
©Silberschatz, Korth and Sudarshan7.1Database System Concepts - 7th Edition

Chapter 7: Normalization

©Silberschatz, Korth and Sudarshan7.2Database System Concepts - 7th Edition

Outline

 Features of Good Relational Design
 Functional Dependencies
 Decomposition Using Functional Dependencies
 Normal Forms
 Functional Dependency Theory
 Algorithms for Decomposition using Functional

Dependencies
 Decomposition Using Multivalued Dependencies
 More Normal Form
 Atomic Domains and First Normal Form
 Database-Design Process
 Modeling Temporal Data

©Silberschatz, Korth and Sudarshan7.4Database System Concepts - 7th Edition

Features of Good Relational Designs
 Suppose we combine instructor and department into in_dep,

which represents the natural join on the relations instructor and
department

 There is repetition of information
 Need to use null values (if we add a new department with no

instructors)

©Silberschatz, Korth and Sudarshan7.6Database System Concepts - 7th Edition

Decomposition

 The only way to avoid the repetition-of-information problem in
the in_dep schema is to decompose it into two schemas –
instructor and department schemas.

 Not all decompositions are good. Suppose we decompose

employee(ID, name, street, city, salary)
into

employee1 (ID, name)
employee2 (name, street, city, salary)

The problem arises when we have two employees with the
same name

 The next slide shows how we lose information -- we cannot
reconstruct the original employee relation -- and so, this is a
lossy decomposition.

©Silberschatz, Korth and Sudarshan7.7Database System Concepts - 7th Edition

A Lossy Decomposition

©Silberschatz, Korth and Sudarshan7.8Database System Concepts - 7th Edition

Lossless Decomposition

 Let R be a relation schema and let R1 and R2 form a
decomposition of R . That is R = R1 U R2

 We say that the decomposition is a lossless decomposition
if there is no loss of information by replacing R with the two
relation schemas R1 U R2

 Formally,
∏ R1

(r) ∏ R2
(r) = r

 And, conversely a decomposition is lossy if
r ⊂ ∏ R1

(r) ∏ R2
(r) = r

©Silberschatz, Korth and Sudarshan7.9Database System Concepts - 7th Edition

Example of Lossless Decomposition

 Decomposition of R = (A, B, C)

R1 = (A, B) R2 = (B, C)

©Silberschatz, Korth and Sudarshan7.10Database System Concepts - 7th Edition

Normalization Theory

 Decide whether a particular relation R is in “good” form.
 In the case that a relation R is not in “good” form,

decompose it into set of relations {R1, R2, ..., Rn} such
that
• Each relation is in good form
• The decomposition is a lossless decomposition

 Our theory is based on:
• functional dependencies
• multivalued dependencies

©Silberschatz, Korth and Sudarshan7.11Database System Concepts - 7th Edition

Functional Dependencies

 There are usually a variety of constraints (rules) on the data
in the real world.

 For example, some of the constraints that are expected to
hold in a university database are:
• Students and instructors are uniquely identified by their

ID.
• Each student and instructor has only one name.
• Each instructor and student is (primarily) associated with

only one department.
• Each department has only one value for its budget, and

only one associated building.

©Silberschatz, Korth and Sudarshan7.12Database System Concepts - 7th Edition

Functional Dependencies (Cont.)

 An instance of a relation that satisfies all such real-world
constraints is called a legal instance of the relation;

 A legal instance of a database is one where all the relation
instances are legal instances

 Constraints on the set of legal relations.
 Require that the value for a certain set of attributes

determines uniquely the value for another set of attributes.
 A functional dependency is a generalization of the notion of a

key.

©Silberschatz, Korth and Sudarshan7.13Database System Concepts - 7th Edition

Functional Dependencies Definition

 Let R be a relation schema
α ⊆ R and β ⊆ R

 The functional dependency
α → β

holds on R if and only if for any legal relations r(R), whenever
any two tuples t1 and t2 of r agree on the attributes α, they also
agree on the attributes β. That is,

t1[α] = t2 [α] ⇒ t1[β] = t2 [β]

 Example: Consider r(A,B) with the following instance of r.

 On this instance, B → A hold; A → B does NOT hold,

1 4
1 5
3 7

©Silberschatz, Korth and Sudarshan7.14Database System Concepts - 7th Edition

Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, there are
certain other functional dependencies that are logically
implied by F.
• If A → B and B → C, then we can infer that A → C
• etc.

 The set of all functional dependencies logically implied by
F is the closure of F.

 We denote the closure of F by F+.

©Silberschatz, Korth and Sudarshan7.15Database System Concepts - 7th Edition

Keys and Functional Dependencies

 K is a superkey for relation schema R if and only if K → R
 K is a candidate key for R if and only if

• K → R, and
• for no α ⊂ K, α → R

 Functional dependencies allow us to express constraints that
cannot be expressed using superkeys. Consider the schema:

in_dep (ID, name, salary, dept_name, building, budget).
We expect these functional dependencies to hold:

dept_name→ building
ID building

but would not expect the following to hold:
dept_name → salary

©Silberschatz, Korth and Sudarshan7.16Database System Concepts - 7th Edition

Use of Functional Dependencies

 We use functional dependencies to:
• To test relations to see if they are legal under a given set of

functional dependencies.
 If a relation r is legal under a set F of functional

dependencies, we say that r satisfies F.
• To specify constraints on the set of legal relations

 We say that F holds on R if all legal relations on R
satisfy the set of functional dependencies F.

 Note: A specific instance of a relation schema may satisfy a
functional dependency even if the functional dependency does
not hold on all legal instances.
• For example, a specific instance of instructor may, by

chance, satisfy
name → ID.

©Silberschatz, Korth and Sudarshan7.17Database System Concepts - 7th Edition

Trivial Functional Dependencies

 A functional dependency is trivial if it is satisfied by all
instances of a relation
• Example:

 ID, name → ID
 name → name

• In general, α → β is trivial if β ⊆ α

©Silberschatz, Korth and Sudarshan7.18Database System Concepts - 7th Edition

Lossless Decomposition

 We can use functional dependencies to show when certain
decomposition are lossless.

