
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use

Chapter 9: Application Development

http://www.db-book.com/

©Silberschatz, Korth and Sudarshan9.3Database System Concepts - 7th Edition

Application Programs and User Interfaces

 Most database users do not use a query language like SQL
 An application program acts as the intermediary between users

and the database
• Applications split into

 front-end
 middle layer
 backend

 Front-end: user interface
• Forms
• Graphical user interfaces
• Many interfaces are Web-based

©Silberschatz, Korth and Sudarshan9.4Database System Concepts - 7th Edition

Application Architecture Evolution

 Three distinct era’s of application architecture
• Mainframe (1960’s and 70’s)
• Personal computer era (1980’s)
• Web era (mid 1990’s onwards)
• Web and Smartphone era (2010 onwards)

©Silberschatz, Korth and Sudarshan9.5Database System Concepts - 7th Edition

Web Interface

 Enable large numbers of users to access databases from
anywhere

 Avoid the need for downloading/installing specialized code, while
providing a good graphical user interface
• Javascript, Flash and other scripting languages run in

browser, but are downloaded transparently
 Examples: banks, airline and rental car reservations, university

course registration and grading, an so on.

Web browsers have become the de-facto standard user interface
to databases

©Silberschatz, Korth and Sudarshan9.9Database System Concepts - 7th Edition

Sample HTML Source Text

<html>
<body>

<table border>
<tr> <th>ID</th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td> </tr>
….

</table>
<form action="PersonQuery" method=get>

Search for:
<select name="persontype">

<option value="student" selected>Student </option>
<option value="instructor"> Instructor </option>

</select>

Name: <input type=text size=20 name="name">
<input type=submit value="submit">

</form>
</body> </html>

©Silberschatz, Korth and Sudarshan9.10Database System Concepts - 7th Edition

Display of Sample HTML Source

©Silberschatz, Korth and Sudarshan9.12Database System Concepts - 7th Edition

Three-Layer Web Architecture

©Silberschatz, Korth and Sudarshan9.14Database System Concepts - 7th Edition

HTTP and Sessions

 The HTTP protocol is connectionless
• That is, once the server replies to a request, the server closes

the connection with the client, and forgets all about the request
• In contrast, Unix logins, and JDBC/ODBC connections stay

connected until the client disconnects
 retaining user authentication and other information

• Motivation: reduces load on server
 operating systems have tight limits on number of open

connections on a machine
 Information services need session information

• E.g., user authentication should be done only once per session
 Solution: use a cookie

©Silberschatz, Korth and Sudarshan9.15Database System Concepts - 7th Edition

Sessions and Cookies

 A cookie is a small piece of text containing identifying information
• Sent by server to browser

 Sent on first interaction, to identify session
• Sent by browser to the server that created the cookie on further

interactions
 part of the HTTP protocol

• Server saves information about cookies it issued, and can use it
when serving a request
 E.g., authentication information, and user preferences

 Cookies can be stored permanently or for a limited time

©Silberschatz, Korth and Sudarshan9.16Database System Concepts - 7th Edition

Servlets

 Java Servlet specification defines an API for communication between the
Web/application server and application program running in the server
• E.g., methods to get parameter values from Web forms, and to send

HTML text back to client
 Application program (also called a servlet) is loaded into the server

• Each request spawns a new thread in the server
 thread is closed once the request is serviced

• Programmer creates a class that inherits from HttpServlet
 And overrides methods doGet, doPost, …

• Mapping from servlet name (accessible via HTTP), to the servlet
class is done in a file web.xml
 Done automatically by most IDEs when you create a Servlet using

the IDE

©Silberschatz, Korth and Sudarshan9.17Database System Concepts - 7th Edition

Example Servlet Code

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class PersonQueryServlet extends HttpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");
out.println("<BODY>");

….. BODY OF SERVLET (next slide) …
out.println("</BODY>");
out.close();

}
}

©Silberschatz, Korth and Sudarshan9.18Database System Concepts - 7th Edition

Example Servlet Code

String persontype = request.getParameter("persontype");
String number = request.getParameter("name");
if(persontype.equals("student")) {

... code to find students with the specified name ...

