
University of Central Florida University of Central Florida

STARS STARS

Retrospective Theses and Dissertations

2000

View-centric reasoning about parallel and distributed computation View-centric reasoning about parallel and distributed computation

Marc L. Smith
mlsmith@acm.org

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/rtd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Retrospective Theses and Dissertations by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Smith, Marc L., "View-centric reasoning about parallel and distributed computation" (2000). Retrospective
Theses and Dissertations. 1986.
https://stars.library.ucf.edu/rtd/1986

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/rtd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Frtd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/rtd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/rtd/1986?utm_source=stars.library.ucf.edu%2Frtd%2F1986&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

MARC L. SMITH
B.S. University of Central Florida, 1986
M.S. University of Central Florida, 1993

A dissertation submitted in partial sat isfact ion of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Fall Term
2000

Major Professors:
Rebecca J. Parsons
Charles E. Hughes

02000 Marc L. Smith

The development of distributed applications has not progressed as rapidly as

its enabling technologies. In part, this is due to the difficulty of reasoning about

such complex systems. In contrast to sequential systems, parallel systems give

rise to parallel events, and the resulting uncertainty of the observed order of these

events. Loosely coupled distributed systems complicate this even further by in-

troducing the element of multiple imperfect observers of these parallel events.

The goal of this dissertation is to advance parallel and distributed systems devel-

opment by producing a parameterized model that can be instantiated to reflect

the computation and coordination properties of such systems. The result is a

model called paraDOS that we show to be general enough to have instantiations

of two very distinct distributed computation models, Actors and tuple space.

We show how paraDOS allows us to use operational semantics to reason about

computation when such reasoning must account for multiple, inconsistent and

imperfect views. We then extend the paraDOS model with an abstraction to

support composition of communicating computational systems. This extension

gives us a tool to reason formally about heterogeneous systems, and about new

distributed computing paradigms such as the multiple tuple spaces support seen

in Sun's JavaSpaces and IBM's T Spaces.

To Susan &

Matthew

Many people, in many different ways, helped me to reach this point. In no

particular order of importance, I begin with AT&T, my employer. My manage-

ment, who supported me to get into the Doctoral Support Program, included

Roger Jasko, Terry Burnett, John Pasqua, and Rino Bergonzi. Jim Kingsley,

who preceded Roger; and Karl Parks and Rick Fisher, who succeeded Roger,

also deserve my thanks. As far as I'm concerned, Roger will never be allowed

to pay for a cup of coffee in my presence! A special word of thanks to Jane

Price, my DSP coordinator until almost the very end, whose advice and support

helped guide me through this long process. I would also like to thank Carol

Lee, Donna Ronco, Penny Gilman, Patty 07Dell, and Rick Carpenter for their

support, encouragement, and friendship over the years.

I am fortunate to have had Drs. Rebecca Parsons and Charles Hughes as

my research committee co-chairs. While preparing for the qualifier exams, Dr.

Parsons helped me turn on the first "lightbulb" in my understanding of com-

putability theory, which set into motion the toppling of the rest of the qualifier

dominos. As my friend, Dr. Parsons has been a source of strength and inspi-

ration. My history with Dr. Hughes goes back to my sophomore year machine

organization class. Over the years, he has been my professor, friend, mentor, and

more; the one constant during this time of growth and change in my life. Dr.

Hughes helped me map out a study plan to help prepare me for the qualifiers,

and also permitted me to audit his class in Formal Languages and Automata

Theory. Together as my co-chairs, Drs. Parsons and Hughes formed the core of

a formidable research committee to guide and support me through my research

journey.

Several faculty members from UCF deserve my thanks for their contributions

to my education. Dr. Mostafa Bassiouni, professor for three of my graduate

classes, and a member of my research committee, challenged me to become a

much better student than I ever was before taking his classes. Dr. Ronald

DeMara, external member (at first) of my research committee, contributed several

insights, references, and fine points to the body of my research. Dr. Sheau-Dong

Lang permitted me to audit his course in Concrete Math while I was preparing

for qualifier exams, and exceeded my expectations for the subject both in his

lectures, and in his insistence that I turn my work into him for grading! Dr.

Ronald Dutton allowed me to audit his course in Algorithm Design and Analysis,

not once but twice, providing inspired lectures and insights. Finally, to Dr.

Narsingh Deo, my professor for two courses in parallel architecture, algorithms,

and analysis, is a gifted and inspiring professor, whose passion for teaching was

evident in every lecture - and every proof from "first principles"!

To Tiffani Williams, who never failed to point out my "options," to Keith

Garfield, whose encouragement the second time around helped me believe I could

pass qualifiers, and to the other students in the Evolutionary Computing Lab a t

UCF, Jaren Johnston and Paulius Micikevicius, thanks for thought provoking

conversation, sometimes helpful, sometimes controversial, sometimes distracting,

always enjoyable! In the Computer Science office, Connie Weiss, Susan Brooks,

Heather Oakes, Laury Anthony, and Sonja Rosignol helped me countless times

with logistics, listening, and chocolate.

Scott Nolan has been my good friend and frequent classmate since before

we began graduate school together. During my time of need, Scott was my

roommate, confidant, and voice of reason. Steve Mackrides and John Baptiste

believed in and encouraged me when I almost gave up on this goal, and helped

me go for it more than they knew. I would not have passed the qualifier exams

were it not for Mark Kilby. Thank you, Mark, for your help as a study partner,

friend, and soul-mate.

My most special thanks goes to my wife Susan, whose understanding, support,

patience, and love made completing this dissertation possible. Matthew may be

too young to remember this time in his life, when his daddy would come home

to be with him for dinner, then go back out to school after he went to bed.

Often, when I was tired, his picture and smile would give me the motivation to

keep working. My brother Ira also played an important role during this time of

my life, and for his support I am grateful. I am also happy to be able to share

this milestone with my mother, whose love defies the bounds of time and space.

Finally, to my brother and sister Michael and Alicia, who are very special to me,

and who will never believe I am no longer a student, and to my father and Jan.

I love you all.

vii

List of Tables .

List of Figures .

1 Introduction.

1.1 Dissertation Outline

2 Background .

2.1 Models and Abstraction .

2.2 Actors .

2.3 Linda a

2.5 Composition .

2.6 Operational Semantics .

2.6.1 Definition .

2.6.2 The SECD Machine .

2.6.3 Structural Operational Semantics .

2.7 Related Work .

3 paraDOS Concepts ,

. xii

. xiv

...
Vll l

4 paraDOS Uninstantiated .

5 paraDOS Instantiated for Actors .

5.1 The Pact Instance of ParaDOS . .

5.1.1 An Actor System .

5.1.2 The Pact Specification .

5.1.3 Pact Predicates and Helper Functions .

5.1.4 Pact Decidable Predicates .

5.2 Actor Theories .

5.2.1 TheATModel .

AT Predicates and Helper Functions .

5.3 Equivalence Proof for actors - -

5.3.1 Pact Restricted .

Theorem and Proof .

6 paraDOS Instantiated for Linda, Tuple Space .

6.1 Instance Evolution and Definitions

6.2 Set-theoretic Semantics for Linda .

6.3 Scheme-based Semantics for Linda . .

6.4 Equivalence Proof .

6.4.1 The TSspec Model .

6.4.2 Definitions and Assumptions .

Theorem and Proof .

6.4.4 Beyond the Equivalence .

7 Parameters of paraDOS .

7.1 The Model System .

7.2 Configurations and Computation Space .

7.3 Communication Closures . .

7.4 Transition Relation .

7.5 Views

8 Composition within paraDOS . .

8.1 Evolution .

8.2 A Composition Grammar .

8.3 Tuple space composition . .

8.4 Actors composition discussion .

9 Reasoning . .

9.1 Early Event-based Reasoning .

9.2 Beyond Sequential Computation .

9.3 Representing Concurrency .

9.4 Properties of Computation . .

9.5 Reasoning with Traces

9.5.1 Reasoning with CSP .

9.5.2 Why paraDOS? .

9.6 Reasoning with paraDOS . .

9.6.1 ParaDOS Basics.

9.6.2 Beyond CSP .

9.6.3 Policies .

9.6.4 Properties .

Demonstration of Reasoning with ParaDOS .

9.7.1 Ambiguity .

9.7.2 Clarity . .

9.7.3 Importance .

10 Conclusions .

10.1 Contributions . .

10.1.1 Concise Contributions . .

10.1.2 Loss of Entropy Property .

10.1.3 Parallel Events and ROPES .

10.1.4 One History, Multiple Views .

10.1.5 General Model for Reasoning .

10.1.6 Concurrent State Abstractions .

10.1.7 Example of View-centric Reasoning .

10.2 Future Work .

10.2.1 Transactions .

10.2.2 Models of Commercial Systems .

10.2.3 Other Future Work .

A Scheme Implementation of SECD Machine .

List of References .

4.1 paraDOS Notation . ,

9.1 Examples requiring parallel events . .

9.2 Example properties of computation .

9.3 Some CSP notation for reasoning about traces .

xii

2.1 Transition Function for the SECD Machine .

3.1 paraDOS Concepts: events, parallel event, and ROPES. . .

3.2 paraDOS Concepts: trace and views.

3.3 ParaDOS computation space: a lazy tree. .

4.1 paraDOS View Functions.

5.1 Pact Domain Specification

5.2 Pact Inbound and Outbound Tasks in 7 .

5.3 Pact Meaning Function .

5.4 Pact Transition Relation . . .

5.5 Pact Outgoing and Incoming External Tasks .

5.6 Pact Generate Children . .

5.7 Pact Accessor Functions .

5.8 Pact Modifier Functions .

5.9 Pact Predicate Functins . .

5.10 AT Transition Rules

5.11 Pact Restricted Transition Function .

6.1 Set-t heoretic PTS Domain Specification. .

...
Xlll

6.2 Transition and meaning functions. .

6.3 The generate children function. .

6.4 The Linda meaning function.

6.5 Functions used by Lm .

6.6 pTs Domain Specification. . .

6.7 The TSspec match relation. .

6.8 The TSspec Domain Specification. .

6.9 Operational Semantics for TSspec. .

8.1 Example derivation for S . ,

9.1 Case Study for Linda predicate ambiguity: an interaction point in

tuple space involving three processes. .

8.2 Example composition tree from derivation of S . .

8.3 Revised reduce-send function to support tuple space composition 148

CHAPTER 1

Introduction

The development of distributed applications has not progressed as rapidly as its

enabling technologies. In part, this is due to the difficulty of reasoning about

such complex systems. In contrast to sequential systems, parallel systems give

rise to parallel events, and the resulting uncertainty of the observed order of

these events. Loosely coupled distributed systems complicate this even further

by introducing the element of multiple imperfect observers of these parallel events.

Such observers are capable of seeing different views of the same parallel event.

In the opening paragraph, we alluded to three important characteristics that

need to be addressed in models of concurrent computation. First, there is the

nondeterminism of what events might occur next in a system of concurrent pro-

cesses. Next, there is the requirement to represent any event simultaneity that

does occur. Finally, there is the need to represent the observers' different poten-

tially imperfect views of simultaneously occurring events.

The goal of this dissertation is to advance parallel and distributed systems

development by producing a parameterized model that can be instantiated to re-

flect the computation and coordination properties of such systems, by supporting

nondeterminism, parallel events, and views. The result is a model called para-

DOS that we show to be general enough to have instantiations of two very distinct

distributed computational models, Actors and tuple space. We show how para-

DOS allows us to use operational semantics to reason about computation when

such reasoning must account for multiple, inconsistent and imperfect views. We

then extend the paraDOS model with an abstraction to support composition of

communicating computational systems. This extension gives us a tool to reason

formally about heterogeneous systems, and about new distributed computing

paradigms such as the multiple tuple spaces support seen in Sun's JavaSpaces

and IBM's T Spaces.

1.1 Dissertation Outline

We ground our research in Chapter 2 with important background information,

including the role of models and abstraction in the field of Computer Science,

paying particular attention to models of computation that play a role in our re-

search. Chapter 3 introduces the concepts that are important to understanding

paraDOS, and how these concepts fit together. We present the uninstantiated

paraDOS model, with formal definitions, in Chapter 4. Chapters 5 and 6 are

the core of our theoretical work, presenting instantiations of paraDOS for Ac-

tors and Linda (the canonical example of a tuple space language), respectively.

We establish the soundness of these two instantiations of paraDOS by proving

two theorems based on equivalences to established operational semantics for Ac-

tors and Linda. We reveal paraDOS parameters and the particularly important

composition parameter in Chapters 7 and 8, respectively. Chapter 9 gives an

extensive treatment of reasoning about properties of computation, and exercises

an instance of paraDOS to reason about a Linda definition considered to be am-

biguous prior to our research. Finally, we conclude in Chapter 10, presenting a

summary of our major contributions and potential future work.

CHAPTER 2

Background

This chapter considers the role of formal models and abstractions in Computer
1

! Science, and an approach to describe them. Section 2.1 begins with a discussion

of models and abstractions. Sections 2.2 through 2.4 present three diverse compu-

tational models: Actors, Linda, and CSP. These three models support different

abstractions of concurrency and are the basis and inspiration for much of the

research presented in this dissertation. Section 2.6 introduces operational seman-

tics, the tool used to realize paraDOS, the model developed in this dissertation.

Finally, Section 2.7 presents related work.

2.1 Models and Abstraction

Scientists rely on models to describe, explain, and predict phenomena. The pro-

cess that develops such models is one of iterative refinement, involving careful

design and verification. Oxford [Oxf97] defines a model as a "simplified descrip-

tion of a system . . . to assist calculations and predictions." This simple defini-

tion reveals two important aspects of any model, its abstraction and its purpose.

Computer Science is not the science of computers; it is the science of models. It

W d exist independent of the invention of computers and, in fact, models largely

dakinted the invention of computers.

'
(rypically, the purpose of a new model influences its level of abstraction. One

toai to verify a new model is to prove its equivalence to an establighed one.

So&etimey, the design of two or more existing, equivalent models suggests the

design of a new, more general model. In this sense, the more general a model, the

more purposes it serves. Computational models can be predictive, descriptive, or

used for reasoning about properties of computation. The purpose of paraDOS is

the: latter.

Direct observation of a concurrent computer program is problematic, imprac-

tical, and not conducive to reasoning about properties of concurrent systems

in general. Limitations of human observation include resource availability, en-

durance, and consistency (both rate and reproducibility). Furthermore, a single

correct observation does not exist; multiple views are a consequence of observing

systems with multiple concurrent processes. Any model for reasoning about prop

erties of concurrent systems must adequately address the complexities resulting

from multiple views of computation.

A concurrent program, in general, requires communication and coordination.

Mechanisms to support communication vary from shared memory to message

passing to combinations of both of these mechanisms. The design of paraDOS

needed to employ a communication abstraction sufficient to support the many

varieties of concurrency about which we wish to reason, especially those arising

in distributed computation.

A critical designation for paraDOS was the selection of an appropriate level

of abstraction for observable events, the primitives we have chosen for formal

reasoning. Sequential models of computation often consider the details of inter-

d computational states, transitions, or subexpression evaluation, but this level

bf granularity is not desirable for reasoning about properties of concurrent sys-

m s . Instead, we are inspired by the approach taken in computability theory,

md have extended its notion of "input/output behavior" to include interprocess

c~rnmunication.

Actors

The Actors model of concurrent compuatation is due to Agha [Agh86]. We

present the instantiation of paraDOS for Actors, Pact , in Chapter 5 . Actors is

an elegant model of concurrency based on message passing behavior. At the core

of this model is the concept of computational agents (actors). The remainder of

this section discusses actors and actor computation in sufficient detail to enable

the reader to understand the semantics presented in Chapter 5 .

Actors compute in response to messages they receive. For each message an

actor receives, it can (based on its behavior at the time it receives this message)

send messages to other actors, create new actors, and specify its own replacement

behavior (not necessarily in this or any other prescribed order). There is still

much to say about implementation assumptions and the implications of these

requirements (in terms of what is and is not specified). Let's consider each of

these requirements in turn, and discuss briefly some of the implications.

An actor can send messages to other actors. This is the only way one actor

can affect the behavior of another. While there is a guarantee of delivery for all

sent messages, there is no guarantee that the order of receipt will be the same

as that of transmission, or even that the order of receipt will be the same for all

recipients. Thus, the promise of delivery is the total extent of fairness required.

Furthermore, actors communicate asynchronously since synchronous communi-

cation would limit parallelism and, in a distributed system, be problematic to

implement. Asynchronous messages also increase the level of nondeterminism in

the actor model, an important consequence of PDSs.

An actor can create new actors. Any sequence of independent expressions

that can be computed in parallel can take advantage of new actors to do so. Sub-

expression results can be communicated back to other actors waiting for those

results. Compilers can perform sub-expression analysis to maximize parallelism,

based on hardware and run-time constraints, so as not to burden the program-

mer. Thus, the Actors model does not unnecessarily constrain otherwise inherent

parallelism, or distributivity.

An actor can specify its own replacement behavior. This replacement behavior

will govern what that actor does with the next message it receives. In this way,

actors can be history sensitive. An actor's actions are a function of its behavior

at the time a message is received and the content of the message.

Actors is a seductive model in that it embodies three simple requirements,

yet contains all the power and complexity inherent in concurrent computation.

Given the proliferation of requirements and specifications for other concurrent

models that possess no greater parallel and distributed processing capabilities

than actors, the Actors model is the logical choice for the first instantiation of

paraDOS.

Linda

The tuple space model and Linda language are due to Gelernter [Ge185]. We

present instantiations of paraDOS for Linda in Chapter 6. Linda is very different

from pure message passing- based models (e.g., Actors) ; therefore they represent

an important test of the diversity of paraDOS9s instantiation capability. The

current popularity of commercial tuple space implementations, such as Sun's

JavaSpaces FHA991 and IBM's T Spaces [WML98], contributes to the relevance

of Linda instances of paraDOS.

Linda is not a complete programming language; it is a communication and

coordination language. Linda is intended to augment existing computational

languages with its coordination primitives to form comprehensive parallel and

distributed programming languages. The Linda coordination primitives are rd(),

in() , out (), and eval(). The idea is that multiple Linda processes share a com-

mon space, called a tuple space, through which the processes are able to commu-

nicate and coordinate using Linda primitives.

A tuple space may be viewed as a container of tuples, where a tuple is simply

a group of values. A tuple is considered active if one or more of its values is

currently being computed, and passive if all of its values have been computed.

A Linda primitive manipulates tuple space according to the template specified

in its argument. Templates represent tuples in a Linda program. A template

extends the notion of tuple by distinguishing its passive values as either formal or

actual, where formal values, or formals, represent typed wildcards for matching.

Primitives rd() and in() are synchronous, or blocking operations; out() and

eval() are asynchronous.

The rd() and in() primitives attempt to find a tuple in tuple space that

matches their template. If successful, these primitives return a copy of the match-

ing tuple by replacing any formals with actuals in their template. In addition,

the in() primitive, in the case of a match, removes the matching tuple from

tuple space. In the case of multiple matching tuples, a nondeterministic choice

determines which tuple the rd() or in() operation returns. If no match is found,

both operations block until such time as a match is found. The out() operation

places a tuple in tuple space. This tuple is a copy of the operation's template.

Primitives rd(), in() , and out() all operate on passive tuples.

All Linda processes reside as value-yielding computations within the active

tuples in tuple space. Any Linda process can create new Linda processes through

the eval() primitive. Execution of the eval() operation places an active tuple

in tuple space, copied from the template. When a process completes, it replaces

itself with a passive value within its respective tuple; when all processes within a

tuple replace themselves with values, the formerly active tuple becomes passive.

Only passive tuples are visible for matching by the rd() and in() primitives; thus

active tuples are invisible.

In the almost two decades since Gelernter first conceived the Linda language

and tuple space, the computer world has evolved dramatically. During most

of this time, Linda development and research has primarily been an academic

exercise. Only recently has the tuple space approach to building distributed

systems gained widespread acceptance. It is instructive to look a t Linda's history

to understand its current role in distributed computing paradigms.

The Linda language has several desirable properties that seem particularly

well-suited for distributed computing. Briefly, since tuples are addressed associa-

tively, through matching, tuple space is a platform independent shared memory.

