition

Null Values and Aggregates

 Total all salaries
select sum (salary)
from instructor

• Above statement ignores null amounts
• Result is null if there is no non-null amount

 All aggregate operations except count(*) ignore tuples with null
values on the aggregated attributes

 What if collection has only null values?
• count returns 0
• all other aggregates return null

©Silberschatz, Korth and Sudarshan3.38Database System Concepts - 7th Edition

Nested Subqueries

 SQL provides a mechanism for the nesting of subqueries. A
subquery is a select-from-where expression that is nested within
another query.

 The nesting can be done in the following SQL query

select A1, A2, ..., An
from r1, r2, ..., rm
where P

as follows:
• From clause: ri can be replaced by any valid subquery
• Where clause: P can be replaced with an expression of the form:

B <operation> (subquery)
Where B is an attribute and <operation> to be defined later.

• Select clause:
Ai can be replaced be a subquery that generates a single value.

©Silberschatz, Korth and Sudarshan3.39Database System Concepts - 7th Edition

Set Membership

©Silberschatz, Korth and Sudarshan3.40Database System Concepts - 7th Edition

Set Membership

 Find courses offered in Fall 2017 and in Spring 2018

 Find courses offered in Fall 2017 but not in Spring 2018

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id in (select course_id
from section
where semester = 'Spring' and year= 2018);

select distinct course_id
from section
where semester = 'Fall' and year= 2017 and

course_id not in (select course_id
from section
where semester = 'Spring' and year= 2018);

©Silberschatz, Korth and Sudarshan3.41Database System Concepts - 7th Edition

Set Membership (Cont.)

 Name all instructors whose name is neither “Mozart” nor Einstein”

select distinct name
from instructor
where name not in ('Mozart', 'Einstein')

 Find the total number of (distinct) students who have taken course
sections taught by the instructor with ID 10101

 Note: Above query can be written in a much simpler manner.
The formulation above is simply to illustrate SQL features

select count (distinct ID)
from takes
where (course_id, sec_id, semester, year) in

(select course_id, sec_id, semester, year
from teaches
where teaches.ID= 10101);

©Silberschatz, Korth and Sudarshan3.42Database System Concepts - 7th Edition

Set Comparison

©Silberschatz, Korth and Sudarshan3.43Database System Concepts - 7th Edition

Set Comparison – “some” Clause

 Find names of instructors with salary greater than that of
some (at least one) instructor in the Biology department.

 Same query using > some clause

select name
from instructor
where salary > some (select salary

from instructor
where dept name = 'Biology');

select distinct T.name
from instructor as T, instructor as S
where T.salary > S.salary and S.dept name = 'Biology';

©Silberschatz, Korth and Sudarshan3.44Database System Concepts - 7th Edition

Definition of “some” Clause

 F <comp> some r ⇔ ∃ t ∈ r such that (F <comp> t)
Where <comp> can be: <, ≤, >, =, ≠

0
5
6

(5 < some) = true

0
5
0

) = false

5

0
5(5 ≠ some) = true (since 0 ≠ 5)

(read: 5 < some tuple in the relation)

(5 < some

) = true(5 = some

(= some) ≡ in
However, (≠ some) ≡ not in

©Silberschatz, Korth and Sudarshan3.45Database System Concepts - 7th Edition

Set Comparison – “all” Clause

 Find the names of all instructors whose salary is greater than the
salary of all instructors in the Biology department.

select name
from instructor
where salary > all (select salary

from instructor
where dept name = 'Biology');

©Silberschatz, Korth and Sudarshan3.46Database System Concepts - 7th Edition

Definition of “all” Clause

 F <comp> all r ⇔ ∀ t ∈ r (F <comp> t)

0
5
6

(5 < all) = false

6
10
4

) = true

5

4
6(5 ≠ all) = true (since 5 ≠ 4 and 5 ≠ 6)

(5 < all

) = false(5 = all

(≠ all) ≡ not in
However, (= all) ≡ in

©Silberschatz, Korth and Sudarshan3.47Database System Concepts - 7th Edition

Test for Empty Relations

 The exists construct returns the value true if the
argument subquery is nonempty.

 exists r ⇔ r ≠ Ø
 not exists r ⇔ r = Ø

©Silberschatz, Korth and Sudarshan3.48Database System Concepts - 7th Edition

Use of “exists” Clause

 Yet another way of specifying the query “Find all courses taught in
both the Fall 2017 semester and in the Spring 2018 semester”

select course_id
from section as S
where semester = 'Fall' and year = 2017 and

exists (select *
from section as T
where semester = 'Spring' and year= 2018

and S.course_id = T.course_id);

 Correlation name – variable S in the outer query
 Correlated subquery – the inner query

©Silberschatz, Korth and Sudarshan3.49Database System Concepts - 7th Edition

Use of “not exists” Clause

 Find all students who have taken all courses offered in the
Biology department.