... using JDBC to communicate with the database ..
out.println("<table BORDER COLS=3>");
out.println(" <tr> <td>ID</td> <td>Name: </td>" + " <td>Department</td> </tr>");
for(... each result ...){

... retrieve ID, name and dept name

... into variables ID, name and deptname
out.println("<tr> <td>" + ID + "</td>" + "<td>" + name + "</td>" + "<td>" +

deptname
+ "</td></tr>");

};
out.println("</table>");

}
else {

... as above, but for instructors ...
}

©Silberschatz, Korth and Sudarshan9.19Database System Concepts - 7th Edition

Servlet Sessions

 Servlet API supports handling of sessions
• Sets a cookie on first interaction with browser, and uses it to identify

session on further interactions
 To check if session is already active:

• if (request.getSession(false) == true)
 .. then existing session
 else .. redirect to authentication page

• authentication page
 check login/password
 Create new session

• HttpSession session = request.getSession(true)
 Store/retrieve attribute value pairs for a particular session

• session.setAttribute(“userid”, userid)
• If existing session:

HttpSession = request.getSession(false);
String userid = (String) session.getAttribute(“userid”)

©Silberschatz, Korth and Sudarshan9.20Database System Concepts - 7th Edition

Servlet Support

 Servlets run inside application servers such as
• Apache Tomcat, Glassfish, JBoss
• BEA Weblogic, IBM WebSphere and Oracle Application Servers

 Application servers support
• Deployment and monitoring of servlets
• Java 2 Enterprise Edition (J2EE) platform supporting objects,

parallel processing across multiple application servers, etc

©Silberschatz, Korth and Sudarshan9.21Database System Concepts - 7th Edition

Server-Side Scripting

 Server-side scripting simplifies the task of connecting a database to the Web
• Define an HTML document with embedded executable code/SQL

queries.
• Input values from HTML forms can be used directly in the embedded

code/SQL queries.
• When the document is requested, the Web server executes the

embedded code/SQL queries to generate the actual HTML document.
 Numerous server-side scripting languages

• JSP, PHP
• General purpose scripting languages: VBScript, Perl, Python

©Silberschatz, Korth and Sudarshan9.22Database System Concepts - 7th Edition

Java Server Pages (JSP)

 A JSP page with embedded Java code
<html>
<head> <title> Hello </title> </head>
<body>
<% if (request.getParameter(“name”) == null)
{ out.println(“Hello World”); }
else { out.println(“Hello, ” + request.getParameter(“name”)); }
%>
</body>
</html>

 JSP is compiled into Java + Servlets
 JSP allows new tags to be defined, in tag libraries

• Such tags are like library functions, can are used for example to build
rich user interfaces such as paginated display of large datasets

©Silberschatz, Korth and Sudarshan9.23Database System Concepts - 7th Edition

PHP

 PHP is widely used for Web server scripting
 Extensive libaries including for database access using ODBC

<html>
<head> <title> Hello </title> </head>
<body>
<?php if (!isset($_REQUEST[‘name’]))
{ echo “Hello World”; }
else { echo “Hello, ” + $_REQUEST[‘name’]; }
?>
</body>

</html>

©Silberschatz, Korth and Sudarshan9.26Database System Concepts - 7th Edition

Javascript

 Javascript very widely used
• Forms basis of new generation of Web applications (called Web 2.0

applications) offering rich user interfaces
 Javascript functions can

• Check input for validity
• Modify the displayed Web page, by altering the underling document

object model (DOM) tree representation of the displayed HTML text
• Communicate with a Web server to fetch data and modify the current

page using fetched data, without needing to reload/refresh the page
 Forms basis of AJAX technology used widely in Web 2.0

applications
 E.g. on selecting a country in a drop-down menu, the list of states

in that country is automatically populated in a linked drop-down
menu

©Silberschatz, Korth and Sudarshan9.27Database System Concepts - 7th Edition

Javascript

 Example of Javascript used to validate form input
<html> <head>

<script type="text/javascript">
function validate() {

var credits=document.getElementById("credits").value;
if (isNaN(credits)|| credits<=0 || credits>=16) {

alert("Credits must be a number greater than 0 and less than 16");
return false

}
}

</script>
</head> <body>

<form action="createCourse" onsubmit="return validate()">
Title: <input type="text" id="title" size="20">