Unlike message passing systems where a sender must typically specify a message's

recipient, tuple space acts as a conduit for the generation, use, and consumption

of information between distributed processes. Information generators do not

need to know who their consumers will be, nor do information consumers need to

know who generated the information they consume. Gelernter calls this property

communication orthogonality. Additionally, tuples may be generated long before

their consumers exist, and tuples may be copied or consumed long after their

generators cease to exist. This property is time independence.

When distributed computing didn't seem to be making great progress, the

focus of Linda research shifted to parallel computing. The difference between

distributed and parallel computing is loosely coupled versus tightly coupled pro-

cessors, respectively. Linda's properties serve parallel computing well, with a

natural notion for barrier synchronization and heterogeneity.

In the early nineties, Internet usage began to enter the mainstream of tech-

nology with the advent of the world wide web, browsers, Java, and smart de-

vices. What was missing before was network ubiquity, a platform-independent

language, and of course, a pervasive motivation. The motivation came when em-

bedded systems migrated from the military to the general public in the form of

smart appliances. For the first time, embedded microprocessors, such as those

found in telephones, televisions, toaster ovens, and automobiles, had an external

interface. The subsequent desire to network and control these devices remotely

led to the need for a simple, yet powerful, protocol to enable this technology.

Researchers at Sun Microsystems and IBM turned to Gelernter's Linda language

and tuple spaces as the basis for developing their new distributed programming

tools. Tuple space has returned to its roots, and is now the focus of distributed

computing once again.

CSP

Communicating Sequential Processes (CSP) is due to Hoare [Hoa85]. CSP is

a model for reasoning about concurrency; it provides an elegant mathematical

notation and set of algebraic laws for this purpose. The inspiration for developing

paraDOS based on observable events and the notion of event traces comes from

CSP.

CSP views concurrency, as its name implies, in terms of communicating se-

quential processes. A computational process, in its simplest form, is described by

a sequence of observable events. In general, process descriptions also benefit from

Hoare's rich process algebra. The CSP process algebra is capable of expressing,

among other things, choice, composition, and recursion. The history of a compu-

tation is recorded by an observer in the form a sequential trace of events. Events

in CSP are said to be offered by the environment of a computation; therefore,

they occur when a process accepts an event at the same time the event is offered

by the environment.

When two or more processes compute concurrently within an observer's envi-

ronment, the possibility exists for events to occur simultaneously. CSP has two

approaches to express event simultaneity in a trace: synchronization and inter-

leaving. Synchronization occurs when an event e is offered by the environment of

a computation, and event e is ready to be accepted by two or more processes in

the environment. When the observer records event e in the trace of computation,

the interpretation is that all those processes eligible to accept e participate in the

event.

The other form of event simultaneity, where two or more distinct events oc-

cur simultaneously, is recorded by the observer in the event trace via arbitrary

interleaving. For example, if events el and e2 are offered by the environment, and

two respective processes in the environment are ready to accept el and e2 a t the

same time, the observer may record either el followed by ez, or ez followed by el.

In this case, from the trace alone, we can not distinguish whether events el and

ez occurred in sequence or simultaneously. CSP's contention, since the observer

must record el and ez in some order, is that this distinction is not important.

CSP's algebraic laws control the permissible interleavings of sequential pro-

cesses, and support parallel composition, nondeterminism, and event hiding. Im-

portant sets within the CSP algebra are the traces, refusals, and failures of a

process. The set of traces of a process P represents the set of all sequences of

events in which P can participate if required. A refusal of P is an environment

- a set of events - within which P can deadlock on its first step. The set

of refusals of P represents all environments within which it is possible for P to

deadlock. The set of failures of P is a set of trace-refusal pairs, indicating the

traces of P that lead to the possibility of P deadlocking.

Reasoning about a system's trace is equivalent to reasoning about its com-

putation. CSP introduces specifications, or predicates, that can be applied to

individual traces. To assert a property is true for a system, the associated predi-

cate must be true for all possible traces of that system's computation. Examples

of elegant CSP predicates include those that test for properties of nondivergence

or deadlock-freedom in a system. Hoare's CSP remains an influential model for

reasoning about properties of concurrency. Recent contributions to the field of

CSP research include Roscoe [Ros98] and Schneider [SchOO].

Composition

The conventional notion of composition refers to sequential composition. For

example, in imperative programming languages, a common way to compose two

or more individual statements involves delimiting with semicolons (e.g., s l ; s2).

The semantics of functional programming languages provides for composition

through the linking of output values to input values in function application (e.g.,

f (g (x)) , where the output value from function g () becomes the input value to

function f 0).

For a non-programming language example, consider the Unix operating sys-

tem. Unix provides numerous facilities for command composition, including the

semicolon (;) and the pipe symbol (I), both of which are forms of composition.

The semicolon is an example of sequential composition; for "a; b", command a

executes, then command b executes. The pipe is an example of composition that

permits concurrency; for "a I b", a's output becomes b's input, and a and b may

run concurrently, subject to b blocking if it needs input from a that has yet to be

produced.

Sequential composition is one possible restriction of parallel composition.

When we discuss composition within the context of paraDOS, we refer to the

more general notion of concurrent, or parallel composition [Mi189, CT90, CT92,

FOT921. Parallel composition provides for the concurrent computation of com-

posed components. One definition of a distributed system is the composition of

multiple, loosely coupled sequential processes that communicate and coordinate

to perform some computation. A more general definition provides for the com-

position of multiple, loosely coupled distributed systems. Since one of the main

goals for paraDOS is to be a general model, we sought to capture the essence of

general composition, not only across instances of paraDOS, but with respect to

the more general, recursive notion of composition possible in distributed systems.

Operational Semantics

In this dissertation, we employ operational semantics to develop a general com-

putational model for concurrency. By general we mean a parameterized model

capable of instantiation into multiple parallel and distributed systems. Thus,

our goal is a model that goes beyond describing the meanings of programs for a

particular programming language; we intend paraDOS to be generally applicable

to a broad scope of computational systems and paradigms. The success of our

research provides further evidence of the utility of operational semantics as an

effective means to develop elegant models of computation that support reasoning

about the modeled systems.

This section provides a brief introduction to operational semantics. The re-

mainder of this section is organized as follows: Section 2.6.1 defines operational

semantics. Sections 2.6.2 and 2.6.3 present two important contributions to the

field of operational semantics, Landin's SECD machine and Plotkin's structural

operational semantics.

2.6.1 Definition

The field of operational semantics encompasses any formal method used to de-

scribe the meaning of a program through the changes its execution makes to

the state of some computational model [SK95]. The following definition is from

Howe [How931 :

Definition 1 (operational sernantdcs) An operational semantics is a set of

rules specifying how the state of an actual or hypothetical computer changes

while executing a program. The overall state is typically divided into a number

of components, e.g. stacks, heaps, registers, etc. Each rule specifies certain

preconditions on the contents of some components and their new contents after

the application of the rule.

An operational semantics may take many forms, specifying a formal or informal

model of computation; it is defined at a level of abstraction appropriate for the

model's purpose. Important references for work in operational semantics include

Dijkstra [Dij71], Landin [Lan64], Kahn [Kah87], Plotkin [Plo81], Marcotty, et

a1 [MLB76], and Hennessy [Hengo]. The remaining subsections present Landin's

and Plotkin's respective contributions to the field of operational semantics.

2.6.2 The SECD Machine

The first example is a classic use of operational semantics, the SECD machine

by Peter Landin [Lan64]. The purpose of the SECD machine is to evaluate

lambda expressions. As a result, the computational techniques employed by the

SECD machine have been used in implementations of functional programming

languages. SECD's name comes from the names of the four stacks which comprise

the machine's configuration, or state:

S for Stack A structure for storing partial results awaiting subsequent use.

E for Environment A collection of bindings of values (actual parameters) to

variables (formal parameters).

C for Control A stack of lambda expressions yet to be evaluated plus a spe-

cial symbol "@" meaning that an application can be performed; the top

expression on the stack is the next one to be evaluated.

D for Dump A stack of complete states corresponding to evaluations in progress

but suspended while other expressions (inner redexes) are evaluated.

The notation for a state, then, is cfg(S, E, C, D). Finally, SECD has a transition

function that maps current states to next states. Formally, we specify this tran-

sition function by the mapping transform : State + State. Figure 2.1 contains

the algorithm for the SECD transition function, as specified in Slonneger and

Kurtz [SK95]. The SECD machine starts in an initial state with the C stack

containing the lambda expression to be evaluated, and the S, E, and D stacks

empty. A final state (if one exists for a given lambda expression) is recognized

by empty C and D stacks; the result is on top of the S stack. Implementing the

SECD machine in Scheme was an important personal milestone in the author's

understanding of operational semantics. That implementation is in Appendix A.

2.6.3 Structural Operational Semantics

The SECD machine demonstrates one form of operational semantics, whose pur-

pose is the specification of an abstract machine capable of carrying out the me-

chanical evaluation of lambda expressions. Another form of operational seman-

tics, developed by Gordon Plotkin [Plo81], is called structural operational seman-

tics. Structural operational semantics presents state transitions in the form of

transform cfg(S, E, C, D) =
(1) if head(C) is a constant

then cfg([head(C) I S], E, tail(C), D)
(2) else if head(C) is a variable

then cfg([E(head (C)) I S], E, tail(C), D)
(3) else if head(C) is an application (Rator Rand)

then cfg(S, E, [Rator,Rand,@ I tail(C)], D)
(4) else if head(C) is a lambda abstraction XV . B

then cfg([closure(V,B,E) I S], E, tail(C), D)
(5) else if head (C) = @ and head(tai1 (S)) is a predefined function f

then cfg([f(head(S)) I tail(tail(S))], E, tail(C), D)
(6) else if head (C) = @ and head(tail(S)) = closure(V,B,E1)

then cfg([1, [VH head (S)]El, [B], cfg(tail(tail(S)), E, tail(C), D))
(7) else if C = []

then cfg([head(S) (S1], El, C1, Dl) where D = cfg(s l ,E l ,C~,D~)

Figure 2.1: Transition Function for the SECD Machine

inference rules. Thus, the abstract machine becomes a system of inference rules.

The classic representation of an inference rule has premises listed above a hori-

zontal line, a conclusion below the line, and any required condition (if necessary),

to the right. Formally, here is the general form of an inference rule:

premise, . . . premise,
condition.

conclusion

Inference rules can be used to specify the abstract syntax of a language, as

well as the semantics of expressions and commands. Program meaning derives

from the use of inference rules on a program. Inference rules perform syntactic

transformations of language elements until no further transformations are possible

and normal form values remain. The formal technique of structural induction

on transformations provides a powerful mechanism for proving properties about

programs.

2.7 Related Work

A rich body of work exists proposing process algebraic approaches to model con-

aurrency and distributed computation. However, they each differ &om paraDOS

in one or two important ways: single-event transitions and assumption of causal

relationships between events. For example, CCS and the a-Calculu~, by Mil-

ner [Mi189, Mi1991, employ singular trsnsitions and interleaving to express con-

currency. Event structures and causal trees, by Degano, et a{. [DDM88, DDSOb,

DDSOa], employ graph or tree structures to represent parallel events, whose edgea

represent causal relationships between individual events. Two important differ-

ences here are that causal relationships preclude event structures from being con-

sidered parallel events in the sense of paraDOS, and paraDOS does not proceed

from the assumption of knowledge of any causal relationships between events; it

is strictly observational.

Hoare's Unifying Theories [Hoa94] are not unifying in the same sense of para-

DOS as a general model; rather Hoare provides a notation and mechanism for

alternatively representing a given model as a denotational, algebraic, or opera-

tional semantics. That is, using the proposed notation, a semantics in one form

can be mechanically translated to either of the other two semantics.

Joint work in parallel program composition, between the California Insti-

tute of Technology and Argonne National Laboratory, by Chandy and Tay-

lor [CTSO, CT92] and Foster, et al. [FOT92], led to PCN (Program Composi-

tion Notation). According to the PCN approach, two types of variables exist:

mutable and definitional (single assignment). Mutable variables must be local

to some composable element of a program, while definitional variables can be

shared across composable elements. At run time, programs are decomposed into

pieces, such that single assignment variables may be assigned a value at most

once, otherwise they are undefined. At tempts to access an undefined definitional

variable are blocked until such time as the variable is assigned a value. This

approach results in a run time environment without race conditions.

An informal operational semantics of the C-Linda programming language was

developed by Narem [Nar89]. An operational semantics for Actorspaces [AC93,

AC941, an extension of the actors model that supports Linda-like tuple spaces,

was presented by Callsen [Ca194]. A structured operational semantics for Linda

tuple space was developed by Jensen [CJY94, Jen941, as an important part of the

development of a computational model for multiple tuple spaces. As one of the

points addressed in building a refinement calculus for tuple spaces, Semini and

Montangero [SMSS] define a reference language and its operational semantics.

While the model presented in this paper is also an operational semantics for

Linda and tuple space, our work is distinguished from previous work in several

ways. ParaDOS directly supports multiple simultaneous views of a computation.

'Ikansition steps in previous models correspond to single event occurrences; tran-

sitions in paraDOS correspond to parallel event occurrences. In Narem [Nar89],

an informal operational semantics is given for a limited implementation of eval().

In Jensen (CJY94, Jen941, eval() is treated, but at a different level of abstrac-

tion. Support for views and parallel events is a more natural level of abstraction

for reasoning about parallel and distributed computation. Finally, paraDOS is a

general model for reasoning about parallel and distributed computation that can

and has been instantiated for computational paradigms other than tuple space,

e.g. see [SPH98]. Previous operational semantics developed by the other re-

searchers mentioned in this section were specific to Linda and tuple space. These

ideas will be explored further in the following chapters.

CHAPTER 3

paraDOS Concepts

ParaDOS uses a convergence of tools and techniques for modeling different forms

of concurrency, including parallel and distributed systems. It is designed to im-

prove upon existing levels of abstraction for reasoning about properties of con-

current computation. The result is a model of computation with new and useful

abstractions for describing concurrency and reasoning about properties of such

systems. This chapter discusses important concepts needed to understand para-

DOS's features and the motivations for their inclusion.

ParaDOS models concurrency using a parameterized operational semantics.

The reasons for choosing operational semantics to develop paraDOS are twofold.

First, an operational semantics describes how computation proceeds. Second,

an operational semantics permits choosing an appropriate level of abstraction,

including the possibility for defining a parameterized model. The motivation for

including parameters is to make paraDOS a general model that can be instanti-

ated. Each such instance can be used to study and reason about the properties

of some specific parallel or distributed system within a consistent framework.

From CSP we borrow the practice of event-based reasoning and the notion

of event traces to represent a computation's history. The first concept to discuss

is that of events, or, more precisely, observable events. The events of a system

are at a level of abstraction meaningful for describing and reasoning about that

system's computation. Events are the primitive elements of a CSP environment.

CSP events serve a dual purpose; they describe the behavior of a process, and they

form an event trace when recorded in sequence by an observer. CSP represents

concurrency by interleaving the respective traces of two or more concurrently

executing processes. CSP is a process algebra, a system in which algebraic laws

provide the mechanism for specifying permissible interleavings, and for expressing

predicates to reason about properties of computation.

One of the great challenges of developing a general model concerns the iden-

tification of common observable behavior among the variety of possible systems.

Interprocess communication is one such common behavior of concurrent systems,

even if the specific forms of communication vary greatly. For example, in message

passing systems, events could be message transmission and delivery; in shared

memory systems, events could be memory reads and writes. Even among these

examples, many more possibilities exist for event identification. Since paraDOS

is to be a general model of concurrency, event specification is a parameter.

CSP is a model of concurrency that abstracts away event simultaneity by in-

terleaving traces; the CSP algebra addresses issues of concurrency and nondeter-

minism. This event trace abstraction provides the basis for our work. ParaDOS

extends the CSP notion of a trace in several important ways. First, paraDOS

introduces the concept of a parallel event, an event aggregate, as the building

block of a trace. A trace of parallel events is just a list of multisets of events.

Traces of event multisets inherently convey levels of parallelism in the compu-

tational histories they represent. Another benefit of event multiset traces is the

possible occurrence of one or more empty event multisets in a trace. In other

words, multisets permit a natural representation of computation proceeding in

Some observable, sequential events: A

A parallel event: Some possible, corresponding ROPES:

Figure 3.1: paraDOS Concepts: events, parallel event, and ROPEs.

the absence of any observable events. The empty multiset is an alternative to

CSP's approach of introducing a special observable event (r) for this purpose.

In concurrent systems, especially distributed systems, it is possible for more

than one observer to exist. Furthermore, it is possible for different observers

to perceive computational event sequences differently, or for some observers to

miss one or more event occurrences. Reasons for imperfect observation range

from network unreliability to relevance filtering in consideration of scalability.

ParaDOS extends CSP's notion of a single, idealized observer with multiple,

possibly imperfect observers, and the concept of views. A view of computation

implicitly represents its corresponding observer; explicitly, a view is one observer's

perspective of a computation's history, a partial ordering of observable events.

Multiple observers, and their corresponding views, provide relevant information

about a computation's concurrency, and the many partial orderings that are

possible.

I A trace:
One possible view: Another possible view: A 3rd possible view:

i i i
t

Figure 3.2: paraDOS Concepts: trace and views.

To describe views of computation in paraDOS, we introduce the concept of

a ROPE, a randomly ordered parallel event, which is just a list of events from

a parallel event. The concepts of observable events, parallel events, and ROPEs

are depicted - using shape primitives for events - in Figure 3.1. Because

paraDOS supports imperfect observation, the ROPE corresponding to a parallel

event multiset need not contain all - or even any -- events from that multiset.

Indeed, imperfect observation implies some events may be missing from a view

of computation.

Another consideration for ROPEs is the possibility of undesirable views. Para-

DOS permits designating certain event sequences as not legitimate, and then

constraining permissible ROPEs accordingly. Views of a computation are de-

rived from that computation's trace, as depicted in Figure 3.2. While a trace is

a list of event multisets, a corresponding view is a list of lists (ROPEs) of events.

The structure of a view, like that of a parallel event, preserves concurrency infor-

mation. An important parameter of paraDOS is the view relation, which permits

the possibility of imperfect observation and the designation of undesirable views.

Parallel events, ROPES, and the distinction of a computation's history from its

views are abstractions that permit reasoning about computational histories that

cannot, in general, be represented by sequential interleavings. To see this, assume

perfect observation, and assume different instances of the same event are indis-

tinguishable. Given these two assumptions, it is not possible to reconstruct the

parallel event trace of a computation, even if one is given all possible sequential

interleavings of that computation. Thus, while it is easy to generate all possible

views from a parallel event trace, the reverse mapping is not. in general, possible.

For example, consider the sequential interleaving (A, A, A, A), and assume this

trace represents all possible interleavings of some system's computational history.

It is not possible to determine from this trace alone whether the parallel event

trace of the same computation is ({A, A, A) , A) or ({A, A), {A,A)), or some

other possible parallel event trace.

The phenomenon of views is not the only concept that derives from parallel

event traces; there is also the concept of transition density. Consider a paraDOS

trace as a labeled, directed graph, where the parallel events represent nodes, the

possible sequences of parallel events in the trace define the directed edges of the

graph, and the cardinality of each parallel event multiset serves as a weight with

which to label the corresponding node's incoming transition. In other words, we

can represent a paraDOS trace as a labeled transition system, where each label

measures the number of observable events that occur during that node's corre-

sponding transition. Thus, transition density is a measure of parallelism in each

transition of a concurrent system, or, when aggregated over an entire trace, is a

measure of overall concurrency. Alternatively, transition density serves as a pa-

rameter in paraDOS. A transition density of one models sequential computation;

transition densities greater than one specify permissible levels of parallelism.

The concepts described to this point are the primitive elements of trace-based

reasoning within paraDOS. What remains are descriptions of the concepts our

operational semantics employs to generate parallel events, traces, and views of

concurrent computation. To define an operational semantics requires identifying

the components of a system's state, and a state transition function to describe how

computation proceeds from one state to the next. In the case of an operational

semantics for parallel or distributed computation, a transition relation often takes

the place of a transition function due to inherent nondeterminism. When multiple

independent processes can make simultaneous computational progress in a single

transition, many next states are possible; modeling to which state computation

proceeds in a transition reduces to a nondeterministic choice from the possible

next states.

Several general abstractions emerge concerning the components of a system's

state in paraDOS. The first abstraction is to represent processes as continuations.