 Note that X – Y = Ø ⇔ X ⊆ Y
 Note: Cannot write this query using = all and its variants

select distinct S.ID, S.name
from student as S
where not exists ((select course_id

from course
where dept_name = 'Biology')

except
(select T.course_id

from takes as T
where S.ID = T.ID));

 First nested query lists all courses offered in Biology
 Second nested query lists all courses a particular student took

©Silberschatz, Korth and Sudarshan3.50Database System Concepts - 7th Edition

Test for Absence of Duplicate Tuples

 The unique construct tests whether a subquery has any
duplicate tuples in its result.

 The unique construct evaluates to “true” if a given
subquery contains no duplicates .

 Find all courses that were offered at most once in 2017
select T.course_id
from course as T
where unique (select R.course_id

from section as R
where T.course_id= R.course_id

and R.year = 2017);

©Silberschatz, Korth and Sudarshan3.51Database System Concepts - 7th Edition

Subqueries in the From Clause

©Silberschatz, Korth and Sudarshan3.52Database System Concepts - 7th Edition

Subqueries in the Form Clause

 SQL allows a subquery expression to be used in the from clause
 Find the average instructors’ salaries of those departments where

the average salary is greater than $42,000.”
select dept_name, avg_salary
from (select dept_name, avg (salary) as avg_salary

from instructor
group by dept_name)

where avg_salary > 42000;

 Note that we do not need to use the having clause
 Another way to write above query

select dept_name, avg_salary
from (select dept_name, avg (salary)

from instructor
group by dept_name)
as dept_avg (dept_name, avg_salary)

where avg_salary > 42000;

©Silberschatz, Korth and Sudarshan3.53Database System Concepts - 7th Edition

With Clause

 The with clause provides a way of defining a temporary relation
whose definition is available only to the query in which the with
clause occurs.

 Find all departments with the maximum budget

with max_budget (value) as
(select max(budget)
from department)

select department.name
from department, max_budget
where department.budget = max_budget.value;

©Silberschatz, Korth and Sudarshan3.54Database System Concepts - 7th Edition

Complex Queries using With Clause

 Find all departments where the total salary is greater than the
average of the total salary at all departments

with dept _total (dept_name, value) as
(select dept_name, sum(salary)
from instructor
group by dept_name),

dept_total_avg(value) as
(select avg(value)
from dept_total)

select dept_name
from dept_total, dept_total_avg
where dept_total.value > dept_total_avg.value;

©Silberschatz, Korth and Sudarshan3.55Database System Concepts - 7th Edition

Scalar Subquery

 Scalar subquery is one which is used where a single value is
expected

 List all departments along with the number of instructors in each
department
select dept_name,

(select count(*)
from instructor
where department.dept_name = instructor.dept_name)

as num_instructors
from department;

 Runtime error if subquery returns more than one result tuple

©Silberschatz, Korth and Sudarshan3.56Database System Concepts - 7th Edition

Modification of the Database

 Deletion of tuples from a given relation.
 Insertion of new tuples into a given relation
 Updating of values in some tuples in a given relation

©Silberschatz, Korth and Sudarshan3.57Database System Concepts - 7th Edition

Deletion

 Delete all instructors
delete from instructor

 Delete all instructors from the Finance department
delete from instructor
where dept_name= 'Finance';

 Delete all tuples in the instructor relation for those instructors
associated with a department located in the Watson building.

delete from instructor
where dept name in (select dept name

from department
where building = 'Watson');

©Silberschatz, Korth and Sudarshan3.58Database System Concepts - 7th Edition

Deletion (Cont.)

