
©Silberschatz, Korth and Sudarshan7.1Database System Concepts - 7th Edition

Chapter 7:  Normalization
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Features of Good Relational Designs
 Suppose we combine instructor and department into in_dep, 

which represents the natural join on the relations instructor and 
department

 There is repetition of information
 Need to use null values (if we add a new department with no 

instructors) 
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Decomposition

 The only way to avoid the repetition-of-information problem in 
the in_dep schema is to decompose it into two schemas –
instructor and department schemas.

 Not all decompositions are good.  Suppose we decompose

employee(ID, name, street, city, salary)
into

employee1 (ID, name)
employee2 (name, street, city, salary)

The problem arises when we have two employees with the 
same name

 The next slide shows how we lose information -- we cannot 
reconstruct the original employee relation -- and so, this is a 
lossy decomposition.
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A Lossy Decomposition
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Lossless Decomposition

 Let R be a relation schema and let R1 and R2 form a 
decomposition of R . That is R = R1 U R2

 We say that the decomposition is a lossless decomposition  
if there is no loss of information by replacing  R with the two 
relation schemas R1 U R2

 Formally,
∏ R1

(r)     ∏ R2
(r) = r

 And,  conversely a decomposition is lossy if
r  ⊂ ∏ R1

(r)     ∏ R2
(r) = r
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Example of Lossless Decomposition 

 Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)
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Normalization Theory

 Decide whether a particular relation R is in “good” form.
 In the case that a relation R is not in “good” form, 

decompose it into  set of relations {R1, R2, ..., Rn} such 
that 
• Each relation is in good form 
• The decomposition is a lossless decomposition

 Our theory is based on:
• functional dependencies
• multivalued dependencies
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Functional Dependencies

 There are usually a variety of constraints (rules) on the data 
in the real world.

 For example, some of the constraints that are expected to 
hold  in a university database are:
• Students and instructors are uniquely identified by their 

ID.
• Each student and instructor has only one name.
• Each instructor and student is (primarily) associated with 

only one department.
• Each department has only one value for its budget, and 

only one associated building.
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Functional Dependencies (Cont.)

 An instance of a relation that satisfies all such real-world 
constraints is called a  legal instance of the relation;

 A legal instance of a database is one where all the relation 
instances are legal instances

 Constraints on the set of legal relations.
 Require that the value for a certain set of attributes 

determines uniquely the value for another set of attributes.
 A functional dependency is a generalization of the notion of a 

key.
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Functional Dependencies Definition 

 Let R be a relation schema
α ⊆ R  and  β ⊆ R

 The functional dependency
α → β

holds on R if and only if for any legal relations r(R), whenever 
any two tuples t1 and t2 of r agree on the attributes α, they also 
agree on the attributes β. That is, 

t1[α] = t2 [α]   ⇒ t1[β ]  = t2 [β ] 

 Example:  Consider r(A,B ) with the following instance of r.

 On this instance, B → A hold;  A → B does NOT hold, 

1 4
1     5
3     7
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Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, there are 
certain other functional dependencies that are logically 
implied by F.
• If  A → B and  B → C,  then we can infer that A → C
• etc.

 The set of all functional dependencies logically implied by 
F is the closure of F.

 We denote the closure of F by F+.
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Keys and Functional Dependencies

 K is a superkey for relation schema R if and only if K → R
 K is a candidate key for R if and only if 

• K → R, and
• for no α ⊂ K, α → R

 Functional dependencies allow us to express constraints that 
cannot be expressed using superkeys.  Consider the schema:

in_dep (ID, name, salary, dept_name, building, budget ).
We expect these functional dependencies to hold:

dept_name→ building
ID  building

but would not expect the following to hold: 
dept_name → salary
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Use of Functional Dependencies

 We use functional dependencies to:
• To test relations to see if they are legal under a given set of 

functional dependencies. 
 If a relation r is legal under a set F of functional 

dependencies, we say that r satisfies F.
• To specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R
satisfy the set of functional dependencies F.

 Note:  A specific instance of a relation schema may satisfy a 
functional dependency even if the functional dependency does 
not hold on all legal instances.  
• For example, a specific instance of instructor may, by 

chance, satisfy 
name → ID.
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Trivial Functional Dependencies

 A functional dependency is trivial if it is satisfied by all 
instances of a relation
• Example:

 ID, name → ID
 name → name

• In general, α → β is trivial if β ⊆ α
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Lossless Decomposition

 We can use functional dependencies to show when certain 
decomposition are lossless.  