 For the case of R = (R1, R2), we require that for all possible
relations r on schema R

r = ∏R1 (r) ∏R2 (r)
 A decomposition of R into R1 and R2 is lossless decomposition

if at least one of the following dependencies is in F+:
• R1 ∩ R2 → R1

• R1 ∩ R2 → R2

 The above functional dependencies are a sufficient condition
for lossless join decomposition; the dependencies are a
necessary condition only if all constraints are functional
dependencies

©Silberschatz, Korth and Sudarshan7.19Database System Concepts - 7th Edition

Example

 R = (A, B, C)
F = {A → B, B → C)

 R1 = (A, B), R2 = (B, C)
• Lossless decomposition:

R1 ∩ R2 = {B} and B → BC
 R1 = (A, B), R2 = (A, C)

• Lossless decomposition:
R1 ∩ R2 = {A} and A → AB

 Note:
• B → BC

is a shorthand notation for
• B → {B, C}

©Silberschatz, Korth and Sudarshan7.20Database System Concepts - 7th Edition

Dependency Preservation

 Testing functional dependency constraints each time the
database is updated can be costly

 It is useful to design the database in a way that constraints can
be tested efficiently.

 If testing a functional dependency can be done by considering
just one relation, then the cost of testing this constraint is low

 When decomposing a relation it is possible that it is no longer
possible to do the testing without having to perform a Cartesian
Produced.

 A decomposition that makes it computationally hard to enforce
functional dependency is said to be NOT dependency
preserving.

©Silberschatz, Korth and Sudarshan7.21Database System Concepts - 7th Edition

Dependency Preservation Example

 Consider a schema:
dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:
i_ID → dept_name
s_ID, dept_name → i_ID

 In the above design we are forced to repeat the department
name once for each time an instructor participates in a
dept_advisor relationship.

 To fix this, we need to decompose dept_advisor
 Any decomposition will not include all the attributes in

s_ID, dept_name → i_ID
 Thus, the composition NOT be dependency preserving

©Silberschatz, Korth and Sudarshan7.23Database System Concepts - 7th Edition

Boyce-Codd Normal Form

 A relation schema R is in BCNF with respect to a set F of
functional dependencies if for all functional dependencies in
F+ of the form

α → β

where α ⊆ R and β ⊆ R, at least one of the following holds:
• α → β is trivial (i.e., β ⊆ α)
• α is a superkey for R

©Silberschatz, Korth and Sudarshan7.24Database System Concepts - 7th Edition

Boyce-Codd Normal Form (Cont.)

 Example schema that is not in BCNF:
in_dep (ID, name, salary, dept_name, building, budget)

because :
• dept_name→ building, budget

 holds on in_dep
 but

• dept_name is not a superkey
 When decompose in_dept into instructor and department

• instructor is in BCNF
• department is in BCNF

©Silberschatz, Korth and Sudarshan7.25Database System Concepts - 7th Edition

Decomposing a Schema into BCNF

 Let R be a schema R that is not in BCNF. Let α →β be the
FD that causes a violation of BCNF.

 We decompose R into:
• (α U β)
• (R - (β - α))

 In our example of in_dep,
• α = dept_name
• β = building, budget
and in_dep is replaced by
• (α U β) = (dept_name, building, budget)
• (R - (β - α)) = (ID, name, dept_name, salary)

©Silberschatz, Korth and Sudarshan7.26Database System Concepts - 7th Edition

Example

 R = (A, B, C)
F = {A → B, B → C)

 R1 = (A, B), R2 = (B, C)
• Lossless-join decomposition:

R1 ∩ R2 = {B} and B → BC
• Dependency preserving

 R1 = (A, B), R2 = (A, C)
• Lossless-join decomposition:

R1 ∩ R2 = {A} and A → AB
• Not dependency preserving

(cannot check B → C without computing R1 R2)

©Silberschatz, Korth and Sudarshan7.27Database System Concepts - 7th Edition

BCNF and Dependency Preservation

 It is not always possible to achieve both BCNF and
dependency preservation

 Consider a schema:
dept_advisor(s_ID, i_ID, department_name)

 With function dependencies:
i_ID → dept_name
s_ID, dept_name → i_ID

 dept_advisor is not in BCNF
• i_ID is not a superkey.

 Any decomposition of dept_advisor will not include all the
attributes in

s_ID, dept_name → i_ID
 Thus, the composition is NOT be dependency preserving

©Silberschatz, Korth and Sudarshan7.28Database System Concepts - 7th Edition

Third Normal Form

 A relation schema R is in third normal form (3NF) if for all:
α → β in F+

at least one of the following holds:
• α → β is trivial (i.e., β ∈ α)
• α is a superkey for R
• Each attribute A in β – α is contained in a candidate key for

R.
(NOTE: each attribute may be in a different candidate key)

 If a relation is in BCNF it is in 3NF (since in BCNF one of the
first two conditions above must hold).

 Third condition is a minimal relaxation of BCNF to ensure
dependency preservation (will see why later).

©Silberschatz, Korth and Sudarshan7.29Database System Concepts - 7th Edition

3NF Example

 Consider a schema:
dept_advisor(s_ID, i_ID, dept_name)

 With function dependencies:
i_ID → dept_name
s_ID, dept_name → i_ID

 Two candidate keys = {s_ID, dept_name}, {s_ID, i_ID }
 We have seen before that dept_advisor is not in BCNF
 R, however, is in 3NF

• s_ID, dept_name is a superkey
• i_ID → dept_name and i_ID is NOT a superkey, but:

 { dept_name} – {i_ID } = {dept_name } and
 dept_name is contained in a candidate key

©Silberschatz, Korth and Sudarshan7.30Database System Concepts - 7th Edition

Redundancy in 3NF

 Consider the schema R below, which is in 3NF

 What is wrong with the table?

J
j1
j2
j3

null

L K
I1
I1
I1
I2

k1

k1

k1

k2

• R = (J, K, L)
• F = {JK → L, L → K }
• And an instance table:

• Repetition of information
• Need to use null values (e.g., to represent the relationship l2, k2

where there is no corresponding value for J)

©Silberschatz, Korth and Sudarshan7.31Database System Concepts - 7th Edition

Comparison of BCNF and 3NF

 Advantages to 3NF over BCNF. It is always possible to
obtain a 3NF design without sacrificing losslessness or
dependency preservation.

 Disadvantages to 3NF.
• We may have to use null values to represent some of the

possible meaningful relationships among data items.
• There is the problem of repetition of information.

