
Database System Concepts, 7th Ed.
©Silberschatz, Korth and Sudarshan

See www.db-book.com for conditions on re-use 

Chapter 9: Application Development 

http://www.db-book.com/


©Silberschatz, Korth and Sudarshan9.3Database System Concepts - 7th Edition

Application Programs and User Interfaces

 Most database users do not use a query language like SQL
 An application program acts as the intermediary between users 

and the database
• Applications split into

 front-end
 middle layer
 backend

 Front-end: user interface
• Forms
• Graphical user interfaces
• Many interfaces are Web-based
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Application Architecture Evolution

 Three distinct era’s of application architecture
• Mainframe (1960’s and 70’s)
• Personal computer era (1980’s)
• Web era (mid 1990’s onwards)
• Web and Smartphone era (2010 onwards)



©Silberschatz, Korth and Sudarshan9.5Database System Concepts - 7th Edition

Web Interface

 Enable large numbers of users to access databases from 
anywhere

 Avoid the need for downloading/installing specialized code, while 
providing a good graphical user interface
• Javascript, Flash and other scripting languages run in 

browser, but are downloaded transparently
 Examples: banks, airline and rental car reservations, university 

course registration and grading, an so on.

Web browsers have become the de-facto standard user interface 
to databases
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Sample HTML Source Text

<html>
<body>

<table border>
<tr> <th>ID</th> <th>Name</th> <th>Department</th> </tr>
<tr> <td>00128</td> <td>Zhang</td> <td>Comp. Sci.</td> </tr>
….

</table>
<form action="PersonQuery" method=get>

Search for: 
<select name="persontype">

<option value="student" selected>Student </option>
<option value="instructor"> Instructor </option>

</select> <br>
Name: <input type=text size=20 name="name">
<input type=submit value="submit">

</form>
</body> </html>
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Display of Sample HTML Source
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Three-Layer Web Architecture
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HTTP and Sessions

 The HTTP protocol is connectionless
• That is, once the server replies to a request, the server closes 

the connection with the client, and forgets all about the request
• In contrast, Unix logins, and JDBC/ODBC connections stay 

connected until the client disconnects
 retaining user authentication and other information

• Motivation: reduces load on server 
 operating systems have tight limits on number of open 

connections on a machine
 Information services need session information

• E.g., user authentication should be done only once per session
 Solution:  use a cookie
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Sessions and Cookies

 A cookie is a small piece of text containing identifying information
• Sent by server to browser 

 Sent on first interaction, to identify session
• Sent by browser to the server that created the cookie on further 

interactions
 part of the HTTP protocol

• Server saves information about cookies it issued, and can use it 
when serving a request
 E.g., authentication information, and user preferences

 Cookies can be stored permanently or for a limited time
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Servlets

 Java Servlet specification defines an API for communication between the 
Web/application server and application program running in the server
• E.g., methods to get parameter values from Web forms, and to send 

HTML text back to client
 Application program (also called a servlet) is loaded into the server

• Each request spawns a new thread in the server
 thread is closed once the request is serviced

• Programmer creates a class that inherits from HttpServlet
 And overrides methods doGet, doPost, …

• Mapping from servlet name (accessible via HTTP), to the servlet 
class is done in a file web.xml
 Done automatically by most IDEs when you create a Servlet using 

the IDE
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Example Servlet Code

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class PersonQueryServlet extends HttpServlet {

public void doGet (HttpServletRequest request, HttpServletResponse
response)

throws ServletException, IOException
{

response.setContentType("text/html");
PrintWriter out = response.getWriter();
out.println("<HEAD><TITLE> Query Result</TITLE></HEAD>");
out.println("<BODY>");

….. BODY OF SERVLET (next slide) …
out.println("</BODY>");
out.close();

}
}
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Example Servlet Code

String persontype = request.getParameter("persontype");
String number = request.getParameter("name");
if(persontype.equals("student")) {

... code to find students with the specified name ...