 For the case of R = (R1, R2), we require that for all possible 
relations r on schema R

r = ∏R1 (r )    ∏R2 (r ) 
 A decomposition of R into R1 and R2 is lossless decomposition  

if at least one of the following dependencies is in F+:
• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

 The above functional dependencies are a sufficient condition 
for lossless join decomposition; the dependencies are a 
necessary condition only if all constraints are functional 
dependencies
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Example

 R = (A, B, C)
F = {A → B, B → C)

 R1 = (A, B),   R2 = (B, C)
• Lossless decomposition:

R1  ∩ R2 = {B} and B → BC
 R1 = (A, B),   R2 = (A, C)

• Lossless decomposition:
R1  ∩ R2 = {A} and A → AB

 Note:
• B → BC 

is a shorthand notation for 
• B → {B, C}
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Dependency Preservation

 Testing functional dependency constraints each time the 
database is updated can be costly

 It is useful to design the database in a way that constraints can 
be tested efficiently.  

 If testing a functional dependency can be done by considering 
just one relation, then the cost of testing this constraint is low

 When decomposing a relation it is possible that it is no longer 
possible to do the testing without having to perform a Cartesian 
Produced.

 A decomposition that makes it computationally hard to enforce 
functional dependency is said to be NOT dependency 
preserving.
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Dependency Preservation Example

 Consider a schema:
dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:
i_ID → dept_name
s_ID, dept_name → i_ID

 In the above design we are forced to repeat the department 
name once for each time an instructor participates in a 
dept_advisor relationship.  

 To fix this, we need to decompose dept_advisor
 Any decomposition will not include all the attributes in

s_ID, dept_name → i_ID
 Thus, the composition NOT be dependency preserving 



©Silberschatz, Korth and Sudarshan7.23Database System Concepts - 7th Edition

Boyce-Codd Normal Form

 A relation schema R is in BCNF with respect to a set F of 
functional  dependencies if for all functional dependencies in 
F+ of the form 

α → β

where α ⊆ R and β ⊆ R, at least one of the following holds:
• α → β is trivial (i.e., β ⊆ α)
• α is a superkey for R
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Boyce-Codd Normal Form (Cont.)

 Example schema  that is not in BCNF:
in_dep (ID, name, salary, dept_name, building, budget )

because :
• dept_name→ building, budget  

 holds on in_dep
 but 

• dept_name is not a superkey
 When decompose  in_dept into instructor and department 

• instructor is in BCNF
• department is in BCNF
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Decomposing a Schema into BCNF

 Let  R be a schema R  that is not in BCNF.  Let α →β be the 
FD that causes a violation of BCNF.

 We decompose R into:
• (α U β )
• ( R - ( β - α ) )

 In our example of in_dep, 
• α = dept_name
• β = building, budget
and in_dep is replaced by
• (α U β ) = ( dept_name, building, budget )
• ( R - ( β - α ) ) = ( ID, name, dept_name, salary )
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Example

 R = (A, B, C)
F = {A → B, B → C)

 R1 = (A, B),   R2 = (B, C)
• Lossless-join decomposition:

R1  ∩ R2 = {B} and B → BC
• Dependency preserving

 R1 = (A, B),   R2 = (A, C)
• Lossless-join decomposition:

R1  ∩ R2 = {A} and A → AB
• Not dependency preserving 

(cannot check B → C without computing R1 R2)
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BCNF and Dependency Preservation

 It is not always possible to achieve both BCNF and 
dependency preservation 

 Consider a schema:
dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:
i_ID → dept_name
s_ID, dept_name → i_ID

 dept_advisor is not in BCNF 
• i_ID is not a superkey.

 Any decomposition  of dept_advisor will not include all the 
attributes in

s_ID, dept_name → i_ID
 Thus, the composition is  NOT be dependency preserving
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Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:
α → β in F+

at least one of the following holds:
• α → β is trivial (i.e., β ∈ α)
• α is a superkey for R
• Each attribute A in β – α is contained in a candidate key for 

R.
(NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the 
first two conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure 
dependency preservation (will see why later).
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3NF Example

 Consider a schema:
dept_advisor(s_ID, i_ID, dept_name)

 With function dependencies:
i_ID → dept_name
s_ID, dept_name → i_ID

 Two candidate keys =  {s_ID, dept_name}, {s_ID, i_ID }
 We have seen before that dept_advisor is not in BCNF
 R,  however, is in  3NF

• s_ID, dept_name is a superkey
• i_ID → dept_name and i_ID is NOT a superkey, but:

 { dept_name} – {i_ID }  = {dept_name } and
 dept_name is contained in a  candidate key
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Redundancy in 3NF

 Consider  the schema R below,  which is in 3NF 

 What is wrong with the table?

J
j1
j2
j3

null

L K
I1
I1
I1
I2

k1

k1

k1

k2

• R = (J, K, L )
• F = {JK → L, L → K }
• And an instance table:

• Repetition of information
• Need to use null values (e.g., to represent the relationship l2, k2

where there is no corresponding value for J)
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Comparison of BCNF and 3NF

 Advantages to 3NF over BCNF.  It is always possible to 
obtain a 3NF design without sacrificing losslessness or 
dependency preservation. 