©Silberschatz, Korth and Sudarshan7.32Database System Concepts - 7th Edition

Goals of Normalization

 Let R be a relation scheme with a set F of functional
dependencies.

 Decide whether a relation scheme R is in “good” form.
 In the case that a relation scheme R is not in “good” form,

decompose it into a set of relation scheme {R1, R2, ..., Rn}
such that
• Each relation scheme is in good form
• The decomposition is a lossless decomposition
• Preferably, the decomposition should be dependency

preserving.

©Silberschatz, Korth and Sudarshan7.33Database System Concepts - 7th Edition

How good is BCNF?

 There are database schemas in BCNF that do not seem to
be sufficiently normalized

 Consider a relation
inst_info (ID, child_name, phone)

• where an instructor may have more than one phone and
can have multiple children

• Instance of inst_info

©Silberschatz, Korth and Sudarshan7.34Database System Concepts - 7th Edition

 There are no non-trivial functional dependencies and
therefore the relation is in BCNF

 Insertion anomalies – i.e., if we add a phone 981-992-3443
to 99999, we need to add two tuples

(99999, David, 981-992-3443)
(99999, William, 981-992-3443)

How good is BCNF? (Cont.)

©Silberschatz, Korth and Sudarshan7.35Database System Concepts - 7th Edition

 It is better to decompose inst_info into:
• inst_child:

• inst_phone:

 This suggests the need for higher normal forms, such as
Fourth Normal Form (4NF), which we shall see later

Higher Normal Forms

©Silberschatz, Korth and Sudarshan7.37Database System Concepts - 7th Edition

Functional-Dependency Theory Roadmap

 We now consider the formal theory that tells us which
functional dependencies are implied logically by a given set of
functional dependencies.

 We then develop algorithms to generate lossless
decompositions into BCNF and 3NF

 We then develop algorithms to test if a decomposition is
dependency-preserving

©Silberschatz, Korth and Sudarshan7.38Database System Concepts - 7th Edition

Closure of a Set of Functional Dependencies

 Given a set F set of functional dependencies, there are
certain other functional dependencies that are logically
implied by F.
• If A → B and B → C, then we can infer that A → C
• etc.

 The set of all functional dependencies logically implied by
F is the closure of F.

 We denote the closure of F by F+.

©Silberschatz, Korth and Sudarshan7.39Database System Concepts - 7th Edition

Closure of a Set of Functional Dependencies

 We can compute F+ , the closure of F, by repeatedly
applying Armstrong’s Axioms:
• Reflexive rule: if β ⊆ α, then α → β

• Augmentation rule: if α → β, then γ α → γ β

• Transitivity rule: if α → β, and β → γ, then α → γ

 These rules are
• sound -- generate only functional dependencies that

actually hold, and
• complete -- generate all functional dependencies that

hold.

©Silberschatz, Korth and Sudarshan7.40Database System Concepts - 7th Edition

Example of F+

 R = (A, B, C, G, H, I)
F = { A → B

A → C
CG → H
CG → I
B → H}

 Some members of F+

• A → H
 by transitivity from A → B and B → H

• AG → I
 by augmenting A → C with G, to get AG → CG

and then transitivity with CG → I
• CG → HI

 by augmenting CG → I to infer CG → CGI,
and augmenting of CG → H to infer CGI → HI,

and then transitivity

©Silberschatz, Korth and Sudarshan7.41Database System Concepts - 7th Edition

Closure of Functional Dependencies (Cont.)

 Additional rules:
• Union rule: If α → β holds and α → γ holds, then α → β

γ holds.
• Decomposition rule: If α → β γ holds, then α → β

holds and α → γ holds.
• Pseudotransitivity rule:If α → β holds and γ β → δ

holds, then α γ → δ holds.
 The above rules can be inferred from Armstrong’s axioms.

©Silberschatz, Korth and Sudarshan7.42Database System Concepts - 7th Edition

Procedure for Computing F+

 To compute the closure of a set of functional dependencies F:
F + = F
repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +
if f1 and f2 can be combined using transitivity

then add the resulting functional dependency to F +
until F + does not change any further

 NOTE: We shall see an alternative procedure for this task later

©Silberschatz, Korth and Sudarshan7.43Database System Concepts - 7th Edition

Closure of Attribute Sets

 Given a set of attributes α, define the closure of α under F
(denoted by α+) as the set of attributes that are functionally
determined by α under F

 Algorithm to compute α+, the closure of α under F

result := α;
while (changes to result) do

for each β → γ in F do
begin

if β ⊆ result then result := result ∪ γ
end

©Silberschatz, Korth and Sudarshan7.44Database System Concepts - 7th Edition

Example of Attribute Set Closure
 R = (A, B, C, G, H, I)
 F = {A → B

A → C
CG → H
CG → I
B → H}

 (AG)+

1. result = AG
2. result = ABCG (A → C and A → B)
3. result = ABCGH (CG → H and CG ⊆ AGBC)
4. result = ABCGHI (CG → I and CG ⊆ AGBCH)

 Is AG a candidate key?
1. Is AG a super key?

1. Does AG → R? == Is R ⊇ (AG)+

2. Is any subset of AG a superkey?
1. Does A → R? == Is R ⊇ (A)+

2. Does G → R? == Is R ⊇ (G)+

3. In general: check for each subset of size n-1

©Silberschatz, Korth and Sudarshan7.45Database System Concepts - 7th Edition

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:
 Testing for superkey:

• To test if α is a superkey, we compute α+, and check if α+

contains all attributes of R.
 Testing functional dependencies

• To check if a functional dependency α → β holds (or, in
other words, is in F+), just check if β ⊆ α+.

• That is, we compute α+ by using attribute closure, and
then check if it contains β.

• Is a simple and cheap test, and very useful
 Computing closure of F

• For each γ ⊆ R, we find the closure γ+, and for each S ⊆
γ+, we output a functional dependency γ → S.

©Silberschatz, Korth and Sudarshan7.46Database System Concepts - 7th Edition

Canonical Cover

 Suppose that we have a set of functional dependencies F on a
relation schema. Whenever a user performs an update on the
relation, the database system must ensure that the update does
not violate any functional dependencies; that is, all the functional
dependencies in F are satisfied in the new database state.

 If an update violates any functional dependencies in the set F,
the system must roll back the update.

 We can reduce the effort spent in checking for violations by
testing a simplified set of functional dependencies that has the
same closure as the given set.