Credits: <input type="text" id="credits" size="2">

<Input type="submit" value="Submit">

</form>
</body> </html>

©Silberschatz, Korth and Sudarshan9.28Database System Concepts - 7th Edition

Application Architectures

©Silberschatz, Korth and Sudarshan9.29Database System Concepts - 7th Edition

Application Architectures

 Application layers
• Presentation or user interface

 model-view-controller (MVC) architecture
• model: business logic
• view: presentation of data, depends on display device
• controller: receives events, executes actions, and returns a

view to the user
• business-logic layer

 provides high level view of data and actions on data
• often using an object data model

 hides details of data storage schema
• data access layer

 interfaces between business logic layer and the underlying
database

 provides mapping from object model of business layer to relational
model of database

©Silberschatz, Korth and Sudarshan9.30Database System Concepts - 7th Edition

Application Architecture

©Silberschatz, Korth and Sudarshan9.31Database System Concepts - 7th Edition

Business Logic Layer

 Provides abstractions of entities
• E.g., students, instructors, courses, etc

 Enforces business rules for carrying out actions
• E.g., student can enroll in a class only if she has completed

prerequsites, and has paid her tuition fees
 Supports workflows which define how a task involving multiple

participants is to be carried out
• E.g., how to process application by a student applying to a university
• Sequence of steps to carry out task
• Error handling

 E.g. what to do if recommendation letters not received on time
• Workflows discussed in Section 26.2

©Silberschatz, Korth and Sudarshan9.32Database System Concepts - 7th Edition

Object-Relational Mapping

 Allows application code to be written on top of object-oriented data
model, while storing data in a traditional relational database
• Alternative: implement object-oriented or object-relational

database to store object model
 Has not been commercially successful

 Schema designer has to provide a mapping between object data and
relational schema
• E.g., Java class Student mapped to relation student, with

corresponding mapping of attributes
• An object can map to multiple tuples in multiple relations

 Application opens a session, which connects to the database
 Objects can be created and saved to the database using

session.save(object)
• Mapping used to create appropriate tuples in the database

 Query can be run to retrieve objects satisfying specified predicates

©Silberschatz, Korth and Sudarshan9.33Database System Concepts - 7th Edition

Object-Relational Mapping and Hibernate (Cont.)

 The Hibernate object-relational mapping system is widely used
• Public domain system, runs on a variety of database systems
• Supports a query language that can express complex queries

involving joins
 Translates queries into SQL queries

• Allows relationships to be mapped to sets associated with objects
 E.g., courses taken by a student can be a set in Student object

• See book for Hibernate code example
 The Entity Data Model developed by Microsoft

• Provides an entity-relationship model directly to application
• Maps data between entity data model and underlying storage, which

can be relational
• Entity SQL language operates directly on Entity Data Model

©Silberschatz, Korth and Sudarshan9.34Database System Concepts - 7th Edition

Web Services

 Allow data on Web to be accessed using remote procedure call
mechanism

 Two approaches are widely used
• Representation State Transfer (REST): allows use of standard

HTTP request to a URL to execute a request and return data
 Returned data is encoded either in XML, or in JavaScript Object

Notation (JSON)
• Big Web Services:

 Uses XML representation for sending request data, as well as for
returning results

 Standard protocol layer built on top of HTTP
 See Section 23.7.3

©Silberschatz, Korth and Sudarshan9.35Database System Concepts - 7th Edition

Disconnected Operations

 Tools for applications to use the Web when connected, but operate
locally when disconnected from the Web
• Make use of HTML5 local storage