 Disadvantages to 3NF. 
• We may have to use null values to represent some of the 

possible meaningful relationships among data items.
• There is the problem of repetition of information.
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Goals of Normalization

 Let R be a relation scheme with a set F of functional 
dependencies.

 Decide whether a relation scheme R is in “good” form.
 In the case that a relation scheme R is not in “good” form, 

decompose it into a set of relation scheme  {R1, R2, ..., Rn} 
such that 
• Each relation scheme is in good form 
• The decomposition is a lossless decomposition
• Preferably, the decomposition should be dependency 

preserving.
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How good is BCNF?

 There are database schemas in BCNF that do not seem to 
be sufficiently normalized 

 Consider a relation 
inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and 
can have multiple children

• Instance of inst_info
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 There are no non-trivial functional dependencies and 
therefore the relation is in BCNF 

 Insertion anomalies – i.e., if we add a phone 981-992-3443 
to 99999, we need to add two tuples

(99999, David,   981-992-3443)
(99999, William, 981-992-3443)

How good is BCNF? (Cont.)
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 It is better to decompose inst_info into:
• inst_child:

• inst_phone:

 This suggests the need for higher normal forms, such as 
Fourth Normal Form (4NF), which we shall see later

Higher Normal Forms 
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Functional-Dependency Theory Roadmap

 We now consider the formal theory that tells us which 
functional dependencies are implied logically by a given set of 
functional dependencies.

 We then develop algorithms to generate lossless 
decompositions into BCNF and 3NF

 We then develop algorithms to test if a decomposition is 
dependency-preserving
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Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, there are 
certain other functional dependencies that are logically 
implied by F.
• If  A → B and  B → C,  then we can infer that A → C
• etc.

 The set of all functional dependencies logically implied by 
F is the closure of F.

 We denote the closure of F by F+.
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Closure of a Set of Functional Dependencies

 We can compute F+ , the closure of F, by repeatedly 
applying Armstrong’s Axioms:
• Reflexive rule: if β ⊆ α, then α → β

• Augmentation  rule: if α → β, then γ α → γ β

• Transitivity rule:  if α → β, and β → γ, then α → γ

 These rules are 
• sound -- generate only functional dependencies that 

actually hold,  and 
• complete -- generate all functional dependencies that 

hold.



©Silberschatz, Korth and Sudarshan7.40Database System Concepts - 7th Edition

Example of F+

 R = (A, B, C, G, H, I)
F = { A → B

A → C
CG → H
CG → I
B → H}

 Some members of F+

• A → H        
 by transitivity from A → B and B → H

• AG → I       
 by augmenting A → C with G, to get AG → CG 

and then transitivity with CG → I 
• CG → HI     

 by augmenting CG → I to infer CG → CGI, 
and augmenting of CG → H to infer CGI → HI, 

and then transitivity
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Closure of Functional Dependencies (Cont.)

 Additional rules:
• Union rule: If α → β holds and α → γ holds,  then α → β

γ holds.
• Decomposition rule: If α → β γ holds, then α → β

holds and α → γ holds.
• Pseudotransitivity rule:If α → β holds and γ β → δ

holds, then α γ → δ holds.
 The above rules can be inferred from Armstrong’s axioms.
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Procedure for Computing F+

 To compute the closure of a set of functional dependencies F:
F + = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +
if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F +
until F + does not change any further

 NOTE:  We shall see an alternative procedure for this task later
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Closure of Attribute Sets

 Given a set of attributes α, define the closure of α under F
(denoted by α+) as the set of attributes that are functionally 
determined by α under F

 Algorithm to compute α+, the closure of α under F

result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then result := result ∪ γ
end



©Silberschatz, Korth and Sudarshan7.44Database System Concepts - 7th Edition

Example of Attribute Set Closure
 R = (A, B, C, G, H, I)
 F = {A → B

A → C 
CG → H
CG → I
B → H}

 (AG)+

1. result = AG
2. result = ABCG (A → C and A → B)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

 Is AG a candidate key?  
1. Is AG a super key?

1. Does AG → R? == Is R ⊇ (AG)+ 

2. Is any subset of AG a superkey?
1. Does A → R? == Is R ⊇ (A)+   

2. Does G → R? == Is R ⊇ (G)+ 

3. In general: check for each subset of size n-1
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Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
 Testing for superkey:

• To test if α is a superkey, we compute α+, and check if α+ 

contains all attributes of R.
 Testing functional dependencies

• To check if a functional dependency α → β holds (or, in 
other words, is in F+), just check if β ⊆ α+. 

• That is, we compute α+ by using attribute closure, and 
then check if it contains β. 