 This simplified set is termed the canonical cover
 To define canonical cover we must first define extraneous

attributes.
• An attribute of a functional dependency in F is extraneous if

we can remove it without changing F +

©Silberschatz, Korth and Sudarshan7.47Database System Concepts - 7th Edition

Extraneous Attributes

 Removing an attribute from the left side of a functional
dependency could make it a stronger constraint.
• For example, if we have AB → C and remove B, we get the

possibly stronger result A → C. It may be stronger because
A → C logically implies AB → C, but AB → C does not, on
its own, logically imply A → C

 But, depending on what our set F of functional dependencies
happens to be, we may be able to remove B from AB → C
safely.
• For example, suppose that
• F = {AB → C, A → D, D → C}
• Then we can show that F logically implies A → C, making

extraneous in AB → C.

©Silberschatz, Korth and Sudarshan7.48Database System Concepts - 7th Edition

Extraneous Attributes (Cont.)

 Removing an attribute from the right side of a functional
dependency could make it a weaker constraint.
• For example, if we have AB → CD and remove C, we get the

possibly weaker result AB → D. It may be weaker because
using just AB → D, we can no longer infer AB → C.

 But, depending on what our set F of functional dependencies
happens to be, we may be able to remove C from AB → CD
safely.
• For example, suppose that

F = { AB → CD, A → C.
• Then we can show that even after replacing AB → CD by AB

→ D, we can still infer $AB → C and thus AB → CD.

©Silberschatz, Korth and Sudarshan7.49Database System Concepts - 7th Edition

Extraneous Attributes
 An attribute of a functional dependency in F is extraneous if we

can remove it without changing F +

 Consider a set F of functional dependencies and the functional
dependency α → β in F.
• Remove from the left side: Attribute A is extraneous in α if

 A ∈ α and
 F logically implies (F – {α → β}) ∪ {(α – A) → β}.

• Remove from the right side: Attribute A is extraneous in β
if
 A ∈ β and
 The set of functional dependencies

(F – {α → β}) ∪ {α →(β – A)} logically implies F.
 Note: implication in the opposite direction is trivial in each of the

cases above, since a “stronger” functional dependency always
implies a weaker one

©Silberschatz, Korth and Sudarshan7.50Database System Concepts - 7th Edition

Testing if an Attribute is Extraneous

 Let R be a relation schema and let F be a set of functional
dependencies that hold on R . Consider an attribute in the
functional dependency α → β.

 To test if attribute A ∈ β is extraneous in β
• Consider the set:

F' = (F – {α → β}) ∪ {α →(β – A)},
• check that α+ contains A; if it does, A is extraneous in β

 To test if attribute A ∈ α is extraneous in α

• Let γ = α – {A}. Check if γ → β can be inferred from F.
 Compute γ+ using the dependencies in F
 If γ+ includes all attributes in β then , A is extraneous in

α

©Silberschatz, Korth and Sudarshan7.51Database System Concepts - 7th Edition

Examples of Extraneous Attributes

 Let F = {AB → CD, A → E, E → C }
 To check if C is extraneous in AB → CD, we:

• Compute the attribute closure of AB under F' = {AB → D, A
→ E, E → C}

• The closure is ABCDE, which includes CD
• This implies that C is extraneous

©Silberschatz, Korth and Sudarshan7.52Database System Concepts - 7th Edition

Canonical Cover

 A canonical cover for F is a set of dependencies Fc such that
• F logically implies all dependencies in Fc , and
• Fc logically implies all dependencies in F, and
• No functional dependency in Fc contains an extraneous

attribute, and
• Each left side of functional dependency in Fc is unique.

That is, there are no two dependencies in Fc

 α1 → β1 and α2 → β2 such that
 α1 = α2

©Silberschatz, Korth and Sudarshan7.53Database System Concepts - 7th Edition

Canonical Cover

 To compute a canonical cover for F:

repeat
Use the union rule to replace any dependencies in F of the

form

α1 → β1 and α1 → β2 with α1 → β1 β2

Find a functional dependency α → β in Fc with an
extraneous attribute

either in α or in β

/* Note: test for extraneous attributes done using Fc,
not F*/

If an extraneous attribute is found, delete it from α → β

until (Fc not change
 Note: Union rule may become applicable after some extraneous

attributes have been deleted, so it has to be re-applied

©Silberschatz, Korth and Sudarshan7.54Database System Concepts - 7th Edition

Example: Computing a Canonical Cover
 R = (A, B, C)

F = {A → BC
B → C
A → B

AB → C}
 Combine A → BC and A → B into A → BC

• Set is now {A → BC, B → C, AB → C}
 A is extraneous in AB → C

• Check if the result of deleting A from AB → C is implied by the other
dependencies
 Yes: in fact, B → C is already present!

• Set is now {A → BC, B → C}
 C is extraneous in A → BC

• Check if A → C is logically implied by A → B and the other dependencies
 Yes: using transitivity on A → B and B → C.

• Can use attribute closure of A in more complex cases
 The canonical cover is: A → B

B → C

©Silberschatz, Korth and Sudarshan7.55Database System Concepts - 7th Edition

Dependency Preservation

 Let Fi be the set of dependencies F + that include only
attributes in Ri.
• A decomposition is dependency preserving, if

(F1 ∪ F2 ∪ … ∪ Fn)+ = F +

 Using the above definition, testing for dependency
preservation take exponential time.

 Not that if a decomposition is NOT dependency preserving
then checking updates for violation of functional dependencies
may require computing joins, which is expensive.

©Silberschatz, Korth and Sudarshan7.56Database System Concepts - 7th Edition

Dependency Preservation (Cont.)

 Let F be the set of dependencies on schema R and let R1, R2 ,
.., Rn be a decomposition of R.

 The restriction of F to Ri is the set Fi of all functional
dependencies in F + that include only attributes of Ri .

 Since all functional dependencies in a restriction involve
attributes of only one relation schema, it is possible to test such
a dependency for satisfaction by checking only one relation.

 Note that the definition of restriction uses all dependencies in in
F +, not just those in F.

 The set of restrictions F1, F2 , .. , Fn is the set of functional
dependencies that can be checked efficiently.