A continuation represents the remainder of a process's computation. The second

abstraction is to represent communications as closures. A closure is the binding

of an expression and the environment in which it is to be evaluated. The third

abstraction is to represent observable behavior from the preceding transition in a

parallel event set, discussed earlier in this chapter. The final abstraction concern-

ing components of a paraDOS state is the next (possibly unevaluated) state to

which computation proceeds. Thus, the definition of state in paraDOS is recur-

sive (and, as the next paragraph explains, lazy). The specifics of processes and

communications may differ from one instance of paraDOS to another, but the

above abstractions concerning a system's components frame the paraDOS state

parameter.

Lazy evaluation -- delaying evaluation until the last possible moment - is

an important concept needed to understand the specification of a paraDOS tran-

sition relation. Lazy evaluation emerges in paraDOS as an effective approach to

managing the inherent nondeterminism present in models of concurrency. The

computation space of a program modeled by paraDOS is a lazy tree, as depicted in

Figure 3.3. Nodes in the tree represent system configurations, or states; branches

represent state transitions. A program's initial configuration corresponds to the

root node of the tree. Branches drawn with solid lines represent the path of

computation, or the tree's traversal. Nodes drawn with solid circles represent the

elaborated configurations within the computation space. Dashed lines and circles

in the tree represent unselected transitions and unelaborated states, respectively.

The transition relation only elaborates the states to which computation proceeds

(i.e., lazy evaluation). Without lazy evaluation, the size of our tree (computation

space) would distract us from comprehending a system's computation, and at-

tempts to implement an instance of paraDOS without lazy evaluation would be

time and space prohibitive, or even impossible in the case of infinite computation

spaces.

Each invocation of the transition relation elaborates one additional state

within the paraDOS computation space. The result is a traversal down one

more level of the lazy tree, from the current system configuration to the next

configuration. The abstraction for selecting which state to elaborate amounts to

pruning away possible next states, according to policies specified by the transi-

tion relation, until only one selection remains. The pruning occurs in stages; each

stage corresponds to some amount of computational progress. Two examples of

stages of computational progress are the selection of a set of eligible processes and

a set of communication closures, where at each stage, all possible sets not chosen

represent pruned subtrees of the computation space. Two additional stages in-

Figure 3.3: ParaDOS computation space: a lazy tree.

volve selecting a sequence to reduce communication closures, and a sequence to

evaluate process continuations. Once again, sequences not chosen in each of these

two steps represent further pruning of subtrees. The transition relation assumes

the existence of a meaning function to abstract away details of the internal com-

putation of process continuations. As well, during the stages of the transition

relation, it is possible to generate one or more observable events. The generated

events, new or updated process continuations, and new or reduced communica-

tion closures contribute to the configuration of the newly elaborated state. Since

the number of stages and the semantics of each stage may differ from one instance

of paraDOS to another, the specification of the transition relation is a parameter.

One additional paraDOS parameter transcends the previous concepts and pa-

rameters discussed in this chapter. This parameter is composition. Implicitly,

this chapter presents paraDOS as a framework to model a single concurrent sys-

tem, whose configuration includes multiple processes, communications, and other

infrastructure we use to support reasoning about computational properties. How-

ever, especially from a distributed system standpoint, a concurrent system is also

the result of composing two or more (possibly concurrent) systems.

For example, consider businesses who have an Internet presence, and wish to

integrate their respective systems to take advantage of the benefits of electronic

commerce. The result of such integrations (ideally) is concurrent, multiway trans-

actions between the respective business systems. It is more natural to model such

systems as the composition of individual business systems than as a single con-

current system.

Since the desire exists to model the composition of concurrent systems, one

of paraDOS's parameters is a composition grammar. The degenerate specifica-

tion of this parameter is a single concurrent system. In general, the composition

grammar is a rewriting system capable of generating composition graphs. In

these graphs, a node represents a system and an edge connecting two nodes rep-

resents the composition of their corresponding systems. Each system has its own

computation space, communication closures, and observers. One possible com-

position grammar - presented in Chapter 8 -- generates string representations

of a composition tree, where each node is a system, and a parent node represents

the composition of its children. Other composition grammars are possible.

CHAPTER 4

paraDOS Uninstantiated

This chapter presents the uninstantiated paraDOS model. First, we introduce

helpful notation to understand the subsequent definitions and discussion. Next,

we formalize the concepts presented previously in Chapter 3, and lay the foun-

dation for further formal discussion in this dissertation's remaining chapters.

The model presented in this section is denoted S, and the components for S

are described below. The bar notation is used to denote elements in the model
-
S which correspond to elements in system S .

- -
Formally, S is represented by the btuple (a, A, T), where a represents the

- -
computation space of S, A represents the set of communication closures within

0, and represents the set of views of the computation within a. The remainder

of this section discusses in greater detail the concepts embedded within 3. In

Table 4.1: paraDOS Notation
Notation Meaning
S A concurrent system

Model of S
Computation space (lazy tree) of S, or a decorated state
within tree a
Set of communication closures
A communication closure
Set of views
A view
4 ROPE

turn, we cover computation spaces, communication closures, observable events,

traces, and views.

The state CT is a lazy tree of state nodes. When we refer to the tree a, we

refer to S 's computation space. Each node in the tree represents a potential

computational state. Branches in the tree represent state transitions. The root

node a is S's start state, which corresponds to a program's initial configuration

in the system being modeled by S. State nodes carry additional information to

support the operational semantics. The specific elements of cr vary from instance

to instance of paraDOS.

Each level of tree cr represents a computational step. Computation proceeds

from one state to the next in o through S's transition function. Given a current

state, the transition function randomly chooses a next state from among all pos-

sible next states. At each transition, the chosen next state in a is evaluated, and

thus computation proceeds. The logic of the transition function may vary, but

must reflect the computational capabilities of the system being modeled by S.

Two special conditions exist in which the transition function fails to choose

a next state in o: computational quiescence and computation ends. Computa-

tional quiescence implies a temporary condition under which computation cannot

proceed; computation ends implies the condition that computation will never pro-

ceed. Both conditions indicate that, for a given invocation, the transition function

has no possible next states. The manner of detecting, or even the ability to detect,

these two special conditions, may vary.

To model the variety of approaches to parallel and distributed computation,

paraDOS needs to parameterize communication. The set of communication clo-

sures is the realization of this parameter, where the elements of K, the individual

closure forms, A, vary from instance to instance of paraDOS.

These concepts are illustrated in Figures 3.1 and 3.2, and we formally define

them next. We define an observable event formally as follows:

Definition 2 (observable event) An observable event is an instance of in-

put /out put (including message passing) behavior.

In our research, we further distinguish sequential events from parallel events,

and define them formally as follows:

Definition 3 (sequential event) A sequential event is the occurrence of an

individual, observable event.

Definition 4 (parallel event) A parallel event is the simultaneous occurrence

of multiple sequential events, represented as a set of sequential events.

The traversal of computation space a represents the actual history of corn-

putation of a program within s. We borrow the notion of a trace from Hoare's

CSP [Hoa85], with one significant refinement for distributed systems: it is possi-

ble for two or more observable events to occur simultaneously. We define sequen-

tial and parallel event traces as follows:

Definition 5 (sequential event trace) A sequential event trace is an ordered list

of sequential events representing the sequential system's computational history.

Definition 6 (parallel event trace) A parallel event trace is an ordered list of

parallel events representing the parallel system's computational history.

For the remainder of this paper, unless otherwise stated, a trace refers to a

parallel event trace in paraDOS. In the case of paraDOS, a parallel event trace

is a trace of S, constructed from the traversal of o, and is a representation of S 's

computational history.

One additional concept proves to be useful for the definition of views. We

introduce the notion of a randomly ordered parallel event, or ROPE, as a lin-

earization of events in a parallel event, and define ROPE formally as follows:

Definition 7 (ROPE) A randomly ordered parallel event, or ROPE, is a ran-

domly ordered list of sequential events which together comprise a subset of a

parallel event.

ParaDOS explicitly represents the multiple, potentially distinct, views of com-

putation within 3. The notion of a view in paraDOS is separate from the notion

of a trace. A view of sequential computation is equivalent to a sequential event

trace, and is therefore not distinguished. We define the notion of a view of parallel

computation formally as follows:

Definition 8 (view) A view, v, of a parallel event trace, t r , is a list of ROPEs

where each ROPE, p, in v is derived from p's corresponding parallel event in a

tr.

Thus, views of distributed computation are represented at the sequential event

level, with the barriers of ROPEs, in paraDOS; while traces are at the parallel

event level.

There are several implications of the definition of ROPE, related to the con-

cept of views, that need to be discussed. First, a subset of a parallel event can

be empty, a non-empty proper subset of the parallel event, or the entire set of se-

quential events that represent the parallel event. The notion of subset represents

the possibility that one or more sequential events within a parallel event may not

be observed. Explanations for this phenomenon range from imperfect observers

to unreliability in the transport layer of the network. Imperfect observers in this

context are not necessarily the result of negligence, and are sometimes intentional.

Relevance filtering, a necessity for scalability in many distributed applications, is

one example of imperfect observation.

The second implication of the definition of ROPE concerns the random or-

dering of sequential events. A ROPE can be considered to be a sequentialized

instance of a parallel event. That is, if an observer witnesses the occurrence of

a parallel event, and is asked to record what he saw, the result would be a list

in some random order: one sequentialized instance of a parallel event. Addi-

tional observers may record the same parallel event differently, and thus ROPEs

represent the many possible sequentialized instances of a parallel event.

Element of S is a set of views. Each v in is a list of ROPEs that represents

a possible view of computation. Let v, be a particular view of computation in

Y. The jth element of vi, denoted pj, is a list of sequential events whose order

represents observer vi's own view of computation. Element pj of v; corresponds

to the jth element of S's trace, or the jth parallel event. Any ordering of any

subset of the jth parallel event of S's trace constitutes a ROPE, or valid view, of

the jth parallel event.

We express the view relation with two functions as shown in Figure 4.1. In-

stances of the view relation differ only by the definitions of their respective states

a . The view relation Fu traverses its input view v and tree a, until an unelabo-

rated ROPE is encountered in v. Next, 3, calls relation V to continue traversing

0, for some random number of transitions limited so as not to overtake the cur-

rent state of computation. While V continues to traverse 0, it also constructs a

3;, : view x state -+ view
ESv, 0) =

if v empty

V (4
else

append ((head (v)) , Fv (tail (v), nextstate(a)))

V : state + view
V (0) =

if 0 undefined
0

else
let viewset g e t F (a)
in let p = list (viewset)
in random choice of

(append ((p) , V (nezts tate(a)) , or

Figure 4.1: paraDOS View Functions

subsequent view v' to return to Fv. For each state traversed, the corresponding

pi in v' is a random linearization of a random subset of 7. Upon return, Fu

appends v' to the end of v, thus constructing the new view.

Finally, one useful way to characterize the computation space and transition

function of S is as a labeled transition system (LTS) . An LTS is a labeled, directed

graph. We can map the trace of S to an LTS as follows: each state in the trace

maps to a node; each transition between states maps to a directed edge between

the corresponding nodes; and each label on a state transition denotes a weight.

The weight of each edge represents its transition density, which we define as:

Definition 9 (transition density) Let M represent an LTS, and t represent

a transition within M. The transition density of t is the number of observable

events that occur when t is chosen within M.

Transition density is an attribute of LTS-based models of computation. For

different instances of ParaDOS, transition density may vary. Transition density

exists both as a parameter and an attribute, as a specification for and a measure

of parallelism. ParaDOS doesn't require the services of an idealized observer to

produce a trace precisely because our model supports parallel events, and thus a

transition density greater than one.

CHAPTER 5

paraDOS Instantiated for Actors

Section 5.1 presents Pact, paraDOS instantiated for the Actors model of compu-

tation. Section 5.2 presents AT, Mason and Talcott's Actor Theories [MT97].

Section 5.3 states and proves a theorem concerning the equivalence of a restricted

version of the Pact semantics and the semantics of AT.

5.1 The Pact Instance of ParaDOS

Section 5.1.1 defines the computational elements of the Actors model, and the

state of an actor system. Section 5.1.2 gives the domain specification for S, and

defines Pact's transition and view relations. Section 5.1.3 discusses the functions

that help specify Pact's operational semantics. We present the equivalence theo-

rem and proof in Section 5.3. Section 5.1.4 discusses some decidable predicates

within Pact, and some that are not decidable.

5.1.1 An Actor System

Section 2.2 presented background information regarding the Actors model. In

addition, we define the following computational elements of an actor system:

Definition 10 (actor) An actor is a computational agent that has a behavior

and is uniquely identified by its mail queue address.

Definition 11 (actor machine) An actor machine is an instance of an actor

and its current behavior, bound to a particular element (address) of that actor's

mail queue.

Definition 12 (task) A task is the content of a message sent to a designated

recipient (an actor) that is uniquely identified by its task id.

Given the definitions of actor, actor machine, and task, we define the state

of S at an instant in time t to be composed of the contents of two sets, active

actors and active tasks. The set of active actors, A, contains actor machines

still performing computation within S. The set of active tasks, 7, consists of

undelivered messages within S. Both A and 7 from S have counterparts 2 and
-
7 in S, the equivalent paraDOS system.

5.1.2 The Pa" Specification

The instance of paraDOS for Actors, Pact, is an operational semantics for reason-

ing about properties of computation in an Actor system, S. To instantiate Pact,
--

we must define S = (0, A, T), and Pact 's transition and view relations. Table 5.1

contains the domain specification for Pact.

Var
-
S
0

-
M -
A -
T -
P
mi - a
-
7

E

mi [Z O C] *
tid
K

E ,
P

Domain
system
state

mailqSet
actmachset
taskset
parEventSet
mailq
actmach
task
seqEvent
mqloc
beh
tidtype
ms9
etype
meaning

view
ROPE

Domain Specification
state x closureSet x viewset
mailqSet x actmachSet x taskset x

parEventSet x state
I undefined
p(mail9)

~ (a c t m a c h)

list (task)
mqloc x beh x beh
tidtype x mailq x msg
etype x task
mailq x int
continuation (unspecified)
task identifier (unspecified)
message content (unspecified)
{Es,ED)
actmach x mailqSet x actmachset x

taskset x actmachset
0
p (v i e w)

list (ROPE)
list (seqEvent)

Figure 5.1 : Pact Domain Specification

The remainder of this section discusses the Pact domain specification in greater

detail, and the Pact semantics. Section 5.1.3 contains the helper functions and

predicates over the Pact domain. These helper functions and predicates support

both the Pact semantics in this section and the equivalence theorem and proof in

Section 5.3.

Before proceeding, we need to comment on the three Pact types left unspecified

in Table 5.1. Type msg represents the data domain of messages and actors, and

the semantics is parameterized with respect to this domain. The type for the

continuation of an actor, beh, is specfic to the particular actor meaning function

and is thus unspecified in Pact. The only requirement for type tidtype is that it

be possible to generate unique elements for all tasks within the model. Closure

set remains empty for Pact, since the paraDOS abstraction of communication

closures did not emerge until after we had defined Pact.

The state of S, denoted a, consists of all possible states reachable from the

start state of S; for this reason, o is also the computation space of S. Each state

at some time t in S corresponds to at least one state in o. The root node of 0

corresponds to the start state in S. The one-to-many relationship between states

in S and states in o reflects only the multiple computational paths possible, not

additional or different computational power. These multiple paths represent the

nondeterminism possible during parallel and distributed computation.

Since S is a model, the states in 0 carry additional information to facil-

itate Pact's operational semantics. A state, a, is represented by the 5-tuple

(, , 7, , oneZt), where is the set of mail queues for the actors, is

the set of actor machines, 7 is the set of tasks, is the set of parallel events,

and onest is either undefined, or the state to which computation next proceeds,

as assigned by the transition relation.

Sets A and 7 in S consist of active actors and tasks, respectively. Their
- -

counterparts in S, A and T, have been introduced as two of the parts comprising
- -

the 5-tuple that represents a state, o, in S. M contains the mail queues of the

actors whose actor machines are in x. In particular, the ith actor's mail queue

in M , denoted mi, contains the tasks delivered to actor mi.

Formally, actor machine 5, an element of 3, is represented by the 3-tuple

(mi [Zoc], @init, qCont), where mi [loe] is the element loe in mail queue mi within

to which E is bound, is the initial behavior of 5, and qmt is the current

inboundtasks : taskset x mailqSet + taskset --
inboundtasks(7, M) =
(7 17 E TA3mi E M s.t. recip(7) = mi}

outboundtasks : taskset x mailqSet -+ taskset
a-

outboundtasks (7, M) =
- --
T - inboundtasks (7, M)

Figure 5.2: Pact Inbound and Outbound Tasks in 7

continuation behavior of E. No two actor machines in 3 are bound to the same

mail queue element of any mail queue in M.

Formally, model task T , an element of in o, is represented by the 3-tuple

(tid, mi, n), where tid is the unique task identifier, mi is the task recipient (an

actor's mail queue within M), and n is the communication (message content). Set
- --
7 can be divided into two subsets: the set of inbound tasks, inboundtasks(7, M),

--
and the set of outbound tasks, outboundtasks(7, M). An inbound task is a

task 7 whose recipient is an actor whose mail queue mi is in B; otherwise 7 is

an outbound task. Functions inboundtasks () and outboundtasks () are given in

Figure 5.2.

Now that the representations of actor machines and tasks comprising 2 and
-
7 within a state, a, have been defined, discussion returns to the events in 7.
The formal definition of an observable event is as follows:

Definition 13 (observable event) An observable event is a task that has been

sent by, or delivered to, an actor.

An event, E , is represented by the pair (Etype, 7), where values for Etype are

either Es for a sent task or ED for a delivered task. Thus, 7 in o is a set of

instances of the two types of sequential events.

There is an important derivative relationship between these two elements. In

a sense, 7 is a special derivative of 7; it represents the changes in 7 with respect

to time. Time in Pact is measured discretely by the transitions from one state

to the next. Specifically, events in of type Es represent those 7's added to 7
in the last transition; events in of type ED represent those 7's removed from

--
inboundtaslcs(7, M) in the last transition. Since is derivable from 7, it is not

necessary to represent 7 explicitly in o. However, it is useful to maintain

within each a to facilitate the construction of views.

The meaning structure, p, is not part of S, but it supports the Pact meaning

relation shown in Figure 5.3. The meaning relation returns one meaning p from

the set of possible meanings for an actor machine's computation. The formal

definition of meaning is as follows:

Definition 14 (meaning) The meaning of actor machine h's computation from

time t to time t + 1 is information consisting of 6 's remaining computation, the

(possibly empty) set of new actors created, the (possibly empty) set of new tasks

created, and h's (possibly unspecified) replacement behavior.

In Pact, we define a meaning structure p to represent one of the many possible
- -

meanings of 3's computation, and represent p by the 5-tuple (hWnt, M ,,, , Anew,
- -
Tnew, AVl). Element scant represents h updated with its new continuation. The

-
sets Mne, A,,,, and Tnew are the sets of new mail queues, new actor machines,

and new tasks created by 5's computation. Element xWpl is either the empty

set, or a singleton set containing 3 s replacement actor machine.

We assume the existence of an actor meaning function Am that abstracts away

the details of actor machine execution. This is a reasonable assumption since such

semantics are already specified in Agha [Agh86] and more recently in Agha et

FP : actmach -+ meaning
7, ((mi [lot] $init @ m t)) =

p where - - -
P E { @con1 M new , Anew , ?new - zrep,)J -

Am(@cmt) yields a w n t M n e w , A n e w , ?new r x n p l)

Figure 5.3: Pact Meaning Function

al. [AMS97]. Function Am takes as its input argument an actor continuation,

QCmt. Function Am returns a finite set of meanings for a given actor machine.

The set of meanings returned by Am represents all the possible continuations of

QCmt. This set must be finite since the language of an individual actor machine,

as specified by Agha [Agh86], does not permit infinite execution. From Am, we

construct the Pact meaning relation 7' shown in Figure 5.3. Relation Fp maps

an actor machine to a meaning of 3 s current behavior. Relation 7, randomly

chooses one meaning for 5 ' s computation from the set of all possible meanings

of 5 's current continuation, $,t.