... using JDBC to communicate with the database ..
out.println("<table BORDER COLS=3>");
out.println(" <tr> <td>ID</td> <td>Name: </td>" + " <td>Department</td> </tr>");
for(... each result ...){

... retrieve ID, name and dept name

... into variables ID, name and deptname
out.println("<tr> <td>" + ID + "</td>" + "<td>" + name + "</td>" + "<td>" + 

deptname
+ "</td></tr>");

};
out.println("</table>");

}
else {

... as above, but for instructors ...
}
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Servlet Sessions

 Servlet API supports handling of sessions
• Sets a cookie on first interaction with browser, and uses it to identify 

session on further interactions
 To check if session is already active:

• if (request.getSession(false) == true)
 .. then existing session
 else .. redirect to authentication page

• authentication page
 check login/password
 Create new session

• HttpSession session = request.getSession(true)
 Store/retrieve attribute value pairs for a particular session

• session.setAttribute(“userid”, userid)
• If existing session:

HttpSession = request.getSession(false);
String userid = (String) session.getAttribute(“userid”)
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Servlet Support

 Servlets run inside application servers such as 
• Apache Tomcat, Glassfish, JBoss
• BEA Weblogic, IBM WebSphere and Oracle Application Servers

 Application servers support 
• Deployment and monitoring of servlets
• Java 2 Enterprise Edition (J2EE) platform supporting objects, 

parallel processing across multiple application servers, etc
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Server-Side Scripting

 Server-side scripting simplifies the task of connecting a database to the Web
• Define an HTML document with embedded executable code/SQL 

queries.
• Input values from HTML forms can be used directly in the embedded 

code/SQL queries.
• When the document is requested, the Web server executes the 

embedded code/SQL queries to generate the actual HTML document.
 Numerous server-side scripting languages

• JSP, PHP
• General purpose scripting languages: VBScript, Perl, Python
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Java Server Pages (JSP)

 A JSP page with embedded Java code
<html>
<head> <title> Hello </title> </head>
<body>
<% if (request.getParameter(“name”) == null)
{ out.println(“Hello World”); }
else { out.println(“Hello, ” + request.getParameter(“name”)); }
%>
</body>
</html>

 JSP is compiled into Java + Servlets
 JSP allows new tags to be defined, in tag libraries

• Such tags are like library functions, can are used for example to build 
rich user interfaces such as paginated display of large datasets
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PHP

 PHP is widely used for Web server scripting
 Extensive libaries including for database access using ODBC

<html>
<head> <title> Hello </title> </head>
<body>
<?php if (!isset($_REQUEST[‘name’]))
{ echo “Hello World”; }
else { echo “Hello, ” + $_REQUEST[‘name’]; }
?>
</body>

</html>
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Javascript

 Javascript very widely used
• Forms basis of new generation of Web applications (called Web 2.0 

applications) offering rich user interfaces
 Javascript functions can

• Check input for validity
• Modify the displayed Web page, by altering the underling document 

object model (DOM) tree representation of the displayed HTML text
• Communicate with a Web server to fetch data and modify the current 

page using fetched data, without needing to reload/refresh the page
 Forms basis of AJAX technology used widely in Web 2.0 

applications
 E.g. on selecting a country in a drop-down menu, the list of states 

in that country is automatically populated in a linked drop-down 
menu
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Javascript

 Example of Javascript used to validate form input
<html> <head>

<script type="text/javascript">
function validate() {

var credits=document.getElementById("credits").value;
if (isNaN(credits)|| credits<=0 || credits>=16) {

alert("Credits must be a number greater than 0 and less than 16");
return false

}
}

</script>
</head> <body>

<form action="createCourse" onsubmit="return validate()">
Title: <input type="text" id="title" size="20"><br />
Credits: <input type="text" id="credits" size="2"><br />
<Input type="submit" value="Submit">

</form>
</body> </html>
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Application Architectures
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Application Architectures

 Application layers
• Presentation or user interface

 model-view-controller (MVC) architecture
• model: business logic
• view: presentation of data, depends on display device
• controller: receives events, executes actions, and returns a 

view to the user
• business-logic layer 

 provides high level view of data and actions on data
• often using an object data model

 hides details of data storage schema
• data access layer

 interfaces between business logic layer and the underlying 
database

 provides mapping from object model of business layer to relational 
model of database
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Application Architecture
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Business Logic Layer