©Silberschatz, Korth and Sudarshan7.57Database System Concepts - 7th Edition

Testing for Dependency Preservation

 To check if a dependency α → β is preserved in a decomposition
of R into R1, R2, …, Rn , we apply the following test (with attribute
closure done with respect to F)
• result = α

repeat
for each Ri in the decomposition

t = (result ∩ Ri)+ ∩ Ri
result = result ∪ t

until (result does not change)
• If result contains all attributes in β, then the functional

dependency α → β is preserved.
 We apply the test on all dependencies in F to check if a

decomposition is dependency preserving
 This procedure takes polynomial time, instead of the exponential

time required to compute F+ and (F1 ∪ F2 ∪ … ∪ Fn)+

©Silberschatz, Korth and Sudarshan7.58Database System Concepts - 7th Edition

Example

 R = (A, B, C)
F = {A → B

B → C}
Key = {A}

 R is not in BCNF
 Decomposition R1 = (A, B), R2 = (B, C)

• R1 and R2 in BCNF
• Lossless-join decomposition
• Dependency preserving

©Silberschatz, Korth and Sudarshan7.60Database System Concepts - 7th Edition

Testing for BCNF

 To check if a non-trivial dependency α →β causes a violation of
BCNF
1. compute α+ (the attribute closure of α), and
2. verify that it includes all attributes of R, that is, it is a superkey of R.

 Simplified test: To check if a relation schema R is in BCNF, it
suffices to check only the dependencies in the given set F for
violation of BCNF, rather than checking all dependencies in F+.
• If none of the dependencies in F causes a violation of BCNF, then

none of the dependencies in F+ will cause a violation of BCNF
either.

 However, simplified test using only F is incorrect when testing a
relation in a decomposition of R
• Consider R = (A, B, C, D, E), with F = { A → B, BC → D}

 Decompose R into R1 = (A,B) and R2 = (A,C,D, E)
 Neither of the dependencies in F contain only attributes from

(A,C,D,E) so we might be mislead into thinking R2 satisfies
BCNF.

 In fact, dependency AC → D in F+ shows R2 is not in BCNF.

©Silberschatz, Korth and Sudarshan7.61Database System Concepts - 7th Edition

Testing Decomposition for BCNF

 To check if a relation Ri in a decomposition of R is in BCNF,
• Either test Ri for BCNF with respect to the restriction of F+ to Ri

(that is, all FDs in F+ that contain only attributes from Ri)
• or use the original set of dependencies F that hold on R, but with

the following test:
• for every set of attributes α ⊆ Ri, check that α+ (the

attribute closure of α) either includes no attribute of Ri- α,
or includes all attributes of Ri.

 If the condition is violated by some α → β in F+, the
dependency

α → (α+ - α) ∩ Ri
can be shown to hold on Ri, and Ri violates BCNF.

 We use above dependency to decompose Ri

©Silberschatz, Korth and Sudarshan7.62Database System Concepts - 7th Edition

BCNF Decomposition Algorithm

result := {R };
done := false;
compute F +;
while (not done) do

if (there is a schema Ri in result that is not in BCNF)
then begin

let α → β be a nontrivial functional dependency that
holds on Ri such that α → Ri is not in F +,
and α ∩ β = ∅;

result := (result – Ri) ∪ (Ri – β) ∪ (α, β);
end

else done := true;

Note: each Ri is in BCNF, and decomposition is lossless-join.

©Silberschatz, Korth and Sudarshan7.63Database System Concepts - 7th Edition

Example of BCNF Decomposition

 class (course_id, title, dept_name, credits, sec_id, semester, year,
building, room_number, capacity, time_slot_id)

 Functional dependencies:
• course_id→ title, dept_name, credits
• building, room_number→capacity
• course_id, sec_id, semester, year→building, room_number,

time_slot_id
 A candidate key {course_id, sec_id, semester, year}.
 BCNF Decomposition:

• course_id→ title, dept_name, credits holds
 but course_id is not a superkey.

• We replace class by:
 course(course_id, title, dept_name, credits)
 class-1 (course_id, sec_id, semester, year, building,

room_number, capacity, time_slot_id)

©Silberschatz, Korth and Sudarshan7.64Database System Concepts - 7th Edition

BCNF Decomposition (Cont.)

 course is in BCNF
• How do we know this?

 building, room_number→capacity holds on class-1
• but {building, room_number} is not a superkey for class-1.
• We replace class-1 by:

 classroom (building, room_number, capacity)
 section (course_id, sec_id, semester, year, building,

room_number, time_slot_id)
 classroom and section are in BCNF.

©Silberschatz, Korth and Sudarshan7.65Database System Concepts - 7th Edition

Third Normal Form

 There are some situations where
• BCNF is not dependency preserving, and
• efficient checking for FD violation on updates is

important
 Solution: define a weaker normal form, called Third

Normal Form (3NF)
• Allows some redundancy (with resultant problems; we

will see examples later)
• But functional dependencies can be checked on

individual relations without computing a join.
• There is always a lossless-join, dependency-

preserving decomposition into 3NF.

©Silberschatz, Korth and Sudarshan7.66Database System Concepts - 7th Edition

3NF Example

 Relation dept_advisor:
• dept_advisor (s_ID, i_ID, dept_name)

F = {s_ID, dept_name → i_ID, i_ID → dept_name}
• Two candidate keys: s_ID, dept_name, and i_ID, s_ID
• R is in 3NF

 s_ID, dept_name → i_ID s_ID
• dept_name is a superkey

 i_ID → dept_name
• dept_name is contained in a candidate key

©Silberschatz, Korth and Sudarshan7.67Database System Concepts - 7th Edition

Testing for 3NF

 Need to check only FDs in F, need not check all FDs in F+.
 Use attribute closure to check for each dependency α → β, if α

is a superkey.
 If α is not a superkey, we have to verify if each attribute in β is

contained in a candidate key of R
• This test is rather more expensive, since it involve finding

candidate keys
• Testing for 3NF has been shown to be NP-hard
• Interestingly, decomposition into third normal form

(described shortly) can be done in polynomial time

©Silberschatz, Korth and Sudarshan7.68Database System Concepts - 7th Edition

3NF Decomposition Algorithm

Let Fc be a canonical cover for F;
i := 0;
for each functional dependency α → β in Fc do
if none of the schemas Rj, 1 ≤ j ≤ i contains α β

then begin
i := i + 1;
Ri := α β

end
if none of the schemas Rj, 1 ≤ j ≤ i contains a candidate key for R
then begin

i := i + 1;
Ri := any candidate key for R;

end
/* Optionally, remove redundant relations */
repeat
if any schema Rj is contained in another schema Rk

then /* delete Rj */
Rj = R;;
i=i-1;

return (R1, R2, ..., Ri)

©Silberschatz, Korth and Sudarshan7.69Database System Concepts - 7th Edition

3NF Decomposition Algorithm (Cont.)