In Pact, computation proceeds by calling the transition relation, 36. The

transition relation, shown in Figure 5.4, is itself composed of three functions, the

inbound tasks function Fin, the outbound tasks function FOut, and the generate

children function G. Relation F6 traverses a until it finds a state whose on,,t

is undefined. Such a state is the current state of S, denoted a,,,. Relation Fd

assigns to ocU,.anezt the result of applying the composition of FOut, Fin, and G to

o C . Figure 5.5 contains Fout and F,n; Figure 5.6 contains 9. We consider the

cumulative effect of applying each of these functions (relations) to a,,,, in turn,

elaborating the next computational state in o.

The innermost function application Fout(a,,,) returns a new state a,,', in
- -

which a random subset of outbound tasks is removed from 7, P is empty, and

the remaining elements are unchanged from a,,,. In the case where no outbound

.Fa : state + state
Fa((M, 2, 7, p, anezt)) =

if anext undefined
(M, 3, 7, P , B(F,n(&ut((M, 3, 7, 7, amzt)))))

else

(m, 2, 7, 7, F ~ (0 n e z t))

Figure 5.4: Pact Transition Relation

FOut : state --+ state
Fout((m, 3, 7, P, gnezt)) = --

let Tsub outboundtasks (7, M)
in (M, 2, 7 - TSub, 0, undefined)

F,, : state + state
F,n((M, 3, 7, P, anext)) =

let E, {? (T is from the environment }
in (, U E , 0, undefined)

Figure 5.5: Pact Outgoing and Incoming External Tasks

-
tasks exist in a,,,, Tremains unchanged in a,,,'. Set 7 in a,,,' is empty because

forwarding outbound tasks beyond S does not constitute an observable event;

these tasks were previously observed as sent, and have yet to be delivered.

The middle function application F,n(~cur') returns a new state a,,,", in which

a random subset of inbound tasks is chosen from the environment and added to
-
7, is empty, and the remaining elements are unchanged from a,,,'. In the

case where no inbound tasks exist from the environment, state a,,," remains

unchanged from a,,,'. Notice that 7 remains empty in a,,," because tasks added

to 7 from the environment do not constitute observable events; these tasks were

already sent from some other location in the environment, so it is too late to

observe such tasks as sent within S.

The outermost function application G(ocur") returns the elaborated a,,t of

ocu,", which represents the random choice of a next state, from among all possible

next states in the o. Function G constructs its return state based on a random

selection of inbound tasks Tr to deliver, the delivery of those tasks Mdel(7,), and

the subsequent random selection of eligible actor machines & to make computa-

tional progress. The set Mdel(7,) is constructed by removing those mail queues

from M to which tasks will be delivered, then adding back those mail queues

with their delivered tasks. An eligible actor machine is an h whose message state

is delivered or consumed, and whose current continuation represents unfinished

computation. The set m of randomly chosen meanings is obtained from applying
I -I

Fp to each in zr. The specification of x, A , and 7 is tedious but straight-

forward and follows this paragraph's discussion. The specification of 7' warrants

further attention. Set 7 will be empty regardless of any inbound or outbound

task activity in 7 that results from the two innermost function applications FOut

and Fin. Set 7' includes events of type Es and ED that derive from the meanings

of actors in 2, that created new tasks 7 or had tasks from Tr delivered to them.

Pa" Predicates and Helper Functions

Figure 5.7 contains accessor functions for actors and tasks in Pact. Functions

actnarne and cont return an actor machine's name (mail queue identifier) and

continuation (behavior), respectively. Functions content and recip return a task's

message content and recipient actor's name, respectively. Function delzveredtask

returns the task delivered to the specified actor machine.

: state + state
9((M, 2, T, P, onez t))= (m, A', T', P, oneXt1) where

crneXtt is undefined, and
let 7, inboundtasks(7, M) -
in let %del(5r) = (M - {ma&named (recip(T), M) 1 7 E 7,)) u

(deliver(7, mailqnamed (reczp (T), M)) (? E 7,) --
in let 2 r eligact, (A, Mdel (' f r))

in let m = {.F,(z) 1 E Er)
in

Figure 5.6: Pact Generate Children

Figure 5.8 contains modifier functions for actors and tasks in Pact. Function

newcont updates an actor machine's current behavior with the specified continu-

ation. Function deliver "delivers" a task to the specified actor's mail queue. For

p a c t , an actor mail queue is a list of tasks, and new tasks are always appended to

the end of the list, but this need not be the case, in general. For example, a pri-

ority mail queue may have a different delivery strategy, specified by a paraDOS

parameter, based on some system policy we wish to model. Function retrieveMsg

binds an actor machine's behavior to the message contents of the task delivered

to the actor machine's mail queue location.

hnc t ion actname : actmach + int
act name(^) = k

where k is from C.mk [loc].

Function cont : actmach -+ beh
c o n t (~) = E.qCont.

Function content : task + msg
content (7) = 7.n.

Function recip : task ---+ int
recip (7) = k

where k is from T.mk.

Function deliveredtask : mailqSet x actmaeh + task
delzveredtask (m, 6) = mk [loc]

where r n k E
-
cr is bound to ~ . m ~ [l o c]

Figure 5.7: Pact Accessor Functions

Figure 5.9 contains predicate functions for actor machines in Pact. Predicate

und? is true if an actor machine's task has not yet been delivered, predicate

del? is true if an actor machine's task has been delivered but not consumed,

and predicate cons? is true if an actor machine has consumed its task. In del?

and cons?, the tests for equality and inequality are syntactic in the predicates'

respective true cases.

5.1.4 Pact Decidable Predicates

We now present several decidable predicates in Pact that are useful for reasoning

about distributed computation. Our first predicate deals with the consumption

Function newcont : actmach x beh + actmach
newcont (8, $) =

8' where
zl*lClcont = $7
-I a . * = E * .

Function deliver : mailqSet x task -+ mailqset
d e E v e r (m , 7) =

-
M' where
let k = reczp(7) in

M1 = (M - {mk)) U{append(mk , F))

Function retrieveMsg : actmach x mailqSet + actmach
retrieveMsg (E , M) =

5' where
let C [] be the evaluation context from E.Qmnt,
and k = content (deliveredtask(m, E)) in

E1.$cont = replace C [] with C[k] in E . L n t ,
- - al.* = am* .

Figure 5.8: P OCt Modifier Functions

of tasks. This activity is not observable since it occurs internal to some actor

machine. It is, however decidable for an actor machine. We define the consumed

function formally as:

Definition 15 (consumed (E)) Boolean function consumed returns true if actor

machine Z has consumed its task, and returns false otherwise. This is easily

decided by comparing elements $init and qCmt of 5. If qinit and qCmt are syntac-

tically equal, then 5 has not begun its computation, and thus consumed returns

false.

- -
We define two states to be equivalent (E) if their respective M, A, and 7

sets are identical. Formally:

Function und? : mailqSet x actmach -t Boo1
und?(m, Z) =

True if h.mk [loc] in rn Null,

False otherwise.

Function del? : mazlqset x actmach -+ Bool
d e l ? (m , 3) =

True if 5.rnk[loc] in R not Null /\ E.$Jinit = E.$JCmt,

False otherwise.

Function cons? : mailqSet x actmach 4 Bool
cons? (M, E) =

True if h.mk [loc] in M not Null A Z.llinit # Z~.I,!J-~,

False otherwise.

Figure 5.9: Pact Predicate Functins

Definition 16 (oi 2 a j) a, E aj a

(ai .Xf = oj .J?) A (ai .A = aj .Zi) A (oi .7 = oj -7)

During computation, S may enter one or more states of computational qui-

escence. Typically, computational quiescence is the result of S waiting for an

incoming task (message) from the environment. These periods of time can be de-

tected by following the traversal of a, searching for consecutive, computationally

equivalent states.

The notion of an end of computation for S in Pact is not practical. Candi-

dates for this condition include traversals of a in a current state of computational

quiescence. In general, it is not decidable whether S, in a current state of com-

putational quiescence, is also in an end of computation state. We cannot know

whether S will ever receive another inbound task. Furthermore, even if is in a

current state a,,, that contains no remaining actors performing computation, no

tasks, and no actor machines waiting for inbound tasks, o,,, could still be acting

as a task conduit for its environment. Inbound tasks that immediately become

outbound tasks in 3 constitute meaningful computation.

Actor Theories

5.2.1 The AT Model

We briefly describe Actor Theories. For a complete presentation of Actor The-

ories, see Mason and Talcott [MT97]. An Actor Theory structure is a 3-tuple,

defined as follows: AT = ((A,S,M,L) , (acq,:), RR).

The first AT element is a 4-tuple of actor theory primitives: actor names,

actor states, message contents, and labels. From these primitives follow the spec-

ification of actor entities (actors), messages, and configuration interiors. Thus,

[s], represents an actor a in state s, aoM represents a message intended for recip-

ient actor a with contents M, and I represents a multiset of actors and messages

such that no two actor entities have the same name.

The second AT element is a Ztuple containing the actor theory primitive

operations. The acquaintance function acq extracts actor names from an actor

state, the contents of a message, or a label. The renaming function renames

actor names within actor states, message contents, and labels.

The final AT element RR is a set of reaction rules. Reaction rules are triples

of the form 1 : I + I f , where 1 is the reaction rule's label, I is the configuration

interior prior to transition, and I' is the configuration interior that results from

transition.

(internal)

(idle)

if a E p A acq(M) n InAct (I) G p

((I, a a M))' 0~3~) ((I)) pu(acq(M)-x)
if a 4 InAct (I)

X X

Figure 5.10: AT Transition Rules

An actor configuration consists of a configuration interior I , along with I 's

corresponding set of receptionists p and set of externals X . The receptionists

of I are members of a subset of the actors within I whose names have been

communicated externally. The set of I ' s external actors contains those actor

names referenced within I but not found in I .

The set of actor configurations is defined as follows:

K = { (I)) 1 p InAct (I) A EztAct(1) x) . K ranges over K.

Finally, the AT transition rules are specified by a labeled transition relation

of the form K & Kt , where the range of 1 includes not just the labels of rules

within RR, but the three new label forms in, out, and idle. The heart of the

AT semantics are the four transition rules found in Figure 5.10. An in transition

reflects a message coming in from the environment; an out transition reflects a

message transmitted to the environment. An idle transition does not change the

actor configuration.

5.2.2 AT Predicates and Helper Functions

We assume the existence of two predicates on an actor state s , ready?(s) and

busy?(s), that return true if an actor in state s is not busy computing and ready

to receive a new message, or busy computing in its current state, respectively.

Since actor replacement behavior differs between AT and Pact, a one-to-many

relationship exists between the actor machines in Pact and actors in AT. For

comparison purposes between respective A T states and Pact states, we assume

the existence of a helper function, ICfg(I), to filter out those actors in I eligible

for garbage collection [AMS97].

5.3 Equivalence Proof for actors

The equivalence proof presented in this section also appears in Smith, et al.

[SPH98]. We prove the equivalence of a restricted version of Pact, denoted Ft,

with AT, the Actor Theory semantics presented by Mason and Talcott [MT97].

5.3.1 Pact Restricted

Figure 5.11 contains restricted versions of the transition relation, and the inbound

and outbound tasks functions. The restriction permits only singular transition

density in Ft . The restricted transition relation elaborates only next states that

reflect the computational progress of at most one outbound or inbound task, or

the meaning of a single actor machine's computational progress.

F8 : state -+ state
Fi((M7 2, 7, 7, onext)) =

if onext undefined
(M, 2, T, 7, F k ((M , 29 7, 7 7 onezt))), or
(M, 2, T, p, ~ ~ ((x) 2) 7) 7, anext))), or
(M , 2, 7, 7, a'), where

o' is derived from F,(h) where & E 2
else

(M , 3, 77 p, F6(onext))

Fz : state -+ state
F-((M, out- - 3, - 7, P, onest)) =

(M , A, 7 - {T~], 0, undefined) where

FG : state ---+ state
3 k ((my 3, 7, 7, anext)) =

(M , 3, 7 U { y r) , 8, undefined) where
rT is from the environment

Figure 5.11: Ft Restricted Transition Function

5.3.2 Theorem and Proof

The theorem and proof presented in this section rely on three equivalence relations

that specify the conditions under which a state from Ft and a state from AT

are considered equivalent. We define the configuration equivalence relation cfs

using actor equivalence relation M act and message equivalence relation I-+. On a
msg

high level, H ensures that each active actor machine from Pact is equivalent to
cfq - -

some actor in AT not eligible for garbage collection (i.e., active), and conversely,

that each active actor from AT is equivalent to some active actor machine in -
Pact. Similarly, each undelivered tasks from Pact must be equivalent to some

undelivered message in AT, and vice versa.

The H relation accommodates two differences between actors in Pact and
act

AT. The first difference concerns actor machines in Ft and anonymous actors

in AT. The actor machine approach is consistent with that of Agha's origi-

nal work [Agh86]. An actor machine's computation is a function of the task it

consumes; an actor machine consumes only one task during its lifetime. The

anonymous actors approach of AT is different, but equivalent; anonymous actors

have already consumed their message, and by definition, no new messages can be

sent to them. The use of function anon() in I-+ is consistent with renaming from
act

AT. Both cases of H identify equivalent actor names by taking into account
act

the possibility of renaming.

The second difference between actors in Pact and AT is one of granularity.

Pact distinguishes message delivery from message consumption. For A T, message

delivery and consumption are a single, atomic instance of computational progress.

Among two candidate instances of actor behavior, H must determine the proper
act

equivalence test based on the state of message delivery and consumption for the

Pact actor machine. The continuation of an actor machine whose task has been

delivered but not consumed, for 1-4s purposes, is a function of the unconsumed
act

task.

The I---+ relation returns true for two messages (tasks) that have identical
msg

content, and whose recipients are the same actor. For both H and H, syntactic
msg act

equality implies semantic equality. The three equivalence relations are defined as

follows:

P
Definition 17 (H) Let K t T = ((I)) and KT"' = o,, where oj =

cfg X

(m, 2, 7, 7, u,,,~). Then K t T H K* iff
cfg "

(v[s] , t IC fg (I) 3Ep E A s . t [s] , - act ap) A

(V Z ~ E 2 3 1 ~ 1 ~ E I C ~ ~ (I) 8.t. [a], H act aP) /\

(~ a t x . V ~ i ~ E E;i.actname(ZTP) # a) .

Definition 18 (-) [s] , c-t 3, iff
act act

if del? (M,
((a = actname@,)) V (a t { b I b = anon(actname(ir ,))))) A

(s = cont (re t r ieveAlsg(~ , , M))) .
else

((a = act name(^,)) V (a t { b 1 b = anon(octname(a,))})) A

(s = cont (a,)) .

Definition 19 (H) a a M w T r iff
ms9 msg

(a = recip (T,)) A (M = content (7,)) .

Theorem 1 states that we can model the computations of all Actor programs

equivalently in both AT and Pact. Specifically, if the initial configuration of an

Actor program pgm reaches a certain configuration under AT, it can reach an

equivalent configuration under Pact . Similarly, if the initial configuration of an

Actor program pgm reaches a certain configuration under Pact, it can reach an

equivalent configuration under AT. The proof is by induction on the number of

transitions, in both directions. The proof from AT to Pact must consider all the

cases corresponding to possible transitions program pgrn can make under AT.

The proof from Pact to AT must consider all the cases corresponding to possible

transitions program pgrn can make under Pact

Theorem 1

of Pgm from
~ ~ ; ' (~ ~ m) .

For all actor programs, pgm, let K t T be the initial configuration
~ ~ ~ ~ ~ ~ (~ ~ m) , and ~ 0 ' ~ ~ be the initial configuration of pgrn from

--.- -
K ~ T s* KAT i f l ~f~~~ s* K P ~ ~ ~

where
KAT ,KP~~~,

cfg

Proof: (*)
V i 2 0.3j 2 0. K t T Si K t T

C-
-

+ K,~act sj K p ~ ~ t 3

By induction on i.

Base: (i = 0)
i = 0 K t T = K t T . -

p a c t . -
So, it suffices to prove 3 j 2 0 s.t. KfaCt +J K3PUCt /\ K t T I--+K~~~;'.

cfs

But K t T is the initial configuration of pgrn in AT^".
3 ~t~ = ((I)):, where I contains one actor, [s],, and no messages. Thus

I = {[sla).
p = { a) , KtT 's only receptionist; and x = 0, since initially, pgrn has no
knowledge of external actors.

-
K,paCt is the initial configuration of pgrn in Pact.

--.- - - - - * KOPaCt = 00 = (M , .A, 7, P, oneXt).

+ 7 = - 0, and initially, is undefined; and
M = {a), -
A = {EP), where act name(^^) = a) /\ (cont (EP) = s) , and -
'T = 0.

From the definition of H, w.r.t. K tT and K,i'"", notice
cf9

[s], H 3, satisfies the condition for actor correspondence,
act

message correspondence is true vacuously,
the condition for receptionists is true, since a E p and
actname(3,) = a,
and the condition for external actors is true vacuously.

:. By definition of H, for i = 0, j = 0,
cfs

K t T - K [~ ~ is true.
cf9

I.H.: Assume for some i 2 0 steps,
K t T Si K t T implies 3 j 2 0, s.t.

I.S.: (Prove true for i + 1 steps)
K ~ T s i + l KAT =

2+ 1

KtT si K t T 3' K&:, by definition of 3.

By I.H. we know 3 j s.t.

Consider cases for K t T 3' K$. Prove 372 2 0 s.t.

Case la: create actor

Let K t T = ((I,, I))P, K$ = ((I*+r, I))P, and K t T 3 K&;,
X X

where Ii = {[s],) and &+I = {[s],, [st] , , [t] b) .

By I.H. and ct,
cfg

3Ep E o ~ - X , set. [s], c--t 3,.
act

By definition of 3, A~([s] ,) yields {[st],, [tIb)

By definition of Fp, 3p E Fp(EP), where
- - - -

P = @cant M n e w Anew T n e w , Arepl) ,
cont (ZiCont) = st (syntactic equality implies semantic equality),
-
Anew = { z r } 9

actname(&) = b, and

M n e w = {b}.

... [t] b E,-
act

a By definition of G, for n = 1,

3 ~ ~ + ~ s.t. gj+j = (M, A, 7, P, ,next) where
-
M = g j . M U Mne,,
-

= (- {) U { w n t } IJ X n e w ,
-
T = -7,
-
P = 0, and

gnmt is initially undefined,

where

[st], H Zwnt, since cont (cWnt) = sf, [s]. 2 Ep,
act

and by definition of Ewnt.

:. By definition of H, K&' r--t Kj;";'.
cfg cfg

By definition of F8 (limited transition function), aj.anezt = o,+l is one legal
transition.

:. Proved I.S. for case la.

Case lb: send message

Let K?' = ((I,,I))", KG = ((1j+1,1))P, and K:' 3 K:,C,
X X

where Ii = {[s],) and Ii+1 = {[s],, [s'],, b a M) .

a By I.H. and H ,
cf9

3Zp E a j .S , s.t. [s], H Epp.
act

By definition of 3, Am([s],) yields {[s']~, b 4 M)

:. By definition of F,, 3p E FP(sp), where
- -

P = (Econt M new Anew Tnew , Tirepi) 7

cont (ZiCont) = s' (syntactic equality implies semantic equality),

a By definition of G, for n = 1,

3aj+l s.t. Oj+l = (M , A , ' T , P , O ~ ~ ~ ~) where

-
P = { E) , where E = (Es, T ~) (a send event), and

anat is initially undefined,

where

[s'], ++ Zcont7 since cont (Zimnt) = s', [s], H sp,
act act

and by definition of Smnt.

:. By definition of c-t, KC' I-+ KPact .
cfg cfg J + l

By definition of F6 (limited transition function), oj .anext = aj+l is one legal
transit ion.

:. Proved I.S. for case lb.

Case lc: actor/message synchronization

Let K : ~ = ((I,, I))', KG = ((1,+1, I))', and ~t~ 3 KG,
X X

where Ii = ([s],, a a M) and I~+I = {[s]a, [sl]a),

s.t. ready?([s],) is true A busy?([st],) is true.

By I.H. and M,
cfg

3Ep E oj .Z, s.t. [s], H Ep A
act

By definition of 3, Am([s],) yields {[slIa}.