 Provides abstractions of entities
• E.g., students, instructors, courses, etc

 Enforces business rules for carrying out actions
• E.g., student can enroll in a class only if she has completed 

prerequsites, and has paid her tuition fees
 Supports workflows which define how a task involving multiple 

participants is to be carried out
• E.g., how to process application by a student applying to a university
• Sequence of steps to carry out task
• Error handling

 E.g. what to do if recommendation letters not received on time
• Workflows discussed in Section 26.2
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Object-Relational Mapping

 Allows application code to be written on top of object-oriented data 
model, while storing data in a traditional relational database
• Alternative: implement object-oriented or object-relational 

database to store object model
 Has not been commercially successful

 Schema designer has to provide a mapping between object data and 
relational schema
• E.g., Java class Student mapped to relation student, with 

corresponding mapping of attributes
• An object can map to multiple tuples in multiple relations

 Application opens a session, which connects to the database
 Objects can be created and saved to the database using 

session.save(object)
• Mapping used to create appropriate tuples in the database

 Query can be run to retrieve objects satisfying specified predicates
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Object-Relational Mapping and Hibernate (Cont.)

 The Hibernate object-relational mapping system is widely used
• Public domain system, runs on a variety of database systems
• Supports a query language that can express complex queries 

involving joins
 Translates queries into SQL queries

• Allows relationships to be mapped to sets associated with objects
 E.g., courses taken by a student can be a set in Student object

• See book for Hibernate code example
 The Entity Data Model developed by Microsoft

• Provides an entity-relationship model directly to application
• Maps data between entity data model and underlying storage, which 

can be relational
• Entity SQL language operates directly on Entity Data Model
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Web Services

 Allow data on Web to be accessed using remote procedure call 
mechanism

 Two approaches are widely used
• Representation State Transfer (REST): allows use of standard 

HTTP request to a URL to execute a request and return data
 Returned data is encoded either in XML, or in JavaScript Object 

Notation (JSON) 
• Big Web Services: 

 Uses XML representation for sending request data, as well as for 
returning results

 Standard protocol layer built on top of HTTP
 See Section 23.7.3
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Disconnected Operations

 Tools for applications to use the Web when connected, but operate 
locally when disconnected from the Web
• Make use of HTML5 local storage
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Rapid Application Development

 A lot of effort is required to develop Web application interfaces
• More so, to support rich interaction functionality associated with Web 

2.0 applications
 Several approaches to speed up application development

• Function library to generate user-interface elements
• Drag-and-drop features in an IDE to create user-interface elements
• Automatically generate code for user interface from a declarative 

specification
 Above features have been in used as part of rapid application 

development (RAD) tools even before advent of Web
 Web application development frameworks

• Java Server Faces (JSF) includes JSP tag library
• Ruby on Rails

 Allows easy creation of simple CRUD (create, read, update and 
delete) interfaces by code generation from database schema or 
object model
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Application Performance
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Improving Web Server Performance

 Performance is an issue for popular Web sites 
• May be accessed by millions of users every day, thousands of 

requests per second at peak time
 Caching techniques used to reduce cost of serving pages by exploiting 

commonalities between requests
• At the server site:

 Caching of JDBC connections between servlet requests
• a.k.a. connection pooling

 Caching results of database queries
• Cached results must be updated if underlying database 

changes
 Caching of generated HTML

• At the client’s network
 Caching of pages by Web proxy
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Application Security
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Cross Site Scripting

 HTML code on one page executes action on another page
• E.g.,  <img src = 

http://mybank.com/transfermoney?amount=1000&toaccount=14523>
• Risk: if user viewing page with above code is currently logged into 

mybank, the transfer may succeed
• Above example simplistic, since GET method is normally not used for 

updates, but if the code were instead a script, it could execute POST 
methods

 Above vulnerability called cross-site scripting (XSS) or cross-site 
request forgery (XSRF or CSRF)

 Prevent your web site from being used to launch XSS or XSRF 
attacks
• Disallow HTML tags in text input provided by users, using functions to 

detect and strip such tags
 Protect your web site from XSS/XSRF attacks launched from other 

sites
• ..next slide

http://mybank.com/transfermoney?amount=1000&toaccount=14523
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Cross Site Scripting