• Is a simple and cheap test, and very useful
 Computing closure of F

• For each γ ⊆ R, we find the closure γ+, and for each S ⊆
γ+, we output a functional dependency γ → S.
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Canonical Cover

 Suppose that we have a set of functional dependencies F on a 
relation schema. Whenever a user performs an update on the 
relation, the database system must ensure that the update does 
not violate any functional dependencies; that is, all the functional 
dependencies in F are satisfied in the new database state.

 If an update violates any functional dependencies in the set F, 
the system must roll back the update.

 We can reduce the effort spent in checking for violations by 
testing a simplified set of functional dependencies that has the 
same closure as the given set. 

 This simplified set is termed the canonical cover
 To define canonical cover we must first define extraneous

attributes.
• An attribute of a functional dependency  in F is extraneous if 

we can remove it without changing F +
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Extraneous Attributes

 Removing an attribute from the left side of a functional 
dependency could make it a stronger constraint.  
• For example, if we have AB → C and remove B, we get the 

possibly stronger result A → C.  It may be stronger because 
A → C logically implies AB → C, but  AB → C does not, on 
its own, logically imply A → C

 But, depending on what our set F of functional dependencies 
happens to be, we may be able to remove B from AB → C 
safely.  
• For example, suppose that
• F =  {AB → C, A → D, D → C}
• Then we can show that F logically implies A → C, making 

extraneous in AB → C.
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Extraneous Attributes (Cont.)

 Removing an attribute from the right side of a functional 
dependency could make it a weaker constraint.  
• For example, if we have AB → CD and remove C, we get the 

possibly weaker result AB → D.  It may be weaker because 
using just AB → D, we can no longer infer AB → C.

 But, depending on what our set F of functional dependencies 
happens to be, we may be able to remove C from AB → CD 
safely.  
• For example, suppose that

F = { AB → CD, A → C.
• Then we can show that even after replacing AB → CD by AB 

→ D, we can still infer $AB → C and thus AB → CD.
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Extraneous Attributes
 An attribute of a functional dependency  in F is extraneous if we 

can remove it without changing F +

 Consider a set F of functional dependencies and the functional 
dependency α → β in F.
• Remove from the left side: Attribute A is extraneous in α if

 A ∈ α and 
 F logically implies (F – {α → β}) ∪ {(α – A) → β}.

• Remove from the right side: Attribute A is extraneous in β
if
 A ∈ β and 
 The set of functional dependencies    

(F – {α → β}) ∪ {α →(β – A)} logically implies F.
 Note: implication in the opposite direction is trivial in each of the 

cases above, since a “stronger” functional dependency always 
implies a weaker one
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Testing if an Attribute is Extraneous

 Let R be  a relation  schema and  let  F be  a set of functional 
dependencies that hold on R . Consider an attribute  in the 
functional dependency α → β.

 To test if attribute A ∈ β is extraneous in β
• Consider the set:

F' = (F – {α → β}) ∪ {α →(β – A)}, 
• check that α+ contains A; if it does, A is extraneous in β

 To test if attribute A ∈ α is extraneous in α

• Let γ = α – {A}. Check if γ → β can be inferred  from F. 
 Compute γ+ using the dependencies in F
 If γ+  includes all attributes in β then , A is extraneous in

α
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Examples of Extraneous Attributes

 Let F = {AB → CD, A → E, E → C }
 To check if C is extraneous in AB → CD, we:

• Compute the attribute closure of AB under F' = {AB → D, A
→ E, E → C}

• The closure is ABCDE, which includes CD
• This implies that C is extraneous
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Canonical Cover

 A canonical cover for F is a set of dependencies Fc such that 
• F logically implies all dependencies in Fc , and 
• Fc logically implies all dependencies in F, and
• No functional dependency in Fc contains an extraneous 

attribute, and
• Each left side of functional dependency in Fc is unique. 

That is, there are no two dependencies in Fc

 α1 → β1 and α2 → β2 such that 
 α1 = α2
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Canonical Cover

 To compute a canonical cover for F:

repeat
Use the union rule to replace any dependencies in F of the 

form

α1 → β1 and α1 → β2 with α1 → β1 β2

Find a functional dependency α → β in Fc with an 
extraneous attribute  

either in α or in β

/* Note: test for extraneous attributes done using Fc,
not F*/

If an extraneous attribute is found, delete it from α → β

until  (Fc not change
 Note: Union rule may become applicable after some extraneous 

attributes have been deleted, so it has to be re-applied
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Example: Computing a Canonical Cover
 R = (A, B, C)

F = {A → BC
B → C
A → B

AB → C}
 Combine A → BC and A → B into A → BC

• Set is now {A → BC, B → C, AB → C}
 A is extraneous in AB → C

• Check if the result of deleting A from  AB → C  is implied by the other 
dependencies
 Yes: in fact,  B → C is already present!

• Set is now {A → BC, B → C}
 C is extraneous in A → BC

• Check if A → C is logically implied by A → B and the other dependencies
 Yes: using transitivity on A → B  and B → C. 