:. By definition of F', 3p E E'(E,), where
-

P = (~ c o n t M n e w z n e w T n e w 9 &epl) 7

cont (scant) = s' (syntactic equality implies semantic equality).

By definition of G, for n = 1,

30,+1 s.t. oj+l = (M, A, 7, P, onnext) where
-
M = deliver (gj .M, c),
A (gj .Z - {sp}) U {Ewnt } 7

T 1 Oj.T - {yr},
-
P = { E) , where E = (ED, T ~) (a deliver event), and

onnext is initially undefined,

where

[s'], I-+ hWnt, since cont (i?iCont) = s', [s], ++ hp,
act act

and by definition of Econt. -
:. By definition of H, K$ H K ~ ' " ~ .

cfg cfg
3+1

By definition of F8 (limited transition function), gj .onext = oj+1 is one legal
transition.

:. Proved I.S. for case lc .

Case Id: replacement specification

Let ~t~ = ((I,, I))P, KC: = ((I.+1, I))P, and K tT 3 K$,
X X

where I, = {[s],} and I~+I = {[s]a, [sl](a), [t] a) .

By I.H. and H,
cf9

3Ep E oj .2 , sat. [s], H olP
act

By definition of 3, Am([s],) yields {[t],, [st](,)), where t is the replacement
behavior continuation of actor a, and st is the continuation of actor a's initial
behavior, s, carried out by an anonymous actor (a).

:. By definition of F,, 3p E F'(GP), where
- -

P = (acont 3 M new Anew 7 n e w , srepi)
-
Arepl = {Er)
cont (5,) = t (syntactic equality implies semantic equality),

cont (smnt) = st (syntactic equality implies semantic equality).

By definition of G, for n = 1,

gojtl s.t. ~ j + l = (M, A, 7, P, oneXt) where
-
M = 0 j . M U {(a)),
-
A = (2 - {) IJ {scont } IJ Xrepl
-
T = oj .T,
P = 0, and

onest is initially undefined,

where

[sf] (,) Econt, since cont (TiCont) = st,
act

and by definition of (a), ++, and Econt
act

and

[t], +-+ Gr since cont (E,) = t , [s], I-+ Gp,
act act

and by definition of Z,. -
:. By definition of H, K$: ct

cf9 cf9

By definition of F8 (limited transition function), 0j .on,oxt = oj+l is one legal
transit ion.

-h - pac t

. .

:. Proved I.S. for case Id.

Case 2: in

, and ~t~ 3 K$?,

where (a E p) l\ (acq(M) n InAct (I) C_ p) .

a By I.H. and c-t,
cfg

a By definition of 3, message ao M is added to K&;'S internal configuration
by an external entity.

:. 3 7 - from the same external entity, s.t. a a M H 7,
msg

(+ reczp(c) = actnarne(ap), by definition of ++) msg

a By definition of and F', for n = 1,

s.t. Oj+l = (M, A, 7, P, oneZt) where

-
P = { E) , where E = (Es, T ~) (a send event), and

anext is initially undefined,
AT

:, KAY H KG', since by definition of e, I.H., and *, only aaM
cf9 cfg

is added to K t T % internal configuration, and a Q M H F,.. Conditions
ms9

for actors and receptionists in H are unchanged. (acq(M) - p) adds a t
cf!?

most external actor names to X , thus preserving the condition for external
actors.

a By definition of F8 (limited transition function), Oj .one,t = Oj+l is one legal
transition.

:. Proved I.S. for case 2.

Case 3: out

P U (~ ~ ~ (M) - X)
~ e t K y = ((I , a o ~)) ' , KC: = ((I)) , and K t T 3 K&:,

X X

where a $ InAct (I)

By I.H. and H,
cfg

3, E 0j.7, s.t. (a a M H ~ ,) A (r e c i p (~ , -) f 0j .M) .
m s g

AT
By definition of +, message a a M is removed from internal configuration
of KA:.

By definition of and FZ, for n = 1,

30j+~ sot. ~ j + l = (M , A, 7, P, onezt) where
-
M = oj.M,
-
A = aj .Z,
-
7 = 0 j .T - {T,),
-
P = 0, and

an,,, is initially undefined, -
:. K$" I--+ K ~ ~ " , since by I.H., definition of I--+, and 3,

cfs 3+1 cfg

only a a M is removed from internal configuration, and

a o M H c. Conditions for actors and external actor names are
m s g

unchanged. (acq (M) - X) adds at most internally defined actor names

to p, thus preserving the condition for receptionists.

By definition of F' (limited transition function), aj .anezt = aj+l is one legal
transition.

:. Proved I.S. for case 3.

Case 4: idle

P
Let K t T = ((I)) , KG = ((I))', and KfT % KS,

X X

By I.H.,

K t T - KF, and since K t T = KAT
cf9

i+ l ,

AT By definition of *, after zero transitions (n = 0).

:, Proved I.S. for case 4.

p a c t .
Vi 2 O.Ij 2 0. ~ 0 ' ~ ~ jZ K:~"

K,AT sj K P T 3 A ~r~~ - K ~ T ,
cf9

By induction on i, where i is the height of tree with root 00.

Base: (i = 0) -
i = 0 j K:"" = K,P"'~ .
So, it suffices to prove 3j 2 O s.t. K t T %j ~f~ A K : ~ ~ I---+K?~.

cf9

But K{"" = 00, its root, the initial configuration of pgm in Pact. - - - - + 00 = (M, A, 7, P, on,,t), where oo contains one actor machine, E p ,

whose continuation corresponds to pgm, initially denoted s; and no tasks.

Thus, -
M = { a) , - - -
A = {G,), where actn name(^,) = a) A (c o n t (~ ~) = s) , -
T-(A
-
P = 0, and
on,,t is initially undefined.

K t T is the initial configuration of pgm in AT%
=. K t T = ((I)):, where I contains one actor, [s], and no messages.

Thus I = {[s].), p = {a), and x = 0.

-
By definition of H, K:"" H K t T , since

cfg cfg -
QP Isla,
message correspondence is true vacuously,
the condition for receptionists is true, since a E p and act name(^^) = a,
and the condition for external actors is true, vacuously.

:. Base case holds with j = 0.

I.H.: Assume - for tree - a0 of height i 2 0,
q (K T a C t) = KIP"" implies 3 j 2 0, s.t.

AT .
K$T jJ Kj?T A KpTt C f K ; ~ T

cfg

I.S.: Prove true for tree 00 of height i+l:
That is, prove J$+'(KfaCt) = K G t implies

3k 2 0, s.t. K t T Sk K t T A KZ I-+ K t T .
cf9

+I KpTt By definition of 3 8 , 5 () = F ~ (. ~ (K : ~ ~)) .

By I.H., q(K,PaCt) = KFaCt implies

3 j s.t. K , A ~ %j K;* ~p~~ +--+ K K ; ~ ~ .
cf9

Consider cases for F~(K;"") = K c t .

Prove 372 2 0, where k = j + n, s.t. -
K;'T Sn K;& A K:;' H ~;4,'n.

cf9

Let ~p~~ = (M , 2, 7, 7, onex,).

Case la: create actor

Let K G ' = o,+l s.t. aneXt = a,+l and a,+l = (m, Z, T', P, ~ n e z t ') ,

where a;,,, is initially undefined, and by definition of create actor:

36 E s.t. b @ M ,
35,. E 2 s.t. Gr @ 2 A actname(5,) = b,

--I

3Ek € A , Ep E 3 s.t. actname(Ek) = a A actname(EP) = a A
cont (sP) # cont (s;),

s.t. Ff' = M U {b) ,

- 'f = T, and

a By I.H. and H, for ~t~ =
cf9

. *. By definition of H, cont (Ep) = s .
act

- - - -
By definition of Fp, Fp (Z i p) = = (Econt, M n e w , A n e w , 7 n e w , A r e p i) ,

where mneW = { b } , X n e w = { & } .
:. By definition of 3; and Fi, SWnt =

a By definition of Am, Am([s] ,) yields { [s l] , , [tIb), where s1 = cont(E;) and
t = eont(Zi,.). Let = Ij U{[s l] , , [tIb).

:. By definition of H , EL H [s l] , and Er [t]*.
act act

AT
a By definition of *, for n = 1,

3 ~ : ; s.t. K t T 3' K t ' , where K t ! = ((1j+1))'-
X

a By definition of ++,
cf9 -

p a c t

a Proved I.S. for case la.

Case lb: create task
-

Let ~5~ = a,+l s.t. onext = o,+l and o,+l = (m, 2, TI, p, aneZtf),

where a;,,, is initially undefined, and by definition of create task:

3 b E s.t. b $! M,
3 c €7 s.t. 7, $7, and

35; E XI, E, E 2 s.t. actnarne(~;) = a /\ aetname(~,) = a A
cont (G ~) # cont (z;),

s.t. M1 = M,
= (2 - {) u {6;},

- 7' = T U {T,}, and
-I
P = { E) , where E = (ES, 7,).

By I.H. and H, for ~f~ =
cfg

3[sIa E I j set. Ep 2 [s]a

:. By definition of H, cont (G ~) = s.
act

- -
By definition of 3,, 3, (z ~) = p = (EWnt, M new, Anew TneW 2 m p l) ,

-
where TneW = { T ~) .

-I :. By definition of F, and F8, Zwnt = a,.

By definition of Am, Am([s],) yields {[sf]., b a M) ,

where st = cont (E;) /\ b = reczp(~,) /\ M = content (7,).

Let Ij+l = I j U{[slIa, b 4 M) .

:. By definition of c-t, E; t-+ [sf],; by definition of H, 7, H b a M .
act act msg msg

AT
By definition of *, for n = 1,

3~;; s t . K;PT s1 K; ' , where Kj'; =
X

By definition of c-t,
cfg

Proved I.S. for case lb.

Case lc: deliver task

I_ - - - -
Let KC~ = =*I ~ . t . onezt = oi+l and a * + ~ = (MI, A', TI, P',

where cr;,,, is initially undefined, and by definition of deliver task:

3YT E 7 s.t. $? 7,
and 3a E M1 s.t. r e c i p (~ ~) = a,

and 3Sp E 2', Qb E 2 s.t. actname(Zip) = a A
de1?(R1, Zip) True /\ m d ? (M , E ~) True,

s.t . = deliver(M, c),
-I
A = X ,
- 7' = 7 - {yr), and
-I
P = { E) , where E = (ED, 7,).

By I.H. and w, for KfT =
cfg

3[~], E I j s.t. ZYp H [s], /\ 3a a M E I j s.t. 7, a a M .
act m s g

:. By definition of +-+, cont(ZEP) = s
act

(syntactic equality implies semantic equality)

and by definition of H, content(%) = M
"Jsg

(syntactic equality implies semantic equality)

By definition of actor/message synchronization,

Let = (I j - { a a M)) U{[sl],), where Am([s],) yields {[slIa), sat .
ready?([s],) True /\ busy?([sl],) True

:. By definition of I---+, for ai+l, Ep w [sl],
act act

AT By definition of +, for n = 1,
P

3KfS s-t. K t T 3' ~ f l , where
= ((I,+I)) . X

By definition of H,
cfg

KP""
,.+. ~f; . . .
cfg

Proved I.S. for case lc.

Case Id: consume task

- - - -
Let K,P,~ = ~ . t . oneXt = and o,+l = (MI, A', T', PI, h a t f) ,

where is initially undefined, and by definition of consume task:

3E; E z', Ep E 3 s.t.

actnarne(~L) = a A a c t n a r n e (~ ~) = a A
cons?(N1, E;) True del?(M, Ep) True,

s.t. M' = M ,
-I
d = (2 - {sP} U {z;},
- f = 7, and
-I
P =O.

By I.H. and +-+, for ~t~ = ((I)))',
cfg X

By definition of I-+, cont (retrzeveMsg ($, s)) = s
act

(syntactic equality implies semantic equality)
- - -

By definition of 3,, Fp (sP) = = (scant, mnew, Anew, T n e w , Arepi) ,
:. By definition of 7, and F8, Emnt = Ek.

By definition of actor/message synchronization,

:. By definition of I--+, E; I-+ [s],
act act

By definition of 3, for n = 0,
AT AT 0 :. Kj * K ; L ~ .

By definition of ++,
cfg

pact H K;LT. .-. K,,,
cfg

Proved I.S. for case Id.

Case le: replacement specification

I_

Let K G ' = 0,+1 ~ . t . onest = ~ i + l and ai+l = (m, 2, T , 7, oneztt)?

where okex, is initially undefined, and by definition of replacement

specification:

2Er € 2 ' s . t . Er 6 2,
2 ~ ; E 2', Ep E 2, and

actname(Er) = a A actname(E;) = a act name(^^) = a /\
cont(5,) # cont(E',) A cont (z,.) + cont(sP) /\
cont(E',) # cont(E,),

s.t. mt = m,
-I

A = (2- {sp}) U { ~ b , s r } Y
- 'f = 7, and
-I
P =O.

By I.H. and H , for ~ j ' ~ =
cfs

3[sIa E I j S-t. Ep H [s] ,
act

:. By definition of H , cont(sp) = s.
act

- - -
By definition of Fp, Fp (sp) = = (scant, M new, A n e w , T n e w A r e p i)

- :. By definition of 3, and F', Zmnt = a',, and z,~ = { & I .
By definition of Am, Am([s],) yields {[st](,), [t],),

where st = cont (5;) and t = cont (E,).

Let Ij+1 = I j U{[st](a), [t]a).

:. By definition of H, 5; I-+ [st](,) and 5, ++ [t],.
act act act

AT
By definition of &, for n = 1,

3~;; s.t. K t T 3' Kf$, where Kt$ = ((
))P. X

By definition of ct,
cf!?

Proved I.S. for case le.

Case 2: incoming external task

Let KG' = o,+l ~ . t . onezt = O,+I and 0i+1 = (M', 2, T', F', onezt1),

where o;,,, is initially undefined, and by definition of incoming external

task:

3TT E 7 s.t. 7, 4 T,
A rec ip (c) = a A content (T ~) = M

A 3% E 2, E, E 2' s t . act name(^,) = a,

s.t. m1 = m,
-I
A =z,
- f = 7 U {T,), and
-I P = { E) , where E = (Es, T ~) .

P
By I.H. and ti, for K t T = ((Ij)) ,

cf9 X

3[sIa E I j s.t. Z p 2 [s],

:. By definition of -, con t (zP) = s.
act

By definition of F;,, .F8,

task 7,. is added to K:;' by an external entity.

:. 3ao M from the same external entity, s.t. F, H a o M.
*s9

Let = I j U { a M), and let X' = x U (a c q (M) - p) .

A T
By definition of *, for n = 1,

3 K S s.t. K t T 3' Kt;, where K:! = ((I,+l)):,.

By definition of H, and I.H.
cfg - - . KP"Ct . . ,+, H K;;, since only 71 is added to K G t , and a a M H 7,.

cfg msg

Conditions for actors and receptionists in H are unchanged, and
cfg

(acq(M) - p) adds only external actor names to X , thus preserving

the condition for external actors.

a Proved I.S. for case 2.

Case 3: outgoing external task

-
Let ~ , p p ; ~ = ai+l s.t. a,,,t = oi+l and ~ i + l = (M', 3, 7, P , aneXt1),

where a;,,, is initially undefined, and by definition of outgoing external
task:

3Tr € 7 sat. Tr $7,
/\ rec zp (~) = a /\ content (yr) = M

/\ VE, E 3, E 2 ' . actname(Zip) # a,

s.t. m1 = 33,
-
A' = 2,
-
f = T -{T,.}, and
-I
P =O.

By I.H. and I--+, for KtT =
cf9

a By definition of .FZ, .?;,

task 7, is removed from K c t .

a Let = I j - {a a M) , and let p' = p U(acq(M) - x) .
AT

By definition of *, for n = 1,

3~ : : s.t. KtT 3' K$, where K?! = ((4+1)):.

a By definition of I-+, and I.H.
cfg

:. KC' H K::, since only 7, is removed from KC;',
cfg

and a a M ++ 5',. Conditions for actors and external actor names
msg

in I-+ are unchanged, and (acq(M) - X) adds only internally
cfg

defined actor names to p, thus preserving the condition for

receptionists.

a Proved I.S. for case 3.

Since a and * hold for all respective cases, we conclude Theorem 1 is true.

CHAPTER 6

paraDOS Instantiated for Linda, Tuple Space

This chapter presents two operational semantics for Linda, and an equivalence

proof between our semantics and the work by Jensen [Jen94]. Section 6.1 discusses

the evolution of the two semantic versions of paraDOS for Linda, and definitions

and notation that apply to both semantics. The first semantics describes how

computation proceeds using functions defined in set-theoretic notation, similar

to our approach in Pact. We describe the second operational semantics for Linda

using the programming language Scheme. We present these two semantics in

Sections 6.2 and 6.3, respectively. Section 6.4 contains the theorem and proof.

Instance Evolution and Definitions

Section 6.2 presents our original efforts instantiating paraDOS for Linda, and is

self-contained with function descriptions and formal definitions. We conceived

this set-theoretic semantics prior to distilling parameters for paraDOS, prior to

considering how to represent composition in paraDOS, and thus prior to abstract-

ing a set of message closures for s. The set-theoretic semantics lends itself to

a more direct comparison with Pact . It is also instructive to compare the two

operational semantics for Linda, since we derived the Scheme-based implemen-

tat ion from the set-theoretic description. The major difference between the two

semantics, other than message closures, is that the Scheme-based semantics per-

mitted us to discard the meaning structure used to accumulate multiple Linda

processes' computational progress. Later, we augmented the Scheme semantics

with message closures in consideration of composition. The equivalence proof in

Section 6.4 refers to the Scheme-based semantics. We defer further discussion of

composition until Chapter 8.

Let S denote tuple space S's corresponding pTS model. It remains to define

the structure of states 0 within S, the transition function .Fs of S, and what

constitutes an observable event in S. We begin our discussion with the structure

of 0 . A state o is represented by the 4-tuple (A, 7, P, o,,,~), where 3 represents

the multiset of active tuples, 7 represents the multiset of passive tuples, 7 rep-

resents the parallel event multiset, and o,,,t is either undefined, or the state to

which computation proceeds, as assigned by the transition function.

We introduce a mechanism to refer to specific tuples in a multiset of a state.

To access members of the ith state's multiset of active tuples, consider oi =
- - -

(Ai ,Ti ,Pi ,Oi+l) . ~ l emen t s o f Z , can be ordered 1,2,. . . , lX,I; let t l , t z , . . . , t lx, ,

represent the corresponding tuples. The fields of a tuple t j , for 1 5 j 5 lxi 1, can

be projected as t j [k], for 1 5 k 5 Itj 1. See Figures 6.1 and 6.6 for the respective

set-t heoretic and Scheme-based domain specification of states, tuples, and fields.

The Scheme-based pTS semantics classifies the type of a tuple field as either

active, pending, or passive. The set-t heoretic semantics distinguishes only active

and passive tuple field types. An active field is one that contains a Linda pro-

cess making computational progress. A pending field contains a Linda process

executing a synchronous primitive, but still waiting for a match. A passive field

is one whose final value is already computed. Tuple t is active if it contains at

least one active or pending field, otherwise t is passive. An active tuple becomes

passive, and thus visible for matching in tuple space, when all of its originally

active or pending fields become passive.

Multiple possible meanings of an individual Linda process's computation ex-

ist, when considered in the context of the multiple Linda processes that together

comprise tuple space computation. Each state transition in pTS represents one

of the possible cumulative meanings of the active or pending tuple fields making

computational progress in that transition. We address these many possible indi-

vidual and cumulative meanings when we describe the PTS transition function.

6.2 Set-t heoretic Semantics for Linda

This section discusses the set-t heoretic semantic functions that comprise pTS .

Figures 6.2 through 6.5 contain the corresponding algorithmic descriptions, not

all of which are presented at the same level of detail. Specifically, we focus

on the functions (generate children), Lm (Linda meaning), and Fv (the view

function), as they perform the interesting work for tuple space inst antiation.

Figure 6.1 contains the original domain specifications for the set-theoretic PTS.

For domains tupleset and parEventSet , ~ (~ ~ p ' ~) and s (~ ~ ~ ~ ~ ~ ~) are, respectively,

multiset powersets of tuples and sequential events. As was the case for Pact,

the set of communication closures remains empty for the set-theoretic pTS

specification.