 Above algorithm ensures:

• each relation schema Ri is in 3NF

• decomposition is dependency preserving and lossless-join

• Proof of correctness is at end of this presentation (click
here)

©Silberschatz, Korth and Sudarshan7.70Database System Concepts - 7th Edition

3NF Decomposition: An Example

 Relation schema:
cust_banker_branch = (customer_id, employee_id, branch_name,

type)
 The functional dependencies for this relation schema are:

• customer_id, employee_id → branch_name, type
• employee_id → branch_name
• customer_id, branch_name → employee_id

 We first compute a canonical cover
• branch_name is extraneous in the r.h.s. of the 1st dependency
• No other attribute is extraneous, so we get FC =

customer_id, employee_id → type
employee_id → branch_name
customer_id, branch_name → employee_id

©Silberschatz, Korth and Sudarshan7.71Database System Concepts - 7th Edition

3NF Decompsition Example (Cont.)
 The for loop generates following 3NF schema:

(customer_id, employee_id, type)
(employee_id, branch_name)
(customer_id, branch_name, employee_id)

• Observe that (customer_id, employee_id, type) contains a
candidate key of the original schema, so no further relation
schema needs be added

 At end of for loop, detect and delete schemas, such as
(employee_id, branch_name), which are subsets of other
schemas
• result will not depend on the order in which FDs are

considered
 The resultant simplified 3NF schema is:

(customer_id, employee_id, type)
(customer_id, branch_name, employee_id)

©Silberschatz, Korth and Sudarshan7.72Database System Concepts - 7th Edition

Comparison of BCNF and 3NF

 It is always possible to decompose a relation into a set of
relations that are in 3NF such that:
• The decomposition is lossless
• The dependencies are preserved

 It is always possible to decompose a relation into a set of
relations that are in BCNF such that:
• The decomposition is lossless
• It may not be possible to preserve dependencies.

©Silberschatz, Korth and Sudarshan7.73Database System Concepts - 7th Edition

Design Goals

 Goal for a relational database design is:
• BCNF.
• Lossless join.
• Dependency preservation.

 If we cannot achieve this, we accept one of
• Lack of dependency preservation
• Redundancy due to use of 3NF

 Interestingly, SQL does not provide a direct way of specifying
functional dependencies other than superkeys.
Can specify FDs using assertions, but they are expensive to test,
(and currently not supported by any of the widely used databases!)

 Even if we had a dependency preserving decomposition, using
SQL we would not be able to efficiently test a functional
dependency whose left hand side is not a key.

©Silberschatz, Korth and Sudarshan7.75Database System Concepts - 7th Edition

Multivalued Dependencies (MVDs)

 Suppose we record names of children, and phone numbers for
instructors:
• inst_child(ID, child_name)
• inst_phone(ID, phone_number)

 If we were to combine these schemas to get
• inst_info(ID, child_name, phone_number)
• Example data:

(99999, David, 512-555-1234)
(99999, David, 512-555-4321)
(99999, William, 512-555-1234)
(99999, William, 512-555-4321)

 This relation is in BCNF
• Why?

©Silberschatz, Korth and Sudarshan7.76Database System Concepts - 7th Edition

Multivalued Dependencies

 Let R be a relation schema and let α ⊆ R and β ⊆ R. The
multivalued dependency

α →→ β

holds on R if in any legal relation r(R), for all pairs for tuples
t1 and t2 in r such that t1[α] = t2 [α], there exist tuples t3 and t4
in r such that:

t1[α] = t2 [α] = t3 [α] = t4 [α]
t3[β] = t1 [β]
t3[R – β] = t2[R – β]
t4 [β] = t2[β]
t4[R – β] = t1[R – β]

©Silberschatz, Korth and Sudarshan7.77Database System Concepts - 7th Edition

MVD -- Tabular representation

 Tabular representation of α →→ β

©Silberschatz, Korth and Sudarshan7.78Database System Concepts - 7th Edition

MVD (Cont.)

 Let R be a relation schema with a set of attributes that are
partitioned into 3 nonempty subsets.

Y, Z, W
 We say that Y →→ Z (Y multidetermines Z)

if and only if for all possible relations r (R)
< y1, z1, w1 > ∈ r and < y1, z2, w2 > ∈ r

then
< y1, z1, w2 > ∈ r and < y1, z2, w1 > ∈ r

 Note that since the behavior of Z and W are identical it follows
that
Y →→ Z if Y →→ W

©Silberschatz, Korth and Sudarshan7.79Database System Concepts - 7th Edition

Example

 In our example:
ID →→ child_name
ID →→ phone_number

 The above formal definition is supposed to formalize the notion
that given a particular value of Y (ID) it has associated with it a
set of values of Z (child_name) and a set of values of W
(phone_number), and these two sets are in some sense
independent of each other.

 Note:
• If Y → Z then Y →→ Z
• Indeed we have (in above notation) Z1 = Z2

The claim follows.

©Silberschatz, Korth and Sudarshan7.80Database System Concepts - 7th Edition

Use of Multivalued Dependencies

 We use multivalued dependencies in two ways:
1. To test relations to determine whether they are legal under

a given set of functional and multivalued dependencies
2. To specify constraints on the set of legal relations. We

shall concern ourselves only with relations that satisfy a
given set of functional and multivalued dependencies.

 If a relation r fails to satisfy a given multivalued dependency, we
can construct a relations r′ that does satisfy the multivalued
dependency by adding tuples to r.

©Silberschatz, Korth and Sudarshan7.81Database System Concepts - 7th Edition

Theory of MVDs
 From the definition of multivalued dependency, we can derive

the following rule:
• If α → β, then α →→ β

That is, every functional dependency is also a multivalued
dependency

 The closure D+ of D is the set of all functional and multivalued
dependencies logically implied by D.
• We can compute D+ from D, using the formal definitions of

functional dependencies and multivalued dependencies.
• We can manage with such reasoning for very simple

multivalued dependencies, which seem to be most common
in practice

• For complex dependencies, it is better to reason about sets
of dependencies using a system of inference rules
(Appendix C).