• Can use attribute closure of A in more complex cases
 The canonical cover is: A → B

B → C
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Dependency Preservation

 Let Fi be the set of dependencies F + that include only 
attributes in Ri. 
• A  decomposition is dependency preserving,  if

(F1 ∪ F2 ∪ … ∪ Fn )+ = F +

 Using the above definition,  testing for dependency 
preservation take exponential time.

 Not that if a decomposition is NOT dependency preserving 
then checking updates for violation of functional dependencies 
may require computing joins, which is expensive.
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Dependency Preservation (Cont.)

 Let F be the set of dependencies  on schema R and let R1, R2 ,
.., Rn be  a decomposition of R.

 The restriction of  F to Ri is the set Fi  of all  functional 
dependencies in F + that include only attributes  of Ri .

 Since all functional dependencies in a restriction involve 
attributes of only one relation schema, it is possible to test such 
a dependency for satisfaction by checking only one relation.

 Note that the definition of restriction uses all dependencies in in 
F +, not just those in F.

 The set of restrictions F1, F2 , .. , Fn is the set of functional  
dependencies that can be checked efficiently.
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Testing for Dependency Preservation

 To check if a dependency α → β is preserved in a decomposition 
of R into R1, R2, …, Rn , we apply the following test (with attribute 
closure done with respect to F)
• result = α

repeat
for each Ri in the decomposition

t = (result ∩ Ri)+ ∩ Ri
result  =  result  ∪ t

until (result does not change)
• If result contains all attributes in β, then the functional 

dependency  α → β is preserved.
 We apply the test on all dependencies in F to check if a 

decomposition is dependency preserving
 This procedure takes polynomial time, instead of the exponential 

time required to compute F+ and (F1 ∪ F2 ∪ … ∪ Fn)+
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Example

 R = (A, B, C )
F = {A → B

B → C}
Key = {A}

 R is not in BCNF
 Decomposition R1 = (A, B),  R2 = (B, C)

• R1 and R2 in BCNF
• Lossless-join decomposition
• Dependency preserving
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Testing for BCNF

 To check if a non-trivial dependency α →β causes a violation of 
BCNF
1.  compute α+ (the attribute closure of α), and 
2.  verify that it includes all attributes of R, that is, it is a superkey of R.

 Simplified test: To check if a relation schema R is in BCNF, it 
suffices to check only the dependencies in the given set F for 
violation of BCNF, rather than checking all dependencies in F+.
• If none of the dependencies in F causes a violation of BCNF, then 

none of the dependencies in F+ will cause a violation of BCNF 
either.

 However, simplified test using only F is incorrect when testing a 
relation in a decomposition of R
• Consider R = (A, B, C, D, E), with F = { A → B, BC → D}

 Decompose R into R1 = (A,B) and R2 = (A,C,D, E) 
 Neither of the dependencies in F contain only attributes from

(A,C,D,E) so we might be mislead into thinking R2 satisfies 
BCNF.  

 In fact, dependency AC → D in F+ shows R2 is not in BCNF.
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Testing Decomposition for BCNF

 To check if a relation Ri in a decomposition of R is in BCNF, 
• Either test Ri for BCNF with respect to the restriction of F+ to Ri

(that is, all FDs in F+ that contain only attributes from Ri)
• or use the original set of dependencies F that hold on R, but with 

the following test:
• for every set of attributes α ⊆ Ri, check that α+ (the 

attribute closure of α) either includes no attribute of Ri- α, 
or includes all attributes of Ri.

 If the condition is violated by some α → β in F+, the 
dependency

α → (α+ - α) ∩ Ri
can be shown to hold on Ri, and Ri violates BCNF.

 We use above dependency to decompose Ri
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BCNF Decomposition Algorithm

result := {R };
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional dependency that 
holds on Ri such that α → Ri is not in F +, 
and α ∩ β = ∅;

result := (result – Ri ) ∪ (Ri – β) ∪ (α, β );
end

else done := true; 

Note:  each Ri is in BCNF, and decomposition is lossless-join.
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Example of BCNF Decomposition

 class (course_id, title, dept_name, credits, sec_id, semester, year, 
building, room_number, capacity, time_slot_id)

 Functional dependencies:
• course_id→ title, dept_name, credits
• building, room_number→capacity
• course_id, sec_id, semester, year→building, room_number, 

time_slot_id
 A candidate key {course_id, sec_id, semester, year}.
 BCNF Decomposition:

• course_id→ title, dept_name, credits  holds
 but course_id is not a superkey.