Computation proceeds in PTS through invocation of transition function Fd,

shown in Figure 6.2, along with the generate meaning function genMeaning and

the PTS meaning function 7,. Function .Fa traverses 0 until it finds a state whose

Var -
S
0

Lprocs

cl
A -
Y
v

P
t , t j , template

t j [kl
E

*t,e

Domain
system
state

tupleset
parEventSet
LprocSet
meaning
closureset
viewset
view
ROPE
tuple
field
seqEvent
etype

fieldtype
data
beh
Base
function

Domain Specification
state x closureSet x viewset
tupleset x tupleset x parEventSet x state
I undefined
s (t u p ' e)

~ (s e q E v e n t)

p (a n t x i n t)

Zist(R0P.E)
list (seqEvent)
list (field)
fieldtype x data
etype x tuple
{ 'Ecreated, 'Ecopied, ' Econsumed,
' Egenerat ing, 'Egenerated}
{'A', 'P'}
beh U Base
continuation (unspecified)
base types (unspecified)
functions (unspecified)

Figure 6.1 : Set-theoretic pTS Domain Specification.

onmt is undefined. Such a state is the current state of S, denoted CJ,,,. Function

F6 assigns to o,,,.o,,,t the result of applying the generate children function to

o,,,. Function is shown separately in Figure 6.3. Applying .Fa to o elaborates

the next computational state in the trace of S.

The function genMeaning constructs one possible composite meaning that re-

sults from multiple Linda processes making simultaneous computational progress

within a shared tuple space. Function genMeaning utilizes the pTS meaning

function 3,, which in turn calls the Linda meaning function Lm. Function Lm

is shown separately in Figure 6.4.

F6 : state + state ---
&((A 7, p, Onezt)) =

if undefined
(2, T, 7, G ((A T7 7, Onezt)))

else

(A, 7, p, 7 6 (~ n e x t))

7' : tuple x int x meaning + meaning
7, (tj k, (2 7 7) Trd 7 T i n T o u t z e v a i , Tpass)) =

p where
- -

E { (Z , T , T ~ , 7 i n , 7 ' o u t , A f e v a ~ , T p a s s) - I
Lm (t j7 k, (2, T, Trd , Tin 7 T o u t 7 z e v a ~ 7 TP~SS)) -
yields (Z, T', 7&, T i n , T o u t , Z e v a l , 7 'paes))

genMeaning : LprocSet x meaning + meaning --- -
genMeaning (Lprocs, (A, 7, T r d , T i n , T o u t , x e v a i , TPass)) =

if Lprocs empty
-

(XT, Trd , T i n , T o u t Xevai, r p o s s)

else
let (j , k) E Lprocs

. .

in genMeaning((Lprocs - (j, k)) , -
F , (tj , k , (2, 7 7 T r d 7 T i n , T o u t , z e v a i , ?pass)))

Figure 6.2: Transition and meaning functions.

The generate children function G deserves closer attention, since it specifies

the next state in o elaborated by transition function F6. The behavior of G

describes event generation for PTS. First, G selects a random subset of active

Linda processes to make computational progress. Next, G passes those Linda

processes to genMeaning, which returns a composite meaning, in turn assigned

to p. Finally, G uses the elements of p to construct its own return state tuple.

Specifically, G adds to the 2 multiset the updated multiset of active tuples, and

any new active tuples generated as a result of eval primitives. It adds to the

7 multiset the updated multiset of passive tuples, and any new passive tuples

generated as a result of out primitives. G builds the 7' multiset from the events

: state --+ state
G((x,T,P, - - - gnext)) =

(A', T , P', oneztl) where
let Lprocs = {(j, k) I (1 5 j 5 1x1) A t j E Z A (I 5 k I Itjl) A

t j [k] .type = 'A ')
in let randsub Lprocs --
in let p = genMeaning(randsub, - - - (A, 7 ,0 ,0 ,0 ,0 ,0)) -

where P = (Ap , Tp , Tni T i n , T o u t , x e u a l , Tpass)

in
-
A' = U XeVar -
T' = 7, u Tout -
P' = {('Ecreated, t) I t E Tout) U

{ ('~cop i ed , t) I t E Trd} U{('~consumed, t) I t E Tin} U
{('Egenerat ing, t) I t E xeual} U
{('Egenerated, t) I t E T,,,,)

aneXt1 is undefined

Figure 6.3: The generate children function.

--I
it discerns from the contents of meaning structure p. P is a 5-way union of

multisets; one for each event type abstraction in PTS, and not coincidentally,

each event type abstracted for pTS corresponds to its own element of p. The

return state's a,,, is undefined at return time, indicating it has not yet been

elaborated. Next, discussion of the Lm function reveals how the multisets of p

are assigned their member tuples.

The Linda meaning function Lm, shown in Figure 6.4, handles three gen-

eral cases. Either process t j [k] makes computational progress involving no Linda

primitives, but still has remaining computation; process t , [k] makes computa-

tional progress involving no Linda primitives, and replaces itself with a typed

return value; or process t j [k] makes computational progress, the last part of

which is a Linda primitive.

Lm : tuple x int x meaning + meaning --- -
Lm (t j 7 k, (A, 7, 'Jni 7 Tin , T o u t 9 Z e v a i 7 Tpass)) =

let ti = tupleUpdate(tj, k , rand 0 Lm,,)
in

(2 - { t j)) U { t j l) if 3[, 1 5 ! 5 Itj 1 , ~ . t . t j l [f] . type = 'A',
otherwise.

-
- if 3 , l 5 f 5 I t j l , ~ . t . tjl[l].type = 'A', TpaSs = {7pass

Tpass U { t j l) otherwise.
in

if (t: [k] . t ype = 'A') r\(neztcomp (t: [k]) is a Linda primitive)
/\ (randomly choose to proceed)

let ty = tupleUpdate(ti, k , nextcomp()),
and LindaPrzm, template be from nextcomp(tjl[k])

in
let 2'' = (2' - ($1) U {ty),

tupleMatch(template, 7) if LindaPrim = rd V in,
t = { tcop ~ (t e m p l a t e) otherwise.

in Cases for LindaPrim = -
rd : if (t = Fail) (XI, 7, TTd, Ti,, Tout, Aevar, Tpass) -

else (X", 7, (T r d U {t }) , Ti,, T o u t , x e v a l , Tpss)
if (t = Fail) (XI, T , Td, Tin, T o u t , A e u a i , T p a s s)

-
O U ~ : (XI', T , Td, Tin, (T o u t U {t }) 7 x e v a l y Tpass)
euaZ : (X", T, Tni, Tin, T o u t , (X e u a l IJ { t}) 7 T p a s s)

else
-

(XI, T , Tni 7 Tin 7 T o u t 7 x e v a i 7 '?-'pass)

Figure 6.4: The Linda meaning function.

Lm receives input parameters indicating t j [k] as the tuple and field containing

the Linda process to make computational progress, and a cumulative meaning

structure reflecting the computations of Linda processes previously passed to Lm

in the current pTS transition. First, tuple ti reflects the update of t j , with t i [k]

assigned its new field value, randomly chosen from the set of all possible new field

values.

Next, if ti is passive, t j is removed from the multiset of active tuples and t i

is added to the multiset of newly passive tuples. Otherwise t i replaces t j in the

multiset of active tuples, and the multiset of newly passive tuples is unchanged.

To this point, only internal computational progress is possible. Lm might choose

at random to return a meaning structure reflecting the changes thus far, or be

forced to do so if either ti is passive or ti's next computation is not a Linda

primitive.

If Lm proceeds, tuple t(: reflects the update of t i , with ty[k] assigned its new

field value, which must be the result of the new continuation of its Linda process,

since, by definition it computed no additional internal computation and precisely

one Linda primitive since ti was produced. Then Lm replaces ti with ty in the

multiset of active tuples. If the Linda primitive is either rd or in, Lm attempts

to find a matching tuple t for the operation; otherwise Lm copies the out or eval

template to t.

Finally, Lrn considers the cases for the Linda primitive to determine the return

meaning structure. If a rd or in was attempted and the tuple match failed, a

meaning structure is returned that reflects only t>'s impact on the multiset of

active tasks (i.e. the next time this Linda process is chosen to make computational

progress, it will retry the same rd or in operation). If the match was successful,

in the case of a rd, t is added to the Td multiset; and in the case of in, t is both

removed from the state's tuple space, 7, and added to T,,. If the Linda primitive

was an out, t is added to the Tout multiset. Otherwise, the Linda primitive must

have been an eval, in which case t is added to the multiset.

Lrncomp : field ---t p(field)

tupleMatch : tuple x tupleset + tuple U Fail
tupleMatch(template, 7) =

if 3tm E 7 s.t. match(template, tm)
tm

else
Fail // (i.e. blocked ...)

tupleUpdate : tuple x int x function + tuple
tuple Update (tj, k, f ()) =

ti, where
Ye, 1 5 l 5 ltil

f(tj[!]) if ! = k,
t j [el =

t j [l] ot henvise.

tcopy : tuple + tuple

t, where
V k , 1 5 k 5 Itemplatel

'P' if template [k] passive,
t[k].type = {

'A' otherwise.

Figure 6.5: Functions used by Lrn

We show the functions invoked by Lm in Figure 6.5. Briefly, we assume the

existence of function Lm ,, to handle the details of individual process com-

putation. This is a reasonable assumption since the intent of Linda is to aug-

ment existing programming languages with primitive tuple space operations. The

meaning of an individual Linda process's computation, as conveyed by Lmcomp,

derives from the well-understood semantics of its underlying programming lan-

guage. Additionally, we define a tuple matching function, tupleMatch, to describe

the behavior of the synchronous Linda coordination primitives. Furthermore,

tupleMatch assumes the existence of a match() predicate. Finally, we define two

additional helper functions, tupleupdate and tcopy, to handle the details of up-

dating and copying tuples.

Function Ln,,, may make computational progress on its input parameter, a

tuple field. The computational progress may be up to, but not including, a Linda

primitive function. Function Lm,, returns an updated tuple field containing a

possibly updated continuation, and a possibly updated type indicator if the tuple

field changed from active to passive as a result of its computational progress.

Scheme-based Semantics for Linda

The Scheme-based pTS model extends the syntax of the Linda primitives with

a tuple space handle prefix. This handle can refer to the tuple space in which

the issuing Linda process resides (i.e. "self"), or it can be a tuple space handle

acquired by the issuing Linda process during the course of computation. The use

of a tuple space handle is consistent with commercial implementations of tuple

space. The existence of this handle is explained when we discuss tuple space

composition in Section 8.3. Tuple space handles are nothing more than values,

and may thus reside as fields within tuples in tuple space. In the absense of

composition, acquiring a tuple space handle h reduces to matching and copying

a tuple that contains h as one of its values.

We present the Scheme-based semantics of pTS in detail in this section. Not

all functions are discussed at the same level of detail. We give an overview of

the transition function and the view function, focusing on important aspects of

tuple space computation and view generation. Figure 6.6 contains the domain

specification for the version of pTS described in this section.

Var
S

(0)

L B a r (K) -
'r
state-LBar, (o, x)
ABar (A), TBar (7)
PBar (7)
LProcs
t, tsubj , template

field. type
field. cont ent s

closure, lambda, A

upsilon, v
rho, P

viewset
SCSPair
tupleset
parEventSet
LprocSet
tuple
field
seqEvent
etype

fieldtype
data
beh
Base
Formal
closure

send Cl

match Cl

--

Domain Domain Specification
system state x closureSet x viewset
state tupleset x tupleset x parEventSet x state

I undefined
~ (c ' o " " ~)

p(view)

state x closureset
S(tuple

~(seqEvent)

p (i n t x int)

list (field)
fieldtype x data
etype x tuple
{ 'Ecreated, 'Ecopied, 'Econsumed,
'Egenerat ing, 'Egenerated)

{'Active, 'Pending, 'Passive)
beh (J Base U Formal
continuation (unspecified)
base types (unspecified)
?Base
asynchC1 U synchCl U sendC1 U

matchC1 U reactC1 U asynchLPrim
{"send (handle, delay (lambda)) " I

handle denotes tuple space
lambda E asynchLPrim)

{ "send(hand1e , delay (lambda)) " I
handle denotes tuple space A
lambda E sendC1)

{"send(self , force (lambda))" I
self denotes tuple space A
lambda E matchCl }

{"(le t t = force(1ambda)
i n delay (lambda2))" I

lambda E synchLPrim A
lambda2 E reactC1)

{ "react (j , k , t) " }
{eval(templat e) , out (templat e))
{rd(template), in(temp1ate))
list (ROPE)
list (seqEvent)

react Cl
asynchLPrim
synchLPrim
view
ROPE

Figure 6.6: pTS Domain Specification.

Computation proceeds in PTS through invocation of the transition function

F-delta. F-delta takes a pair of arguments, tree o and the set of communication

closures K , and elaborates the next state in the trace of a. There are two phases in

a pTs transition: the inter-process phase and the intra-process phase. The inter-

process phase, or communication phase, specified by F-LambdaBar, concerns the

computational progress of the Linda primitives in x. The intra-process phase,

specified by G, concerns the computational progress of active Linda processes

within a,,,. F-delta returns the pair containing the elaborated tree on,, and

the resulting new set of communication closures A,, .

During the first phase of a PTS transition, function F-LambdaBar chooses

a random subset of communication closures from to attempt to reduce. In

PTS, each communication closure represents the computational progress of an

issued Linda primitive. The domain specification for the different closure forms

is included in Figure 6.6. From the perspective external to F-LambdaBar, these

closures make computational progress in parallel. Linda primitives are sched-

uled via a randomly ordered list to model the nondeterminism of race conditions

and the satisfaction of tuple matching operations among competing synchronous

requests. F-LambdaBar returns a a-iZ pair representing one possible result of

reducing the communication closures.

To better understand the functions that reduce closures in K, we take a mo-

ment to examine more closely the closure domain from Figure 6.6. The closure

domains that form closure characterize the stages through which communication

activity proceeds in tuple space. The form of closure domains asynchcl, synchC1,

and sendCl specifies that a lambda expression X be sent to a designated set.

Closures from domains asynchCl and synchCl explicitly delay the evaluation of

A; domain sendCl explicitly forces the evaluation of A. The designation of the

-
A set is through a tuple space handle. The notion of sending a closure, and the

notion of tuple space handles, both derive from our ongoing research in tuple

space composition. The processing of the send closure results in the set union of

the designated by handle and the singleton set containing element A.

Functions reduce-out and reduce-eval both take an asynchronous com-

munication closure and a 0-x pair as arguments, and return a 0-K pair. The

reduce-out function adds a passive tuple to tuple space, and generates event

'Ecreated. Similarly, reduce-eval adds an active tuple to tuple space, and

generates event ' Egenerat ing.

Function reduce-send returns an updated a-K pair. In the case of delayed

evaluation, reduce-send adds the send argument of X to K. Otherwise, evalua-

tion of the send argument of X is forced, and reduce-send attempts to reduce

the let expression containing a synchronous Linda primitive. The let expression

fails to reduce if there is no match in tuple space for the underlying rd()or

in()operation's template. If the let expression can't be evaluated, reduce-send

adds X back to x. Adding A back to permits future reduction attempts. Oth-

erwise, the let expression reduces, reduce-send adds the new closure to K, and

0, upon return, reflects the reduced let expression (for example, a tuple might

have been removed from tuple space).

Functions reduce-rd and reduce-in both take a synchronous communication

closure and a a-K pair as arguments, and return either a tuple-state pair, or

null. Both functions attempt to find a matching tuple in tuple space, and if

unsuccessful, return null. If a match exists, reduce-rd returns a copy of the

matching tuple, and generates event ' Ecopied. Similarly, reduce-in returns a

copy of matching tuple t, but also removes t from tuple space, while generating

event 'Econsumed.

The reactivate form of a communication closure specifies which field of which

tuple contains a pending Linda process that is to be reactivated. Specifically, the

reduce-react function updates t sub j [k] to make it an active Linda process, and

fills its evaluation context with redex t. reduce-react is applied to a closure

and a 0-Ti pair, where the closure contains j , k, and t . The 0-;i pair returned

by reduce-react contains the updated tuple.

During the second phase of a pTS transition, function G chooses a random

subset of active Linda processes to make computational progress. From the per-

spective external to F-LambdaBar, these processes make computational progress

in parallel. Internal to G, Linda processes are scheduled via the genMeaning

function. The sequence doesn't matter, since during this intra-process phase of

transition, no tuple space interactions occur. G returns a cr-A pair representing

one possible cumulative meaning of the random subset of active Linda processes

making computational progress.

A closer look at genMeaning is in order. Within a PDS, in general, it is

possible for individual processes to make simultaneous computational progress at

independent, variable rates. Thus, for PTS, it is incumbent upon genMeaning

to be capable of reflecting all possible combinations of computational progress

among a list of Linda processes in the a-x pair it returns. With the help of F-mu,

genMeaning satisfies this requirement. For each Linda process, F-mu randomly

chooses a meaning from the set of all possible meanings Lm could return; i. e . each

process proceeds for some random amount of its total potential computational

progress.

Function Lm is the high-level Linda meaning function for a process t j [k] in CT-x.
Lm handles three general cases. Either process t j [k] makes computational progress

involving no Linda primitives, but still has remaining computation; process t j [k]

makes computational progress involving no Linda primitives, and replaces itself

with a typed return value; or process tj[k] makes computational progress, the last

part of which is a Linda primitive. Lm assumes the existence of helper function

Lm-comp to return all possible meanings of internal Linda process computation

(that is, up to, but not including, a Linda primitive function). A random choice

determines how tj[k] gets updated. In the case of the final active process within

t j becoming passive, Lm moves t j from the set of active tuples to the set of passive

tuples, and generates event ' Egenerated.

In the case where tj[k]'s computational progress includes a Linda primitive,

function Lm-prim finishes the work Lm started. The two main cases of Linda

primitives are asynchronous and synchronous. In either case, Lm-prim constructs

the appropriate closure forms and adds the closure containing the primitive re-

quest to A. In the case of the synchronous primitive, Lm-prim also changes tj[k]

from active to pending.

The careful reader may question the need for a double choice of meanings

among Lm and F-mu, for a given Linda process t j [k]. Briefly, Lm selects a random

meaning for tj[k]; F-mu constructs the set of all possible meanings that Lm could

return for tj[k], only to select from this set a random meaning for tj[k]- Clearly,

we could have structured a single random choice; but not doing so permits us

to isolate and investigate different scheduling policies and protocols. For each

transition, the number of possible next states is combinatorially large. Recall

that Lm and F-mu are part of the function that generates children, one of which

the transition function chooses to elaborate, in lazy tree o. Each random choice

the transition function makes prunes subsets of possible next states, until one

remaining state is finally elaborated. Since Lm-comp is a helper function, the

double choice of meanings emphasizes the possibilities for a single Linda process,

and is consistent with the other random choices made during transition.

This concludes our description of the Scheme functions associated with tran-

sition in pTS. The functional nature of Scheme gives a precise and elegant de-

scription of the operational semantics for Linda and tuple space. Equally precise

and elegant is the Scheme implementation of the PTS view relation. Functions

F-view and more-ropes, are equivalent instantiations of the the view relation

defined in Chapter 4. The transition and view relations together allow us to

reason about all possible behaviors of a distributed system's computation, and

all possible views of each of those behaviors. Thus we have a powerful tool for

identifying and reasoning about properties of distributed computation.

; Scheme function description of paraDOS instantiated for Linda
; (with support for tuple space composition)
¶

; Lambda closure forms:

; Linda primitive cases:

; where
"handle" can be "self", "parent", or an acquired TS handle; J

unqualified Linda primitives imply the handle "self"; and #

handles other than imply composition

; Cases 1 and 2: (synchronous primitives)

lambda2 = send(self, force(lambda3))
lambda3 = (let t = force(lambda4) in delay(react(j,k,t)))

¶

; Cases 3 and 4: (asynchronous primitives)
I lambda1 = send(handle, delay(lambda2))
I lambda2 = out(template), o r //case 3
a eval (template) //case 4
¶

; where
¶ send(handle, lambda) is defined a s the s e t union of
9 TS handle's LambdaBar s e t with the s ingleton s e t

containing lambda.