©Silberschatz, Korth and Sudarshan9.36Database System Concepts - 7th Edition

Rapid Application Development

 A lot of effort is required to develop Web application interfaces
• More so, to support rich interaction functionality associated with Web

2.0 applications
 Several approaches to speed up application development

• Function library to generate user-interface elements
• Drag-and-drop features in an IDE to create user-interface elements
• Automatically generate code for user interface from a declarative

specification
 Above features have been in used as part of rapid application

development (RAD) tools even before advent of Web
 Web application development frameworks

• Java Server Faces (JSF) includes JSP tag library
• Ruby on Rails

 Allows easy creation of simple CRUD (create, read, update and
delete) interfaces by code generation from database schema or
object model

©Silberschatz, Korth and Sudarshan9.38Database System Concepts - 7th Edition

Application Performance

©Silberschatz, Korth and Sudarshan9.39Database System Concepts - 7th Edition

Improving Web Server Performance

 Performance is an issue for popular Web sites
• May be accessed by millions of users every day, thousands of

requests per second at peak time
 Caching techniques used to reduce cost of serving pages by exploiting

commonalities between requests
• At the server site:

 Caching of JDBC connections between servlet requests
• a.k.a. connection pooling

 Caching results of database queries
• Cached results must be updated if underlying database

changes
 Caching of generated HTML

• At the client’s network
 Caching of pages by Web proxy

©Silberschatz, Korth and Sudarshan9.40Database System Concepts - 7th Edition

Application Security

©Silberschatz, Korth and Sudarshan9.42Database System Concepts - 7th Edition

Cross Site Scripting

 HTML code on one page executes action on another page
• E.g., <img src =

http://mybank.com/transfermoney?amount=1000&toaccount=14523>
• Risk: if user viewing page with above code is currently logged into

mybank, the transfer may succeed
• Above example simplistic, since GET method is normally not used for

updates, but if the code were instead a script, it could execute POST
methods

 Above vulnerability called cross-site scripting (XSS) or cross-site
request forgery (XSRF or CSRF)

 Prevent your web site from being used to launch XSS or XSRF
attacks
• Disallow HTML tags in text input provided by users, using functions to

detect and strip such tags
 Protect your web site from XSS/XSRF attacks launched from other

sites
• ..next slide

http://mybank.com/transfermoney?amount=1000&toaccount=14523

©Silberschatz, Korth and Sudarshan9.43Database System Concepts - 7th Edition

Cross Site Scripting

 Use referer value (URL of page from where a link was
clicked) provided by the HTTP protocol, to check that the
link was followed from a valid page served from same site,
not another site

 Ensure IP of request is same as IP from where the user
was authenticated
• Prevents hijacking of cookie by malicious user

 Never use a GET method to perform any updates
• This is actually recommended by HTTP standard

Protect your web site from XSS/XSRF attacks launched from
other sites

©Silberschatz, Korth and Sudarshan9.44Database System Concepts - 7th Edition

Password Leakage

 Never store passwords, such as database passwords, in clear text in
scripts that may be accessible to users
• E.g., in files in a directory accessible to a web server

 Normally, web server will execute, but not provide source of
script files such as file.jsp or file.php, but source of editor
backup files such as file.jsp~, or .file.jsp.swp may be served

 Restrict access to database server from IPs of machines running
application servers
• Most databases allow restriction of access by source IP address

©Silberschatz, Korth and Sudarshan9.45Database System Concepts - 7th Edition

Application Authentication

 Single factor authentication such as passwords too risky for critical
applications
• Guessing of passwords, sniffing of packets if passwords are not

encrypted
• Passwords reused by user across sites
• Spyware which captures password

 Two-factor authentication
• E.g., password plus one-time password sent by SMS
• E.g., password plus one-time password devices

 Device generates a new pseudo-random number every minute,
and displays to user

 User enters the current number as password
 Application server generates same sequence of pseudo-random

numbers to check that the number is correct.