• We replace class by:
 course(course_id, title, dept_name, credits)
 class-1 (course_id, sec_id, semester, year, building,           

room_number, capacity, time_slot_id)
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BCNF Decomposition (Cont.)

 course is in BCNF
• How do we know this?

 building, room_number→capacity holds on class-1
• but {building, room_number} is not a superkey for class-1.
• We replace class-1 by:

 classroom (building, room_number, capacity)
 section (course_id, sec_id, semester, year, building, 

room_number, time_slot_id)
 classroom and section are in BCNF.
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Third Normal Form

 There are some situations where 
• BCNF is not dependency preserving, and 
• efficient checking for FD violation on updates is 

important
 Solution: define a weaker normal form, called Third                    

Normal Form (3NF)
• Allows some redundancy (with resultant problems; we 

will see examples later)
• But functional dependencies can be checked on 

individual relations without computing a join.
• There is always a lossless-join, dependency-

preserving decomposition into 3NF.



©Silberschatz, Korth and Sudarshan7.66Database System Concepts - 7th Edition

3NF Example

 Relation dept_advisor:
• dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name → i_ID,  i_ID → dept_name}
• Two candidate keys:  s_ID, dept_name, and i_ID, s_ID
• R is in 3NF

 s_ID, dept_name → i_ID s_ID
• dept_name is a superkey

 i_ID → dept_name
• dept_name is contained in a candidate key
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Testing for 3NF

 Need to check only FDs in F, need not check all FDs in F+.
 Use attribute closure to check for each dependency α → β, if α

is a superkey.
 If α is not a superkey, we have to verify if each attribute in β is 

contained in a candidate key of R
• This test is rather more expensive, since it involve finding 

candidate keys
• Testing for 3NF has been shown to be NP-hard
• Interestingly, decomposition into third normal form 

(described shortly) can be done in polynomial time 
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3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j ≤ i contains  α β

then begin
i := i + 1;
Ri := α β

end
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end 
/* Optionally, remove redundant relations */
repeat
if any schema Rj is contained in another schema Rk

then /* delete Rj */
Rj = R;;
i=i-1;

return (R1, R2, ..., Ri)
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3NF Decomposition Algorithm (Cont.)

 Above algorithm ensures:

• each relation schema Ri is in 3NF

• decomposition is dependency preserving and lossless-join

• Proof of correctness is at end of this presentation (click 
here)
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3NF Decomposition: An Example

 Relation schema:
cust_banker_branch = (customer_id, employee_id, branch_name, 

type )
 The functional dependencies for this relation schema are:

• customer_id, employee_id → branch_name, type
• employee_id → branch_name
• customer_id, branch_name → employee_id

 We first compute a canonical cover
• branch_name is extraneous in the r.h.s. of the 1st dependency
• No other attribute is extraneous, so we get FC =

customer_id, employee_id → type
employee_id → branch_name
customer_id, branch_name → employee_id
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3NF Decompsition Example (Cont.)
 The for loop generates following 3NF schema:

(customer_id, employee_id, type )
(employee_id, branch_name)
(customer_id, branch_name, employee_id)

• Observe that (customer_id, employee_id, type ) contains a 
candidate key of the original schema, so no further relation 
schema needs be added

 At end of for loop, detect and delete schemas, such as  
(employee_id, branch_name), which are subsets of other 
schemas
• result will not depend on the order in which FDs are 

considered
 The resultant simplified 3NF schema is:

(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)
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Comparison of BCNF and 3NF

 It is always possible to decompose a relation into a set of  
relations that are in 3NF such that:
• The decomposition is lossless
• The dependencies are preserved

 It is always possible to decompose a relation into a set of 
relations that are in BCNF such that:
• The decomposition is lossless
• It may not be possible to preserve dependencies.
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Design Goals

 Goal for a relational database design is:
• BCNF.
• Lossless join.
• Dependency preservation.

 If we cannot achieve this, we accept one of
• Lack of dependency preservation 
• Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying 
functional dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test, 
(and currently not supported by any of the widely used databases!)

 Even if we had a dependency preserving decomposition, using 
SQL we would not be able to efficiently test a functional 
dependency whose left hand side is not a key.
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Multivalued Dependencies (MVDs)

 Suppose we record names of children, and phone numbers for 
instructors:
• inst_child(ID, child_name)
• inst_phone(ID, phone_number)

 If we were to combine these schemas to get
• inst_info(ID, child_name, phone_number)
• Example data:

(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

 This relation is in BCNF
• Why?
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Multivalued Dependencies

 Let R be a relation schema and let α ⊆ R and β ⊆ R. The 
multivalued dependency

α →→ β

holds on R if in any legal relation r(R), for all pairs for tuples 
t1 and t2 in r such that t1[α] = t2 [α], there exist tuples t3 and t4
in r such that: 

t1[α] = t2 [α] = t3 [α] = t4 [α] 
t3[β]         =  t1 [β] 
t3[R  – β] =  t2[R  – β] 
t4 [β]         =  t2[β] 
t4[R  – β] =  t1[R  – β] 
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MVD -- Tabular representation 

 Tabular representation of α →→ β
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MVD (Cont.)