; Transit ion Function
; Summary: Returns a state-LBar pa i r (l i s t) .
; This i s how computation proceeds.
(define F-de l t a

(lambda (state-LBar)
(l e t ((sigma (get-state state-LBar))

(LBar (get-LBar state-LBar)))
(l e t ((sigmacur (get-cur-state sigma)))

(l e t ((new-state-LBar (G (F-LambdaBar
(l is t sigmacur LBar)))))

(l e t ((newsigma (get-s ta te new-state-LBar))
(newLBar (get-LBar new-state-LBar)))

(l i s t (elaborate-sigma sigma newsigma)
(newLBar) 1) 1))

; get current s t a t e
; Summary: helper function cal led by F-delta; t raverses
; computational h i s tory t o l a s t elaborated s t a t e .
(define get-cur-state

(lambda (sigma)
(l e t ((next-sigma (get-next-state sigma)))

(i f (nul l? next-sigma)
sigma
(get-cur-state next-sigma)))))

; elaborate sigma
; Summary: helper function called by F-delta; elaborates
; next state in computational history with newsigma.
(define elaborate-sigma

(lambda (sigma newsigma)
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma) 1
(next-sigma (get-next-state sigma)))

(if (null? next-sigma)
(make-state Abar Tbar Pbar newsigma)
(make-state Abar Tbar Pbar

(elaborate-sigma
next-sigma newsigma))))))

; F-LambdaBar
; Summary: Returns a state-LBar pair. Selects random subset
; of closures from LambdaBar set. Invokes reduce-all to do the
; work, passing in a randomly-ordered list of closures from
; subset selected, and an initialized state-LBar pair. The
; state from state-LBar consists of the multisets of active
; and passive tuples from input state sigma. The LBar element
; of state-LBar is the set difference of itself and the random
; subset of closures selected.
(define F-LmbduBur

(lambda (state-LBar)
(let ((sigma (get-state state-LBar))

(LBar (get-LBar state-LBar)))
(let ((Abar (get-Abar sigma))

(Tbar (get -Tbar sigma))
(randclosures

(get-rand-subset LBar)))
(reduce-all

(as-list randclosures)
(list (make-state Abar Tbar ' () ' 0)

(set-diff LambdaBar randclosures)))))))

; reduce-all
; Summary: Returns a state-LBar p a i r . Accumulates t h e e f f e c t s
; of applying the closures t o t he s t a t e i n state-LBar. Closures
; t h a t couldn't reduce a re added back t o LBar i n state-LBar.
; This function farms out the work, one closure a t a t ime, t o
; function reduce-1.
(define reduce-al l

(lambda (closures state-LBar)
(i f (nul l? closures)

(s t a t e-LBar)
(reduce-all (cdr closures)

(reduce-1 (car closures) state-LBar)))))

; reduce-1
; Summary: Returns a state-LBar p a i r . The outer-most function
; of closures i n an LBar s e t a re one of s e n d o , r e a c t i v a t e () ,
; or one of t he asynchronous Linda pr imit ives , ou t () and
; e v a l () . This function farms out t h e work accordingly.
(define reduce-1

(lambda (closure state-LBar)
(cond

((out? closure)
(reduce-out closure state-LBar))

((eval? closure)
(reduce-eval closure state-LBar))

((send? closure)
(reduce-send closure state-LBar))

((reac t? closure)
(reduce-react closure state-LBar)))))

; reduce-out
; Summary: re turns a new state-LBar p a i r . The s t a t e element
; of state-LBar r e s u l t s from applying the Linda pr imit ive
; out(temp1ate) t o the input s t a t e . Spec i f ica l ly , a new
; tup le i s added t o the new s t a t e ' s Tbar s e t . Also, t he
; new event Ecreated f o r the new tuple i s added t o the PBar
; s e t of the new s t a t e . L B a r is unchanged.
(define reduce-out

(lambda (closure state-LBar)
(l e t ((sigma (get-s ta te state-LBar))

(t (get-template c losure)))
(l e t ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(l e t ((newTbar (union Tbar (singleton t)))
(newPbar (union Pbar (singleton

(make-event 'Ecreated t)))))
(l ist (make-state

Abar newTbar newPbar '0)
(get-LBar s ta te-LBar)))))))

; reduce-eval
; Summary: re turns a new state-LBar p a i r . Similar t o reduce-out,
; a new ac t ive tup le i s added t o the new s t a t e ' s Abar s e t . The
; corresponding event Egenerating f o r t he new tuple i s added t o
; the PBar s e t of the new s t a t e . LBar is unchanged.
(define reduce-evul

(lambda (closure state-LBar)
(l e t ((sigma (get-state state-LBar))

(t (get-template closure)))
(l e t ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(l e t ((newAbar (union Abar (singleton t)))
(newPbar (union Pbar (singleton

(make-event 'Egenerating t)))))
(l i s t (make-state

newAbar Tbar newPbar ' ())
(get-LBar s ta te-LBar)))))))

; reduce-react
; Summary: returns a new state-LBar pair. The reactivate closure
; specifies that within the ABar set of the state contained
; in the state-LBar pair, the k-th field of the j-th tuple
; is the process to be made active. Part of the activation
; of this process includes the binding of tuple t to the "rd"
; or "in" call in the continuation: the point which the process
; was originally suspended!
(define reduce-react

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar))

(LBar (get-LBar state-LBar)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((tuple-j (get-tuple Abar
(get-j closure))))

(let ((field-k (get-field tuple-j
(get-k closure))))

(let ((new-field-k
(set-f ield-type
(bind f ield-k (get-t closure))
'Active)))

(let ((new-tuple-j
(add-field (remove-field
tuple-j field-k) new-field-k)))

(let ((newAbar (union
(set-dif f Abar
(singleton tuple- j))
(singleton new-tuple-j))))

(list (make-state
newAbar Tbar Pbar ' ())

LBar))))))))))

; reduce-send (without TS composition)
; Summary: returns a new state-LBar pair. If the closure
; expression to be sent is delayed, strip the delay() and "send"
; by adding to LBar set. Otherwise, closure is a forced "letN
; expression. Farm off to reduce-let function. If reduce-let
; fails, then reduce-send fails, and the original closure is
; added to returned state-LBar's set of closures (where
; state-LBar's state is unchanged). If reduce-let was
; successful, the let expression bound a tuple into it's
; delayed subexpression (reactivate). reduce-send then returns
; the new state-LBar pair, consisting of the subsequent new state
; and the reduced closure in LBar.
(define reduce-send

(lambda (closure state-LBar)
(let ((send-arg (get-send-arg closure)))

(if (delayed? send-arg)
(let ((LBarl (union (cadr state-LBar)

(singleton (strip-delay send-arg)))))
(list (car state-LBar) LBarl))

;else forced
(let ((closure-state

(reduce-let (strip-force send-arg)
state-LBar)))

(if (null? closure-state)
; reduce failed
(list (car state-LBar)

(union (cadr state-LBar)
(singleton closure)))

;else it reduced!
(let ((LBarl (union (cadr state-LBar)

(car closure-state))))
(list (cadr closure-state)

LBarl))))))))

; reduce-let
; Summary: returns a closure-state pair. The closure part is a
; possibly reduced let expression, and a possibly modified state.
; Reduction depends on the success or failure of the forced
; Linda primitives rd or in. A reduced closure consists of
; binding the result of the rd or in to the delayed part of
; the let closure. The work of reducing the rd or in is farmed
; out to corresponding functions.
(define r e d u c e - l e t

(lambda (closure state-LBar)
(let ((Lprim (get-forced closure))

(react (get-delayed closure)))
(let ((tuple-state

(if (rd? Lprim)
(reduce-rd closure state-LBar)
(reduce-in closure state-LBar))))

(if (null? tuple-state)
') ;prim failed
(let ((bound-closure

(bind (car tuple-state) react))
(newstate (cadr tuple-state)))

(list bound-closure newstate)))))))

; reduce-rd
; Summary: r e tu rns a tup le -s ta te p a i r . Farms out matching work
; t o ex i s t s ? funct ion. I f successful , t up l e p a r t of t up l e - s t a t e
; contains matching t up l e t , and s t a t e p a r t of t up l e - s t a t e
; contains new event 'Ecopied i n i t s Pbar s e t .
(def ine reduce-rd

(lambda (closure state-LBar)
(l e t ((sigma (ge t - s ta te state-LBar))

(template (get-template c lo su re)))
(l e t ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(l e t ((f ((lambda t)
(match? template t))))

(l e t ((t (ex i s t s ? Tbar f)))
(i f (nu l l? t)
('0)
(l e t ((newPbar (union Pbar

(make-event 'Ecopied t))))
(l e t ((newsigma (make-state

Abar Tbar newPbar '0)))
(l i s t t newsigma)) 1) 1) 1) 1)

; reduce-in
; Summary: returns a tuple-state pair. Similar to reduce-rd,
; except if successful, also removes matching tuple t from
; new state's Tbar set in tuple-state pair.
(define reduce- in

(lambda (closure state-LBar)
(let ((sigma (get-state state-LBar))

(template (get-template closure)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((f ((lambda t)
(match? template t))))

(let ((t (exists? Tbar f)))
(if (null? t)
('0)
(let ((newTbar (set-dif f

Tbar (singleton t)))
(newPbar (union Pbar

(make-event 'Econsumed t))))
(let ((newsigma (make-state

Abar newTbar newPbar ' ())))
(list t newsigma) 1) 1) 1)) 1)

; exists?
; Summary: returns a matching tuple from TBar if one is found
; that satisfies the f function. The f function is bound by the
; caller to check for a match with a particular template.
(define e x i s t s ?

(lambda (TBar f)
(if (null? TBar)
('0)
(let ((tuple (car TBar)))

(if (f tuple)
(tuple)
(exists?

(set-diff TBar (singleton tuple))
f))))))

; Generate Children
; Summary: Returns a state-LBar pa i r .
(define G

(lambda (state-LBar)
(l e t ((sigma (get-s ta te state-LBar))

(LBar (get-LBar state-LBar)))
(l e t ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(l e t ((Lprocs (get-active-procs Abar)))
(l e t ((randsub (get-rand-subset Lprocs)))

(genMeaning (a s - l i s t randsub)
(l i s t (make-state

Abar Tbar Pbar ' ())
LBar))))))))

; Generate Meaning
; Summary: Returns a state-LBar pa i r . Applies meaning function
; F-mu t o a l l members of Lprocs, accumulating the e f f e c t s of each
; Linda process' computation i n the state-LBar p a i r returned.
(define genMeaning

(lambda (Lprocs state-LBar)
(i f (nul l? Lprocs)

state-LBar
(l e t ((jk-pair (car Lprocs))

(sigma (get-state state-LBar)))
(l e t ((j (get-j jk-pair))

(k (get-k jk-pair))
(Abar (get-Abar sigma)))

(l e t ((t sub j (get-tuple j Abar)))
(genMeaning (cdr Lprocs)

(F-mu t subj k s ta te-LBar))))))))

; F-mu
; Summary: Returns a state-LBar pair. The meaning of the
; computation of single Linda process residing in tuple j,
; field k, is reflected in the return value. The meaning is
; a random selection from the set of possible meanings.
(define F-mu

(lambda (tsubj k state-LBar)
(let ((meanings-of -tsub j-k

(gen-set Lm tsubj k state-LBar)))
(car (as-list meanings-of-tsubj-k)))))

; Lm
; Summary: returns a state-LBar pair. High level Linda meaning
; function. Computational progress of a Linda process, in
; location k of tuple tsubj, is reflected in the state
; returned by this function. Progress consists of internal
; and/or external computation. In the case of the final
; active process within tsubj going passive, in addition to
; removing tsubj from Abar and adding to Tbar, an 'Egenerated
; event is added to Pbar. If after making internal progress,
; a Linda primitive immediately follows, Lm enlists Lm-prim
; to do the rest.
(define Lm

(lambda (tsubj k state-LBar)
(let ((sigma (get-state state-LBar))

(LBar (get -LBar state-LBar)))
(let ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma)))

(let ((tsubj 1 (tupleupdate tsubj k
(composition rand Lm-comp))))

(if (exists-active-f ield? tsubj 1)
(let ((Abarl (union

(set-diff Abar (singleton tsubj))
(singleton tsubjl))))

(process-redex tsubjl k
Abarl Tbar Pbar LBar))

(let ((Abarl (set-dif f Abar
(singleton tsubj)))

(Tbarl (union Tbar
(singleton tsubjl)))

(Pbarl (union Pbar
(singleton (make-event

'Egenerated tsubjl)))))
(process-redex tsubjl k

Abarl Tbarl Pbarl LBar))))))))

; Process redex
; Summary: re turns a state-LBar p a i r . Helper funct ion t o
; complete t he work of Lm.
(define process-redex

(lambda (t sub j k Abar Tbar Pbar LBar)
(l e t ((redex (get-redex t sub j k)))

(i f (linda-prim? redex)
(Lm-prim t sub j k

(l i s t (make-state Abar Tbar Pbar '0)
LBar))

(l i s t (make-state Abar Tbar Pbar ' 0)
LBar)

; Lm-prim
; Summary: re turns a state-LBar p a i r . High l e v e l Linda meaning
; funct ion f o r external computation. External computation
; cons i s t s of a process issuing one of t h e Linda pr imi t ives .
; Depending on whether t he Linda pr imit ive i s synchronous o r
; asynchronous, t he process w i l l suspend, 'Pending completion of
; t he operation, or reduce t he asynchronous pr imit ive ,
; respec t ive ly .
(define Lm-prim

(lambda (t sub j k state-LBar)
(l e t ((sigma (get-s ta te state-LBar))

(LBar (get-LBar state-LBar)))
(l e t ((Abar (get-Abar sigma))

(Tbar (get-Tbar sigma))
(Pbar (get-Pbar sigma))
(redex (get-redex t s u b j k)))

(l e t ((handle (get-handle redex))
(lprim (get-Linda-prim redex))
(template (get-template redex)))

(i f (asynch-prim? lprim)
;asynchronous pr imit ive
(l e t ((lambda3 (l i s t lprim template)))

(l e t ((lambda2
(l ist ' force lambda31))

(l e t ((lambda1 (l i s t
('send handle

(l i s t 'delay lambda2)))))

(let ((LBar1 (union LBar
(singleton lambdal)))

(tsub j 1 (tupleupdate
tsubj k reduce-asynch)))

(let ((Abarl (union
(set-dif f Abar
(singleton tsubj))

(singleton tsubjl))))
(list (make-state

Abarl Tbar Pbar '0)
LBari))))))

;synchronous primitive
(let ((lambda4 (list lprim template)))

(let ((lambda3 (list 'let t
(list 'force lambda41
'in (list 'delay (list

'react tsubj k t)))))
(let ((lambda2 (list 'send

(get-self-handle state-LBar)
(list 'force lambda3))))

(let ((lambdal
(list 'send handle
(list 'delay lambda2))))

(let ((LBar1 (union LBar
(singleton lambdal)))

(tsub j 1 (tupleupdate
tsubj k
make-pending)))

(let ((Abarl (union
(set-dif f

Abar
(singleton tsubj))

(singleton tsubjl))))
(list (make-state

Abarl Tbar Pbar '0)
LBarl)))))))))))))

; View function
; Summary: creates a new view, if upsilon is an empty list of
; ROPEs; otherwise appends zero or more ROPEs to an existing
; view of computation (from sigma).
(define F-v iew

(lambda (upsilon sigma)
(if (null? upsilon)

(more-ropes sigma)
(append (list (car upsilon))

(F-view (cdr upsilon)
(get-next-state sigma))))))

; more ropes
; Summary: helper function called by F-view; returns a list of
; zero or more ROPEs generated from the corresponding
; parallel event sets of sigma's traversal.
(define more-ropes

(lambda (sigma)
(if (null? sigma)

' 0
(let ((Pbar (get-Pbar sigma))

(next-sigma (get-next-state sigma)))
(let ((v-randsub (get-rand-subset Pbar)))

(let ((rho (as-list v-randsub)))
(random-choice (list rho)

(append (list rho)
(more-ropes next-sigma)))))))))

6.4 Equivalence Proof

This section discusses the operational semantics of previous work with which we

will be comparing paraDOS for Linda. We present our plan of attack for the

equivalence proof, based on the assumptions of the previous operational seman-

Va: r E Valueo : { (a : T , U : T) , (a : T , : T), (I : r , a : T)) c match

n

Vs, t E Value: : l \ (s [i], t[i]) E match H (s, t) E match
i= l

Figure 6.7: The TSspec match relation.

tics. Finally, we discuss the contributions of paraDOS for Linda to the body of

work in formal models of tuple space computation.

6.4.1 The TSspec Model

We establish the soundness of paraDOS for Linda by giving an equivalence proof

of our operational semantics with the operational semantics for Linda's tuple

space given in [C JY941 and also in Jensen's Ph.D. thesis [Jen94]. Jensen presents

his semantics, TSspec, in section 3.2 of his thesis, pp. 48-51. For completeness, we

present TSspec's match relation in Figure 6.7, domain specification in Figure 6.8,

and operational semantics in Figure 6.9.

The match relation specifies that templates and tuples match if their respec-

tive values match. Two values match if they are of the same type, and exactly

one value is formal; or if both values are actual and the identical.

In Figure 6.9, the case for local evaluation consists of two inference rules. The

second inference rule is a recursive specification for the TSspee transition relation,

and defines how a tuple space (a multiset of tuples) can be partitioned into

two multisets of tuples. The resulting multisets can then be further partitioned

by recursively applying the second inference rule. Jensen's description of the

Type Names:

Formal Values:

Passive Values:

General Values:

Passive Tuples:

General Tuples:

Tuple Space:

Linda Operat ions:

Linda Processes:

T y p e

Va lue l =

Valueo =

Value, =

Tuple, =

Tuple, =

TSO

OP

P r o c

{int, char, . . .)

{I : r 1 r E Type)

{a : r 1 r E Type , a E VI} U Va lue l

{ p : 7 1 r type, p E P r o c) u V a l u e o

Value*,

Value:

MS [Tuple,]

{eval(t) I t E tuple,)^

{out (t), rd(s), in(s) I s , t E Tuple,)

{ o P . ~ , e(t) , e l
op E Op, t E Tuple,, e E C,)

Figure 6.8: The TSspec Domain Specification.

parallelism specified by TSspec includes more information than what is conveyed

by the second inference rule (Jen94, CJY94, JenOO]. In particular, the TSspec

operational semantics describes concurrency through an arbitrary interleaving of

a set of atomic transitions. This set of transitions derives from the partitions

of tuple space that result from the recursive applications of the second inference

rule. Computation proceeds within each partition of tuple space via a single,

independent transition. Each of these transitions corresponds to one of TSspec's

non-recursive transition rules. Collectively, these transitions represent the set of

atomic transitions to be interleaved.

The TSspec approach, via the second inference rule, provides an elegant formal

specificat ion of parallelism for tuple space computation. However, the instantia-

tion of paraDOS for Linda does not use this approach. By avoiding partitioning,

our approach is capable of modeling a higher degree of parallelism than that re-

flected in TSspec's second inference rule. For example, consider Linda processes

A and B, residing within different tuples, both about to issue a rd() primitive,

where their respective templates both match tuple t. TSspec can partition a

multiset for the tuple copying rule. Such a multiset contains the matching tuple

t, and either the tuple containing Linda process A or the tuple containing the

Linda process B. Once such a partition exists, a second partition to copy tuple

t is no longer possible - even though it is theoretically possible for both Linda

processes A and B to copy tuple t in parallel. ParaDOS for Linda permits this

level of parallelism.

This equivalence proof focuses on individual computational steps, not degrees

of parallelism, between TSspec and paraDOS for Linda. The reason for this

focus is because the two models represent parallelism a t different levels of ab-

straction: TSspec via interleaving events (transitions) from the second inference

rule, paraDOS for Linda via parallel events. When reasoning about a TSspec

trace, one cannot distinguish, in general, whether some sequence of events in the

trace occurred sequentially, or resulted from interleaving two or more simultane-

ous, partitioned transitions. Thus, we restrict our attention to the only remaining

case for a transition within a tuple space partition: the first inference rule for in-

dividual local computations. The first rule describes how a Linda process makes

local computational progress while residing within a field of some tuple in tuple

space.

Several assumptions of TSspec influence the framework of this equivalence

proof. First, TSspec specifies the coordination of Linda processes via tuple space.