©Silberschatz, Korth and Sudarshan9.46Database System Concepts - 7th Edition

Application Authentication

 Man-in-the-middle attack
• E.g., web site that pretends to be mybank.com, and passes on

requests from user to mybank.com, and passes results back to user
• Even two-factor authentication cannot prevent such attacks

 Solution: authenticate Web site to user, using digital certificates, along
with secure http protocol

 Central authentication within an organization
• Application redirects to central authentication service for

authentication
• Avoids multiplicity of sites having access to user’s password
• LDAP or Active Directory used for authentication

©Silberschatz, Korth and Sudarshan9.47Database System Concepts - 7th Edition

Single Sign-On

 Single sign-on allows user to be authenticated once, and applications
can communicate with authentication service to verify user’s identity
without repeatedly entering passwords

 Security Assertion Markup Language (SAML) standard for exchanging
authentication and authorization information across security domains
• E.g., user from Yale signs on to external application such as acm.org

using userid joe@yale.edu
• Application communicates with Web-based authentication service at

Yale to authenticate user, and find what the user is authorized to do
by Yale (e.g. access certain journals)

 OpenID standard allows sharing of authentication across organizations
• E.g., application allows user to choose Yahoo! as OpenID

authentication provider, and redirects user to Yahoo! for
authentication

mailto:joe@yale.edu

©Silberschatz, Korth and Sudarshan9.48Database System Concepts - 7th Edition

Application-Level Authorization

 Current SQL standard does not allow fine-grained authorization such
as “students can see their own grades, but not other’s grades”

• Problem 1: Database has no idea who are application users
• Problem 2: SQL authorization is at the level of tables, or columns

of tables, but not to specific rows of a table
 One workaround: use views such as

create view studentTakes as
select *
from takes
where takes.ID = syscontext.user_id()

• where syscontext.user_id() provides end user identity
 End user identity must be provided to the database by the

application
• Having multiple such views is cumbersome

©Silberschatz, Korth and Sudarshan9.49Database System Concepts - 7th Edition

Application-Level Authorization (Cont.)

 Currently, authorization is done entirely in application
 Entire application code has access to entire database

• Large surface area, making protection harder
 Alternative: fine-grained (row-level) authorization schemes

• Extensions to SQL authorization proposed but not currently
implemented

• Oracle Virtual Private Database (VPD) allows predicates to be
added transparently to all SQL queries, to enforce fine-grained
authorization
 E.g., add ID= sys_context.user_id() to all queries on student

relation if user is a student

©Silberschatz, Korth and Sudarshan9.50Database System Concepts - 7th Edition

Audit Trails

 Applications must log actions to an audit trail, to detect who
carried out an update, or accessed some sensitive data

 Audit trails used after-the-fact to
• Detect security breaches
• Repair damage caused by security breach
• Trace who carried out the breach

 Audit trails needed at
• Database level, and at
• Application level

©Silberschatz, Korth and Sudarshan9.57Database System Concepts - 7th Edition

End of Chapter 9

	Chapter 9: Application Development
	Application Programs and User Interfaces
	Application Architecture Evolution
	Web Interface
	Sample HTML Source Text
	Display of Sample HTML Source
	Three-Layer Web Architecture
	HTTP and Sessions
	Sessions and Cookies
	Servlets
	Example Servlet Code
	Example Servlet Code
	Servlet Sessions
	Servlet Support
	Server-Side Scripting
	Java Server Pages (JSP)
	PHP
	Javascript
	Javascript
	Application Architectures
	Application Architectures
	Application Architecture
	Business Logic Layer
	Object-Relational Mapping
	Object-Relational Mapping and Hibernate (Cont.)
	Web Services
	Disconnected Operations
	Rapid Application Development
	Application Performance
	Improving Web Server Performance
	Application Security
	Cross Site Scripting
	Cross Site Scripting
	Password Leakage
	Application Authentication
	Application Authentication
	Single Sign-On
	Application-Level Authorization
	Application-Level Authorization (Cont.)
	Audit Trails
	End of Chapter 9