 Use referer value (URL of page from where a link was 
clicked) provided by the HTTP protocol, to check that the 
link was followed from a valid page served from same site, 
not another site

 Ensure IP of request is same as IP from where the user 
was authenticated
• Prevents hijacking of cookie by malicious user

 Never use a GET method to perform any updates
• This is actually recommended by HTTP standard

Protect your web site from XSS/XSRF attacks launched from 
other sites
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Password Leakage

 Never store passwords, such as database passwords, in clear text in 
scripts that may be accessible to users
• E.g., in files in a directory accessible to a web server

 Normally, web server will execute, but not provide source of 
script files such as file.jsp or file.php, but source of editor 
backup files such as file.jsp~, or .file.jsp.swp may be served 

 Restrict access to database server from IPs of machines running 
application servers
• Most databases allow restriction of access by source IP address
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Application Authentication

 Single factor authentication such as passwords too risky for critical 
applications
• Guessing of passwords, sniffing of packets if passwords are not 

encrypted
• Passwords reused by user across sites
• Spyware which captures password

 Two-factor authentication
• E.g., password plus one-time password sent by SMS
• E.g., password plus one-time password devices

 Device generates a new pseudo-random number every minute, 
and displays to user

 User enters the current number as password
 Application server generates same sequence of pseudo-random 

numbers to check that the number is correct.



©Silberschatz, Korth and Sudarshan9.46Database System Concepts - 7th Edition

Application Authentication

 Man-in-the-middle attack
• E.g., web site that pretends to be mybank.com, and passes on 

requests from user to mybank.com, and passes results back to user
• Even two-factor authentication cannot prevent such attacks

 Solution: authenticate Web site to user, using digital certificates, along 
with secure http protocol

 Central authentication within an organization
• Application redirects to central authentication service for 

authentication
• Avoids multiplicity of sites having access to user’s password
• LDAP or Active Directory used for authentication
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Single Sign-On

 Single sign-on allows user to be authenticated once, and applications 
can communicate with authentication service to verify user’s identity 
without repeatedly entering passwords

 Security Assertion Markup Language (SAML) standard for exchanging 
authentication and authorization information across security domains
• E.g., user from Yale signs on to external application such as acm.org 

using userid joe@yale.edu
• Application communicates with Web-based authentication service at 

Yale to authenticate user, and find what the user is authorized to do 
by Yale (e.g. access certain journals)

 OpenID standard allows sharing of authentication across organizations
• E.g., application allows user to choose Yahoo! as OpenID 

authentication provider, and redirects user to Yahoo! for 
authentication

mailto:joe@yale.edu
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Application-Level Authorization

 Current SQL standard does not allow fine-grained authorization such 
as “students can see their own grades, but not other’s grades”

• Problem 1: Database has no idea who are application users
• Problem 2: SQL authorization is at the level of tables, or columns 

of tables, but not to specific rows of a table
 One workaround: use views such as

create view studentTakes as
select *
from   takes
where takes.ID = syscontext.user_id()

• where syscontext.user_id() provides end user identity
 End user identity must be provided to the database by the 

application 
• Having multiple such views is cumbersome



©Silberschatz, Korth and Sudarshan9.49Database System Concepts - 7th Edition

Application-Level Authorization (Cont.)

 Currently, authorization is done entirely in application
 Entire application code has access to entire database

• Large surface area, making protection harder
 Alternative: fine-grained (row-level) authorization schemes

• Extensions to SQL authorization proposed but not currently 
implemented

• Oracle Virtual Private Database (VPD) allows predicates to be 
added transparently to all SQL queries, to enforce fine-grained 
authorization
 E.g., add ID= sys_context.user_id() to all queries on student 

relation if user is a student
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Audit Trails

 Applications must log actions to an audit trail, to detect who 
carried out an update, or accessed some sensitive data

 Audit trails used after-the-fact to 
• Detect security breaches
• Repair damage caused by security breach
• Trace who carried out the breach

 Audit trails needed at
• Database level, and at
• Application level
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End of Chapter 9
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