©Silberschatz, Korth and Sudarshan7.82Database System Concepts - 7th Edition

Fourth Normal Form

 A relation schema R is in 4NF with respect to a set D of
functional and multivalued dependencies if for all multivalued
dependencies in D+ of the form α →→ β, where α ⊆ R and β ⊆
R, at least one of the following hold:
• α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
• α is a superkey for schema R

 If a relation is in 4NF it is in BCNF

©Silberschatz, Korth and Sudarshan7.83Database System Concepts - 7th Edition

Restriction of Multivalued Dependencies

 The restriction of D to Ri is the set Di consisting of
• All functional dependencies in D+ that include only attributes

of Ri

• All multivalued dependencies of the form
α →→ (β ∩ Ri)

where α ⊆ Ri and α →→ β is in D+

©Silberschatz, Korth and Sudarshan7.84Database System Concepts - 7th Edition

4NF Decomposition Algorithm

result: = {R};
done := false;
compute D+;
Let Di denote the restriction of D+ to Ri

while (not done)
if (there is a schema Ri in result that is not in 4NF) then

begin
let α →→ β be a nontrivial multivalued dependency that

holds
on Ri such that α → Ri is not in Di, and α∩β=φ;

result := (result - Ri) ∪ (Ri - β) ∪ (α, β);
end

else done:= true;
Note: each Ri is in 4NF, and decomposition is lossless-join

©Silberschatz, Korth and Sudarshan7.85Database System Concepts - 7th Edition

Example

 R =(A, B, C, G, H, I)
F ={ A →→ B

B →→ HI
CG →→ H }

 R is not in 4NF since A →→ B and A is not a superkey for R
 Decomposition

a) R1 = (A, B) (R1 is in 4NF)
b) R2 = (A, C, G, H, I) (R2 is not in 4NF, decompose into
R3 and R4)
c) R3 = (C, G, H) (R3 is in 4NF)
d) R4 = (A, C, G, I) (R4 is not in 4NF, decompose into R5 and
R6)
• A →→ B and B →→ HI A →→ HI, (MVD transitivity), and
• and hence A →→ I (MVD restriction to R4)

e) R5 = (A, I) (R5 is in 4NF)
f)R6 = (A, C, G) (R6 is in 4NF)

©Silberschatz, Korth and Sudarshan7.87Database System Concepts - 7th Edition

Further Normal Forms

 Join dependencies generalize multivalued dependencies
• lead to project-join normal form (PJNF) (also called

fifth normal form)
 A class of even more general constraints, leads to a normal

form called domain-key normal form.
 Problem with these generalized constraints: are hard to

reason with, and no set of sound and complete set of
inference rules exists.

 Hence rarely used

©Silberschatz, Korth and Sudarshan7.88Database System Concepts - 7th Edition

Overall Database Design Process

 We have assumed schema R is given
• R could have been generated when converting E-R

diagram to a set of tables.
• R could have been a single relation containing all attributes

that are of interest (called universal relation).
• Normalization breaks R into smaller relations.
• R could have been the result of some ad hoc design of

relations, which we then test/convert to normal form.

©Silberschatz, Korth and Sudarshan7.89Database System Concepts - 7th Edition

ER Model and Normalization

 When an E-R diagram is carefully designed, identifying all
entities correctly, the tables generated from the E-R diagram
should not need further normalization.

 However, in a real (imperfect) design, there can be functional
dependencies from non-key attributes of an entity to other
attributes of the entity
• Example: an employee entity with

 attributes
department_name and building,

 functional dependency
department_name→ building

 Good design would have made department an entity
 Functional dependencies from non-key attributes of a relationship

set possible, but rare --- most relationships are binary

©Silberschatz, Korth and Sudarshan7.90Database System Concepts - 7th Edition

Denormalization for Performance

 May want to use non-normalized schema for performance
 For example, displaying prereqs along with course_id, and title

requires join of course with prereq
 Alternative 1: Use denormalized relation containing attributes

of course as well as prereq with all above attributes
• faster lookup
• extra space and extra execution time for updates
• extra coding work for programmer and possibility of error in

extra code
 Alternative 2: use a materialized view defined as

course prereq
• Benefits and drawbacks same as above, except no extra

coding work for programmer and avoids possible errors

©Silberschatz, Korth and Sudarshan7.91Database System Concepts - 7th Edition

Other Design Issues

 Some aspects of database design are not caught by normalization
 Examples of bad database design, to be avoided:

Instead of earnings (company_id, year, amount), use
• earnings_2004, earnings_2005, earnings_2006, etc., all on the

schema (company_id, earnings).
 Above are in BCNF, but make querying across years

difficult and needs new table each year
• company_year (company_id, earnings_2004, earnings_2005,

earnings_2006)
 Also in BCNF, but also makes querying across years

difficult and requires new attribute each year.
 Is an example of a crosstab, where values for one attribute

become column names
 Used in spreadsheets, and in data analysis tools

©Silberschatz, Korth and Sudarshan7.92Database System Concepts - 7th Edition

Modeling Temporal Data

 Temporal data have an association time interval during which the
data are valid.

 A snapshot is the value of the data at a particular point in time
 Several proposals to extend ER model by adding valid time to

• attributes, e.g., address of an instructor at different points in time
• entities, e.g., time duration when a student entity exists
• relationships, e.g., time during which an instructor was

associated with a student as an advisor.
 But no accepted standard
 Adding a temporal component results in functional dependencies

like
ID → street, city

not holding, because the address varies over time
 A temporal functional dependency X → Y holds on schema R if

the functional dependency X Y holds on all snapshots for all legal
instances r (R).

t

τ

©Silberschatz, Korth and Sudarshan7.93Database System Concepts - 7th Edition

Modeling Temporal Data (Cont.)