 Let R be a relation schema with a set of attributes that are 
partitioned into 3 nonempty subsets.

Y, Z, W
 We say that Y →→ Z (Y multidetermines Z )

if and only if for all possible relations r (R )
< y1, z1, w1 > ∈ r and < y1, z2, w2 > ∈ r

then
< y1, z1, w2 > ∈ r and < y1, z2, w1 > ∈ r

 Note that since the behavior of Z and W are identical it follows 
that 
Y →→ Z if Y →→ W 
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Example

 In our example:
ID →→ child_name
ID →→ phone_number

 The above formal definition is supposed to formalize the notion 
that given a particular value of Y (ID) it has associated with it a 
set of values of Z (child_name) and a set of values of W 
(phone_number), and these two sets are in some sense 
independent of each other.

 Note: 
• If Y → Z then  Y →→ Z
• Indeed we have (in above notation) Z1 = Z2

The claim follows.
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Use of Multivalued Dependencies

 We use multivalued dependencies in two ways: 
1. To test relations to determine whether they are legal under 

a given set of functional and multivalued dependencies
2. To specify constraints on the set of legal relations.  We 

shall concern ourselves only with relations that satisfy a 
given set of functional and multivalued dependencies.

 If a relation r fails to satisfy a given multivalued dependency, we 
can construct a relations r′ that does satisfy the multivalued 
dependency by adding tuples to r. 
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Theory of MVDs
 From the definition of multivalued dependency, we can derive 

the following rule:
• If α → β, then α →→ β

That is, every functional dependency is also a multivalued 
dependency

 The closure D+ of D is the set of all functional and multivalued 
dependencies logically implied by D. 
• We can compute D+ from D, using the formal definitions of 

functional dependencies and multivalued dependencies.
• We can manage with such reasoning for very simple 

multivalued dependencies, which seem to be most common 
in practice

• For complex dependencies, it is better to reason about sets 
of dependencies using a system of inference rules 
(Appendix C).
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Fourth Normal Form

 A relation schema R is in 4NF with respect to a set D of 
functional and multivalued dependencies if for all multivalued 
dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆
R, at least one of the following hold:
• α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
• α is a superkey for schema R

 If a relation is in 4NF it is in BCNF
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Restriction of Multivalued Dependencies

 The restriction of  D to Ri is the set Di consisting of
• All functional dependencies in D+ that include only attributes 

of Ri

• All multivalued dependencies of the form
α →→ (β ∩ Ri)

where α ⊆ Ri and  α →→ β is in D+
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4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done) 
if (there is a schema Ri in result that is not in 4NF) then

begin
let α →→ β be a nontrivial multivalued dependency that 

holds
on Ri such that α → Ri  is not in Di, and α∩β=φ; 

result :=  (result - Ri) ∪ (Ri - β)  ∪ (α, β); 
end

else done:= true;
Note: each Ri is in 4NF, and decomposition is lossless-join
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Example

 R =(A, B, C, G, H, I)
F ={ A →→ B

B →→ HI
CG →→ H }

 R is not in 4NF since A →→ B and A is not a superkey for R
 Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I)  (R2 is not in 4NF, decompose into 
R3 and R4)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I)  (R4 is not in 4NF, decompose into R5 and 
R6)
• A →→ B and B →→ HI  A →→ HI, (MVD transitivity), and
• and hence A →→ I (MVD restriction to R4)

e) R5 = (A, I)  (R5 is in 4NF)
f)R6 = (A, C, G)  (R6 is in  4NF)
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Further Normal Forms

 Join dependencies generalize multivalued dependencies
• lead to project-join normal form (PJNF) (also called 

fifth normal form)
 A class of even more general constraints, leads to a normal 

form called domain-key normal form.
 Problem with these generalized constraints:  are hard to 

reason with, and no set of sound and complete set of 
inference rules exists.

 Hence rarely used
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Overall Database Design Process

 We have assumed schema R is given
• R could have been generated when converting E-R 

diagram to a set of tables.
• R could have been a single relation containing all attributes 

that are of interest (called universal relation).
• Normalization breaks R into smaller relations.
• R could have been the result of some ad hoc design of 

relations, which we then test/convert to normal form.
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ER Model and Normalization

 When an E-R diagram is carefully designed, identifying all 
entities correctly, the tables generated from the E-R diagram 
should not need further normalization.