 Delete all instructors whose salary is less than the average salary
of instructors

delete from instructor
where salary < (select avg (salary)

from instructor);

 Problem: as we delete tuples from deposit, the average salary
changes

 Solution used in SQL:
1. First, compute avg (salary) and find all tuples to delete

2. Next, delete all tuples found above (without
recomputing avg or retesting the tuples)

©Silberschatz, Korth and Sudarshan3.59Database System Concepts - 7th Edition

Insertion

 Add a new tuple to course
insert into course

values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 or equivalently

insert into course (course_id, title, dept_name, credits)
values ('CS-437', 'Database Systems', 'Comp. Sci.', 4);

 Add a new tuple to student with tot_creds set to null
insert into student

values ('3003', 'Green', 'Finance', null);

©Silberschatz, Korth and Sudarshan3.60Database System Concepts - 7th Edition

Insertion (Cont.)

 Make each student in the Music department who has earned more
than 144 credit hours an instructor in the Music department with a
salary of $18,000.

insert into instructor
select ID, name, dept_name, 18000
from student
where dept_name = 'Music' and total_cred > 144;

 The select from where statement is evaluated fully before any of its
results are inserted into the relation.
Otherwise queries like

insert into table1 select * from table1
would cause problem

©Silberschatz, Korth and Sudarshan3.61Database System Concepts - 7th Edition

Updates

 Give a 5% salary raise to all instructors
update instructor

set salary = salary * 1.05

 Give a 5% salary raise to those instructors who Eran
less than 70000

update instructor
set salary = salary * 1.05
where salary < 70000;

 Give a 5% salary raise to instructors whose salary is
less than average

update instructor
set salary = salary * 1.05
where salary < (select avg (salary)

from instructor);

©Silberschatz, Korth and Sudarshan3.62Database System Concepts - 7th Edition

Updates (Cont.)

 Increase salaries of instructors whose salary is over
$100,000 by 3%, and all others by a 5%
• Write two update statements:

update instructor
set salary = salary * 1.03
where salary > 100000;

update instructor
set salary = salary * 1.05
where salary <= 100000;

• The order is important
• Can be done better using the case statement (next slide)

©Silberschatz, Korth and Sudarshan3.63Database System Concepts - 7th Edition

Case Statement for Conditional Updates

 Same query as before but with case statement
update instructor

set salary = case
when salary <= 100000 then salary * 1.05
else salary * 1.03

end

©Silberschatz, Korth and Sudarshan3.64Database System Concepts - 7th Edition

Updates with Scalar Subqueries

 Recompute and update tot_creds value for all students
update student S
set tot_cred = (select sum(credits)

from takes, course
where takes.course_id = course.course_id and

S.ID= takes.ID.and
takes.grade <> 'F' and

takes.grade is not null);
 Sets tot_creds to null for students who have not taken any course
 Instead of sum(credits), use:

case
when sum(credits) is not null then sum(credits)
else 0

end

©Silberschatz, Korth and Sudarshan3.65Database System Concepts - 7th Edition

End of Chapter 3

	Chapter 3: Introduction to SQL
	Outline
	History
	SQL Parts
	Data Definition Language
	Domain Types in SQL
	Create Table Construct
	Integrity Constraints in Create Table
	And a Few More Relation Definitions
	And more still
	Updates to tables
	Basic Query Structure
	The select Clause
	The select Clause (Cont.)
	The select Clause (Cont.)
	The select Clause (Cont.)
	The where Clause
	The from Clause
	Examples
	The Rename Operation
	Self Join Example
	Self Join Example (CHECK
	String Operations
	String Operations (Cont.)
	Ordering the Display of Tuples
	Where Clause Predicates
	Set Operations (CHECK)
	Set Operations
	Set Operations (Cont.)
	Null Values
	Null Values (Cont.)
	Aggregate Functions
	Aggregate Functions Examples
	Aggregate Functions – Group By
	Aggregation (Cont.)
	Aggregate Functions – Having Clause
	Null Values and Aggregates
	Nested Subqueries
	Set Membership
	Set Membership
	Set Membership (Cont.)
	Set Comparison
	Set Comparison – “some” Clause
	Definition of “some” Clause
	Set Comparison – “all” Clause
	Definition of “all” Clause
	Test for Empty Relations
	Use of “exists” Clause
	Use of “not exists” Clause
	Test for Absence of Duplicate Tuples
	Subqueries in the From Clause
	Subqueries in the Form Clause
	With Clause
	Complex Queries using With Clause
	Scalar Subquery
	Modification of the Database
	Deletion
	Deletion (Cont.)
	Insertion
	Insertion (Cont.)
	Updates
	Updates (Cont.)
	Case Statement for Conditional Updates
	Updates with Scalar Subqueries
	End of Chapter 3