 In practice, database designers may add start and end time
attributes to relations
• E.g., course(course_id, course_title) is replaced by

course(course_id, course_title, start, end)
 Constraint: no two tuples can have overlapping valid

times
• Hard to enforce efficiently

 Foreign key references may be to current version of data, or to
data at a point in time
• E.g., student transcript should refer to course information at

the time the course was taken

©Silberschatz, Korth and Sudarshan7.94Database System Concepts - 7th Edition

End of Chapter 7

©Silberschatz, Korth and Sudarshan7.96Database System Concepts - 7th Edition

Correctness of 3NF Decomposition Algorithm

 3NF decomposition algorithm is dependency preserving (since
there is a relation for every FD in Fc)

 Decomposition is lossless
• A candidate key (C) is in one of the relations Ri in

decomposition
• Closure of candidate key under Fc must contain all attributes

in R.
• Follow the steps of attribute closure algorithm to show there

is only one tuple in the join result for each tuple in Ri

©Silberschatz, Korth and Sudarshan7.97Database System Concepts - 7th Edition

Correctness of 3NF Decomposition Algorithm (Cont.)

 Claim: if a relation Ri is in the decomposition generated by the
above algorithm, then Ri satisfies 3NF.

 Proof:
• Let Ri be generated from the dependency α → β

• Let γ → B be any non-trivial functional dependency on Ri. (We
need only consider FDs whose right-hand side is a single
attribute.)

• Now, B can be in either β or α but not in both. Consider each
case separately.

©Silberschatz, Korth and Sudarshan7.98Database System Concepts - 7th Edition

Correctness of 3NF Decomposition (Cont.)

 Case 1: If B in β:
• If γ is a superkey, the 2nd condition of 3NF is satisfied
• Otherwise α must contain some attribute not in γ
• Since γ → B is in F+ it must be derivable from Fc, by using

attribute closure on γ.
• Attribute closure not have used α →β. If it had been used, α

must be contained in the attribute closure of γ, which is not
possible, since we assumed γ is not a superkey.

• Now, using α→ (β- {B}) and γ → B, we can derive α →B
(since γ ⊆ α β, and B ∉ γ since γ → B is non-trivial)

• Then, B is extraneous in the right-hand side of α →β; which is
not possible since α →β is in Fc.

• Thus, if B is in β then γ must be a superkey, and the second
condition of 3NF must be satisfied.

©Silberschatz, Korth and Sudarshan7.99Database System Concepts - 7th Edition

Correctness of 3NF Decomposition (Cont.)

 Case 2: B is in α.
• Since α is a candidate key, the third alternative in the

definition of 3NF is trivially satisfied.
• In fact, we cannot show that γ is a superkey.
• This shows exactly why the third alternative is present in

the definition of 3NF.
Q.E.D.

©Silberschatz, Korth and Sudarshan7.100Database System Concepts - 7th Edition

First Normal Form
 Domain is atomic if its elements are considered to be indivisible

units
• Examples of non-atomic domains:

 Set of names, composite attributes
 Identification numbers like CS101 that can be broken up

into parts
 A relational schema R is in first normal form if the domains of

all attributes of R are atomic
 Non-atomic values complicate storage and encourage

redundant (repeated) storage of data
• Example: Set of accounts stored with each customer, and

set of owners stored with each account
• We assume all relations are in first normal form (and revisit

this in Chapter 22: Object Based Databases)

©Silberschatz, Korth and Sudarshan7.101Database System Concepts - 7th Edition

First Normal Form (Cont.)

 Atomicity is actually a property of how the elements of the
domain are used.
• Example: Strings would normally be considered indivisible
• Suppose that students are given roll numbers which are

strings of the form CS0012 or EE1127
• If the first two characters are extracted to find the

department, the domain of roll numbers is not atomic.
• Doing so is a bad idea: leads to encoding of information in

application program rather than in the database.

	Chapter 7: Normalization
	Outline
	Features of Good Relational Designs
	Decomposition
	A Lossy Decomposition
	Lossless Decomposition
	Example of Lossless Decomposition
	Normalization Theory
	Functional Dependencies
	Functional Dependencies (Cont.)
	Functional Dependencies Definition
	Closure of a Set of Functional Dependencies
	Keys and Functional Dependencies
	Use of Functional Dependencies
	Trivial Functional Dependencies
	Lossless Decomposition
	Example
	Dependency Preservation
	Dependency Preservation Example
	Boyce-Codd Normal Form
	Boyce-Codd Normal Form (Cont.)
	Decomposing a Schema into BCNF
	Example
	BCNF and Dependency Preservation
	Third Normal Form
	3NF Example
	Redundancy in 3NF
	Comparison of BCNF and 3NF
	Goals of Normalization
	How good is BCNF?
	How good is BCNF? (Cont.)
	Higher Normal Forms
	Functional-Dependency Theory Roadmap
	Closure of a Set of Functional Dependencies
	Closure of a Set of Functional Dependencies
	Example of F+
	Closure of Functional Dependencies (Cont.)
	Procedure for Computing F+
	Closure of Attribute Sets
	Example of Attribute Set Closure
	Uses of Attribute Closure
	Canonical Cover
	Extraneous Attributes
	Extraneous Attributes (Cont.)
	Extraneous Attributes
	Testing if an Attribute is Extraneous
	Examples of Extraneous Attributes
	Canonical Cover
	Canonical Cover
	Example: Computing a Canonical Cover
	Dependency Preservation
	Dependency Preservation (Cont.)
	Testing for Dependency Preservation
	Example
	Testing for BCNF
	Testing Decomposition for BCNF
	BCNF Decomposition Algorithm
	Example of BCNF Decomposition
	BCNF Decomposition (Cont.)
	Third Normal Form
	3NF Example
	Testing for 3NF
	3NF Decomposition Algorithm
	3NF Decomposition Algorithm (Cont.)
	3NF Decomposition: An Example
	3NF Decompsition Example (Cont.)
	Comparison of BCNF and 3NF
	Design Goals
	Multivalued Dependencies (MVDs)
	Multivalued Dependencies
	MVD -- Tabular representation
	MVD (Cont.)
	Example
	Use of Multivalued Dependencies
	Theory of MVDs
	Fourth Normal Form
	Restriction of Multivalued Dependencies
	4NF Decomposition Algorithm
	Example
	Further Normal Forms
	Overall Database Design Process
	ER Model and Normalization
	Denormalization for Performance
	Other Design Issues
	Modeling Temporal Data
	Modeling Temporal Data (Cont.)
	End of Chapter 7
	Correctness of 3NF Decomposition Algorithm
	Correctness of 3NF Decomposition Algorithm (Cont.)
	Correctness of 3NF Decomposition (Cont.)
	Correctness of 3NF Decomposition (Cont.)
	First Normal Form
	First Normal Form (Cont.)