 However, in a real (imperfect) design, there can be functional 
dependencies from non-key attributes of an entity to other 
attributes of the entity
• Example:  an employee entity with

 attributes 
department_name and building, 

 functional dependency 
department_name→ building

 Good design would have made department an entity
 Functional dependencies from non-key attributes of a relationship 

set possible, but rare --- most relationships are binary 
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Denormalization for Performance

 May want to use non-normalized schema for performance
 For example, displaying prereqs along with course_id, and title

requires join of course with prereq
 Alternative 1:  Use denormalized relation containing attributes 

of course as well as prereq with all above attributes
• faster lookup
• extra space and extra execution time for updates
• extra coding work for programmer and possibility of error in 

extra code
 Alternative 2: use a materialized view defined as

course prereq
• Benefits and drawbacks same as above, except no extra 

coding work for programmer and avoids possible errors
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Other Design Issues

 Some aspects of database design are not caught by normalization
 Examples of bad database design, to be avoided: 

Instead of earnings (company_id, year, amount ), use 
• earnings_2004, earnings_2005, earnings_2006, etc., all on the 

schema (company_id, earnings).
 Above are in BCNF, but make querying across years 

difficult and needs new table each year
• company_year (company_id, earnings_2004, earnings_2005,  

earnings_2006)
 Also in BCNF, but also makes querying across years 

difficult and requires new attribute each year.
 Is an example of a crosstab, where values for one attribute 

become column names
 Used in spreadsheets, and in data analysis tools
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Modeling Temporal Data

 Temporal data have an association time interval during which the 
data are valid.

 A snapshot is the value of the data at a particular point in time
 Several proposals to extend ER model by adding valid time to

• attributes, e.g., address of an instructor at different points in time
• entities, e.g., time duration when a student entity exists
• relationships, e.g., time during which an instructor was 

associated with a student as an advisor.
 But no accepted standard
 Adding a temporal component results in functional dependencies 

like
ID → street, city

not holding, because the address varies over time
 A temporal functional dependency X → Y holds on schema R if 

the functional dependency X  Y holds on all snapshots for all legal 
instances r (R).

t

τ
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Modeling Temporal Data (Cont.)

 In practice, database designers may add start and end time 
attributes to relations
• E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)
 Constraint: no two tuples can have overlapping valid 

times
• Hard to enforce efficiently

 Foreign key references may be to current version of data, or to 
data at a point in time
• E.g., student transcript should refer to course information at 

the time the course was taken
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End of Chapter 7
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Correctness of 3NF Decomposition Algorithm

 3NF decomposition algorithm is dependency preserving (since 
there is a relation for every FD in Fc)

 Decomposition is lossless
• A candidate key (C ) is in one of the relations Ri in 

decomposition
• Closure of candidate key under Fc must contain all attributes 

in R.  
• Follow the steps of attribute closure algorithm to show there 

is only one tuple in the join result for each tuple in Ri
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Correctness of 3NF Decomposition Algorithm (Cont.)

 Claim: if a relation Ri is in the decomposition generated by the  
above algorithm, then Ri satisfies 3NF.

 Proof:
• Let Ri be generated from the dependency α → β

• Let γ → B be any non-trivial functional dependency on Ri. (We 
need only consider FDs whose right-hand side is a single 
attribute.)

• Now, B can be in either β or α but not in both. Consider each 
case separately.
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Correctness of 3NF Decomposition (Cont.)

 Case 1: If B in β:
• If γ is a superkey, the 2nd condition of 3NF is satisfied
• Otherwise α must contain some attribute not in γ
• Since γ → B is in F+ it must be derivable from Fc, by using 

attribute closure on γ.
• Attribute closure not have used α →β.  If it had been used, α

must be contained in the attribute closure of γ, which is not 
possible, since we assumed γ is not a superkey.

• Now, using α→ (β- {B}) and γ → B, we can derive α →B
(since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial)

• Then, B is extraneous in the right-hand side of α →β; which is 
not possible since α →β is in Fc.

• Thus, if B is in β then γ must be a superkey, and the second 
condition of 3NF must be satisfied.
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Correctness of 3NF Decomposition (Cont.)

 Case 2:  B is in α.
• Since α is a candidate key, the third alternative in the 

definition of 3NF is trivially satisfied.
• In fact, we cannot show that γ is a superkey.
• This shows exactly why the third alternative is present in 

the definition of 3NF.
Q.E.D.
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First Normal Form
 Domain is atomic if its elements are considered to be indivisible 

units
• Examples of non-atomic domains:

 Set of names, composite attributes
 Identification numbers like CS101  that can be broken up 

into parts
 A relational schema R is in first normal form if the domains of 

all attributes of R are atomic
 Non-atomic values complicate storage and encourage 

redundant (repeated) storage of data
• Example:  Set of accounts stored with each customer, and 

set of owners stored with each account
• We assume all relations are in first normal form (and revisit 

this in Chapter 22: Object Based Databases)
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First Normal Form (Cont.)

 Atomicity is actually a property of how the elements of the 
domain are used.
• Example: Strings would normally be considered indivisible 
• Suppose that students are given roll numbers which are 

strings of the form CS0012 or EE1127
• If the first two characters are extracted to find the 

department, the domain of roll numbers is not atomic.
• Doing so is a bad idea: leads to encoding of information in 

application program rather than in the database.
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