Second, TSspec does not specify exactly what a Linda program is: TSspec is not

a terminal transition system. Finally, concurrency is described by an arbitrary

interleaving of a set of atomic transitions performed by the active processes.

Operational Semantics:

Linda's Tuple Space:

TSspec = (rtS, +t,) where rtS = TS,
+ts C r t s X rts

Tuple Spaces Transitions:

Process Creation:

Vt ' E Tuple, : (I t [eval(tf) . p : r] --ttS (I t[p : r] , t' D.
Tuple Creation:

Vt ' E Tupleo : {I t[out(t1).p : r] b --ttS (I t[p : T I , t' b.

Tuple Copying:

V(s,tl) E match : {I t[rd(s).p : r] , t' --ttS {I t[p(t') : T], t' D
Tuple Removal:

V(s, t') E match : {I t [in(s) . p : r] , t' + ts (I t [p (t') : T] b
Local Evaluation:

Abbreviations:

Configurations:

p, p', p" E Proc, s, t, t1 E Tuple,, ts, ts', ts" E TS,.

Figure 6.9: Operational Semantics for TSspec.

Thus, in this equivalence proof, we are not concerned with initial or final con-

figurations of Linda programs, but rather the states of individual Linda processes

and tuple space, and the subsequent states of these processes and tuple space af-

ter a transition. Moreover, since TSspec represents parallelism via an arbitrary

interleaving of sequential computations, we will consider a restricted version of

paraDOS for Linda, capable of computational progress by a single Linda process

in each transition. This should not bother us going from TSspec to paraDOS,

since this restriction is indeed one of the possibilities for any given transition. In

the other direction, the restriction of paraDOS to single-process transitions will

be sufficient to show equivalence with TSspec.

This equivalence proof will not be in the form of induction on the number of

transitions. The proof is nontraditional because TSspec is defined in terms of a

process's individual transitions. First, we define equivalence relations between the

two models' configurations, tuples, and tuple fields. Next, we demonstrate that

the transitions possible in one semantics are possible in the other semantics (i.e.

what one can do, the other can do, and vice versa). In all cases, we must show

that the equivalence relation on configurations holds between the two models'

states before and after their respective transitions.

6.4.2 Definitions and Assumptions

Before we can state (and prove) our theorem, we must define our equivalence

relations and state our assumptions. We define three equivalence relations, among

state configurations (I-+), tuples (w), and tuple fields (H) . Our assumptions
cf9 tpl Pd

concern notation, fonts, and the existence of helper functions.

We use different fonts to distinguish tuples from each of the two computational

models. In particular, t refers to a tuple from the Linda instantiation of paraDOS,

and t refers to a tuple from TSspec. In both cases, we use standard subscript

notation to project individual tuple fields. Further, t[l] refers to the first field of

tuple t from TSspec, where fields are numbered from 1 to #t (similarly for t and

paraDOS instantiated for Linda).

Note that H applies to tuple templates as well as tuples. X is a closure con-
tpl

taining a Linda primitive. Where convenient, we indicate the type of Linda prim-

itive a closure contains with a subscript, e.g. Ad. Helper function l indapr im(X)

extracts the Linda primitive operation from A. Helper function asynchsub(X)

returns the subset of closures in containing asynchronous Linda primitive op-

erations.

The operational semantics of the synchronous Linda primitives within TSspec

are guarded by the predicate match, which returns true for pairs of tuples that

match. paraDOS for Linda assumes the existence of predicate match? for the

same purpose.

We now define the equivalence relations. One way to describe a Linda program

is as a collection of tuples. This description captures not only the passive tuples,

but the Linda processes, which reside within the active tuples in tuple space.

Thus, configurations between PTS and TSspec are equivalent if all the tuples in

pTS have counterparts in TSspec, and all tuples in TSspec have counterparts in

pTs. Two tuples are equivalent if their respective fields are equivalent. Two tuple

fields are semantically equivalent if their respective contents are syntactically

equivalent; syntactic equality implies semantic equality. The definitions of
tp l

and H are straightforward.
fld

The definition of ++ merits further explanation. There are two main expres-
cfg

sions, the first evaluating equivalence from TSspec to pTS, the second evaluating

equivalence from pTS to TSspec. The first condition is met if, for all tuples in

TSspec's tuple space, there is an equivalent tuple in either pTS's set of active

tuples or set of passive tuples, or that the matching tuple in pTS resides within

a communication closure yet to be reduced. In the case that the matching PTS

tuple resides within a closure, there are two possibilities. The first possibility is

that the matched tuple t belongs to the blocked process residing in the k-th field

of the m-th tuple in tuple space. The second possibility is that the tuple t is to

be placed in tuple space by an out() or eval() operation.

The second main condition is the conjunction of three sub-conditions. First,

for all tuples in PTS's sets of active and passive tuples, there must be an equivalent

tuple in TSspec's tuple space. Second, for all PTS closures A that are in the

reactCl domain, there must be a tuple in TSspec's tuple space that is equivalent

to the tuple t contained in A. Third, for all closures A in pTS that contain the

nonblocking Linda primitive operation ou t (t) or eval(t) , there must be a tuple

in TSspec's tuple space that is equivalent to the tuple t contained in A.

Definition 20 (I-+) Let K,TS = tsi, K P ~ = (a,, Xj), and aj = (A, 7, P, one,t),

cf9

where tsi E TS, and (aj, Kj) E SCSPair. Then K:' H K : ~ iff
cfg

(3 E L j . 3t E tuple. 3m,k 1 (A = "react(m,k,t)" V

lindaprim(A) t {out (t) , eva l (t))) /\ t H t)
tpl

(VX E K j n reactC1 . 3t E tsi . 3t E tuple . 3 m , k I
= "react(m,k,t)" A t H t) /\

tp l

(VX E asynchsub(Kj) . 3t E tuple . 3t E tsi I

Definition 21 (ct)
tp l

Definition 22 (-) t[k] c--t t [k] iff
J d J d

t [k] = t [k] .contents (syntactic equality implies semantic equality)

6.4.3 Theorem and Proof

Theorem 2 states that we can model the computations of all Linda processes

equivalently in both TSspec and PTs. Specifically, if Linda process p is contained

in equivalent configurations from TSspec and pTS then, for all possible transitions

in TSspec involving p, there exists zero or more transitions to an equivalent state

in PTs. Similarly, for all possible transitions in PTS, there exists zero or more

transitions to an equivalent state in TSspec. The proof considers all possible

cases of transitions from TSspec to PTS, and from PTS to TSspec.

Theorem 2 For all Linda processes, p , let K? be a configuration of KTS con-
taining p , and K T ~ be a configuration of KpL containing p , s.t. K y - KjpL.

cf9
Then

1. K y + t s K g SI 372 2 0 s.t. KTL +FL K g n A KI'+'' 2 K$,,

and

2. KPL t p L K g 1 4 3n 2 0 s.t. KTs -+y8 KG", /\ KZSn H K$.
cf9

Proof:

Part 1: Consider each case of tuple space transitions in TSspec. For each case,
demonstrate the equivalent transition in paraDOS for Linda.

Process Creation: Vt' E Tuple, : 4 t [eval(t l) .p : T] -+,, (I t[p : r] , t' D
1. Let K? > {I t[eval(tl) . p : T] and K:~' > {I t[p : r] , t' D , where

K,TS + t s KZs1.
Let tl denote tuple t before, and tr denote tuple t after,
transition + t s .

2. Given K y H K ; ~ , by definition of H , 3t E oj .x I tl H t ,
cfg cf9 tpl

and by definition of ++, 3e 1 tl [eval(tl) .p : T] t [l],
tpl

and by definition of H, tl[l] = t[e].contents.
fid

3. By definition of +ts,

the meaning of tl [eval(tf) .p : r] yields { I t z [p : r] , t' D .
By definition of Lm-prim(),

3t1' E tuple I tl'[l].contents = t2[!] A
V1 5 k # e 5 #t. t N [k] = t [k] ,

and 3X E asynchCZ 3t' E tuple 1
lindaprim(X) = eval(t l) /\ t' H t ' .

tpl

4. By definition of ct and tl'[l], tz[l] H tl '[e], and
Pd fld

By definition of H and t", tz I-+ t" .
tpl tpl

5. By definition of G applied to aj and Kj j , and by definition of t , t", and
A,

3aj+1 E state I oj+l = (A, 7, P, ane,t) where

-
gj+l .A = (9.2 - { t)) U {t"),

- -
.7 = aj.7-
-

aj+l -P = 0,
uj+l .anezt is initially undefined, and

-
3Kj+l E c los~rese t 1 Kj+1 = Aj U { A) .

6. By definition of + p ~ , and by steps 3 and 5, where aj .anezt = aj+l
-

and ~ $ 1 = (aj+l,Aj+l),
KPL + p ~ K!fl is one legal transition.

7. By definition of reduce-send applied to A,
3X' E asynchLPr2m I A' =reduce-send(X) A lindaprim(X1) =

eval (t').

8. By definition of F-LambdaBar applied to Oj+l and Kj+l , and by defi-
nition of X and A',

3CTj+2 E state (Oj+z = Oj+l ,

3Kj+4 E cZosureSet I Kj+2 = (Kj+1 - { A)) U {A').

9. By definition of + p ~ , and by steps 7 and 8, where aj+l .o,,,t = aj+2
-

and ~ : f 2 = (aj+2, Aj+2),
KT:, + p ~ K ~ P + L ~ is one legal transition.

10. By definition of reduce-eval applied to A', and by definition of t ' ,

t' = reduce-eval (A').

11. By definition of F-LambdaBar applied to o,+z and Kjf2, and by defi-
nition of t ' , and A',

3oj+3 E state (oj+3 = (A, 7, P, oneXt) where

- -
oj+3 .A = oj+z -A U {t'),

- -
oj+3.T = oj+2.7,

-
O ~ + ~ . P = {('Egenerating, t')},

~j + 3. Onext is initially undefined, and
-

3Kj+3 E closureset 1 Kj+3 = Aj+2 - {A'}

12. By definition of t,~, and by steps 10 and 11, where oj+z .o,,,t = oj+3 -
and = (Oj+37 Aj+3)

K$, _ t p ~ K;f3 is one legal transition.

13. By definition of ++ and 0j+3, and by steps 3, 4, 5, and 11, where
cf9 - -

respectively, t' +-+ t', tz +-+ t", t" E o j+~ .A, and t' E ~ j + ~ . d ,
tpl tpl

14. From the transitions in steps 6, 9, and 12, and by the configuration
equivalence in step 13, we demonstrated the ability of paraDOS for
Linda to perform in n = 3 transitions the TSspec computational step
of Process Creation.

Tuple Creation: Vt' E Tuple, : {I t[out (t') . p : r] Jts {I f [p : 71, t' b

1. Let Krs > {I t[out (tl).p : r] b and Ki'is1 > 4 t[p : T], t' b, where
K F _tts Kzsl.
Let tl denote tuple t before, and tz denote tuple t after,
transition -+ ts.

2. Given K? H K P ~ , by definition of H, 3t E 0 j .Z I tl H t,
cf9 cf9 tpl

and by definition of H, 3 t 1 tl [out (t') .p : r] H t [el,
tpl Pd

and by definition of H, tl [l] = t [[].contents.
fld

3. By definition of -+ t a ,

the meaning of tl [out (t') .p : r] yields {I t2 [p : r] , t' b.
By definition of Lm-prim() ,

3t1' E tuple I tU[l].contents = tz[p : r] A
vi 5 k + e 5 #t. t y k] = tp],

and 3 A E asynchCl 3t' E tuple 1
lindaprim(A) = out(t l) /\ t' H t ' .

tpl

4. By definition of H and t"[e], t2[e] H t"[l], and
fid Pd

By definition of H and t", t2 I---+
tpl tp l

t".

5 . By definition of G applied to oj and Tj , and by definition of t , t", and
A , ---

3oj+1 E state I oj+l = (A, 7, P , ~ n e x t) where
- -

oj+1 -A = (oj -A - {t)) IJ {t"),

oj+l . 7 = 0j.7,
-

oj+l -P = 0,
oj+ 1 .o,,,t is initially undefined, and

-
3Xj+l E elosureSet 1 Tj+l = Aj U {(X).

6. By definition of + p ~ , and by steps 3 and 5, where oj.onext = Oj+l

and = (oj+i r Aj+l)r

K ! ~ + p ~ K $ ~ is one legal transition.

7. By definition of reduce-send applied to A,
3A' E asynchLPrzm I

A' =reduce-send@) A 1 indapr im(A1) = out (t') .
8. By definition of F-LambdaBar applied to Oj+l and Tj+1, and by defi-

nition of X and A',

9. By definition of +pL, and by steps 7 and 8, where Oj+l .on,,t = Oj+2,
-

and = (oj+2, Aj+2).

KT!, + p ~ ~2~ is one legal transition.

10. By definition of reduce-out applied to A', and by definition of t',

t' =reduce-out (A').

11. By definition of F-LambdaBar applied to o j + 2 and Kj+2, and by defi-
nition of t', and A',

30j+~ E state I oj+3 = (A, 7, P, oneXt) where

- -
uj+3 -A = oj+2 .A

- -
q + s . T = o ~ + ~ . T U {ti),

-
O ~ + ~ . P = {('Ecreated, t')},

0j+3 .onezt is initially undefined, and
-

3Kj+3 E closureSet I Kj+3 = Aj+2 - {A')

12. By definition of tp~, and by steps 10 and 11, where oj+2 .onext = 0j+3
-

and ~ $ 3 = (o~ .+Q 1 Aj+3),

K c z + p ~ ~2~ is one legal transition.

13. By definition of H and 0j+3, and by steps 3, 4, 5, and 11, where
cfg - -

respectively, t' H t', t z * t", t" E oj+1 .A, and t' E oj+3 .T,
tpl tpl

14. From the transitions in steps 6, 9, and 12, and by the configuration
equivalence in step 13, we demonstrated the ability of paraDOS for
Linda to perform in n = 3 tranitions the TSspec computational step
of Tuple Creation.

Tuple Copying: V(s, t') E match :

{I t [rd(s) .p : 71, t' D +ts {I t [p(t l) : 71, t' D

1. Let K y > 4 t[rd(s).p : r] , t' D and Kzs1 S, {I t [p(t l) : r] , t' b,
where K? _tta K g .
Let tl denote tuple t before, and t2 denote tuple t after,
transition --t t,.

2. Given K y t---+ K3PL, by definition of H ,
cfg cfg

3t E oj.Z 3t' E 0 j . 7 I tl H t /\ t' H t',
tpl PI

and by definition of H, 3e 1 tl [rd(s) .p : r] t [el,
tpl ftd

and by definition of H, tl [el = t [[].content s,
fId

3s E tuple I s H s, and
tpl

C[] is the evaluation context of t[t].contents with redex rd(s).

3. Given (s, t') E match, and from step 2, s H s and t' H t',
tpl tpl

(match? s t') evaluates true.

4. By definition of the meaning of {I tl [rd(s) . p : r] , t' D yields
{I t2[p(t1) : 71, t' D.

By definition of Lm-prim(),

3t" E tuple I tN[l].type = 'Pending' /\
tl '[l].contents = t [l] .contents A
V1 5 k # l 5 #t. tl'[k] = t[k], and

3A E synchCl I lindaprim(A) = rd(s) .

5 . By definition of G applied to oj and dj , and by definition of t, t", and
A,

3oj+1 E state I oj+l = (A, 7, P, onext) where

-
~ j + ~ . d = (0j.X- {t)) U {t"), -
o ~ + ~ -7 = oj.T,

-
Uj+l .P = 0,
oj+l .on,t is intially undefined, and

-
3Kj+1 E cZosureSet I = Aj U {A).

6. By definition of + p ~ , and by steps 4 and 5, where oj .one,t = oj+l, -
and = (oj+l Aj+l),

K P ~ --tp~ K;& is one legal transition.

7. By definition of reduce-send applied to A,

8. By definition of F-LambdaBar applied to oj+l and Kj+l, and by defi-
nition of A and A',

E state I oj+2 = Uj+l .

3Tij+, E closureSet I Kj+2 = (Kj+l - {A)) U {A').

9. By definition of and by steps 7 and 8, where oj+l .oneXt = Oj+2, -
and ~ $ 2 = (q+2 , Aj+2)r

KT:, + p ~ K T ' ~ is one legal transition.

10. By definition of reduce-rd,

rd(s) matches t', since from step 3, (match? s t') evaluates true.

11. By definition of reduce-let,
3A" E matchCl I binding t' within A' yields A".

12. By definition of F-LambdaBar applied to o,+2 and Kj+2, and by defi-
nition of t', A', and A",

3oj+3 I 0j+3 = - (A, - 7, p, g n a t) 7 where

0j+3 .A = oj+2 .A, - -
ojC3 -7 = oj+2 - 7 7

-
O ~ + ~ . P = {('Ecopied, t')}, and
oj+ 3 .onext is initially undefined.

-
3Kj+3 I xj+3 = (Aj+2 - {A'}) U {A"}.

13. By definition of tp~, and by steps 10, 11, and 12, where oj+z.Onezt =
-

Oj+3, and ~ $ 3 = (o j+g , Aj+3)7

K$, + p ~ K!:~ is one legal transition.

14. By definition of reduce-react and A",
3t1" E tuple I ttN[l].type = 'Active' tl"[e].contents = C[tl] A

V1 5 k # l < #t. tm[k] = tn[k].

15. By definition of and tl"[t] in step 14, t2[t] H tl"[l], and
fld fld

By definition of ++ and t"', tz ct t'".
tpl tpl

16. By definition of F-LambdaBar applied to 0j+3 and Kj+3, and by defi-
nition of t", tl", and A",

3Oj +4 I Oj+d = (A7 7, p7 ~next) 7 where -

Oj+4 .A = (O ~ + ~ . A - {t")) U {tt")7
- -

Oj+d . T = o ~ + ~ - T -
-

g j + 4 -P = 0,
o,+4 .one,t is initially undefined.

-
3Kj+r 1 Kj+4 = Aj+3 - {A"}

17. By definition oft,^, and by steps 14 and 16, where ~ ~ j + 3 . 0 ~ ~ ~ t = o j + d
-

and ~ : t ~ = (Oj+d, Aj+d).

K Z 3 + p ~ K$ is one legal transition.

18. By definition of H and oj+d, and by steps 2, 15, and 16, where
cfg -

respectively, (t' E oj .T A t' H t'), t 2 H t"', and t' E Oj+d .A,
tpl tpl

19. From the transitions in steps 6, 9, 13, and 17, and by the configuration
equivalence in step 18, we demonstrated the ability of paraDOS for
Linda to perform in n = 4 tranitions the TSspec computational step
of Tuple Copying.

Tuple Removal: V(s, t') E match : {I t [in(s) .p : TI, t' D tts Q t [p(t f) : r] b

1. Let KTs > a t [in(s) .p : r], t' and KZS1 > (I t [p (t f) : T] 0,
where K y + t s K;;.
Let tl denote tuple t before, and t z denote tuple t after,
transition + t , .

2. Given K y t--+ KPL, by definition of ++,
cf9 cf9

3t E 0j.2 3t' E 0j.T I tl H t A t' H t',
tp l tp l

and by definition of H, 36 1 tl [in(s).p : r] H t [l] ,
tpl fld

and by definition of I-+, tl [el = t [el. cont en t s,
J d

3s E tuple 1 s ++ s, and
tp l

C[] is the evaluation context of t[t].contents with redex in (s) .

3. Given (s, t') E match, and from step 2, s H s and t' H t',
tpl tp l

(match? s t') evaluates true.

4. By definition of -+,, the meaning of {I tl [in(s) . p : r] , t' yields

{I t2 [P (t') : rl O.
By definition of Lm-prim(),

3t1' E tuple 1 tN[6].type = 'Pending' A
tN[6].contents = t [t] .contents /\
V1 5 k # 6 5 #t . t"[k] = t[k], and

3A E synchCl I lindaprim(A) = in(s).

5. By definition of G applied to oj and xj, and by definition of t, t", and
A 7 ---

30j+~ E state I oj+l = (A, T , P , onext) where - -
oj+l.A = (0j.A - {t)) U {t"),

- -
oj+1.T = 0j.7,

-
oj+l .P = 8,
oj+l .onmt is intially undefined, and

-
3Xj+1 E closureset I Xj+1 = Aj U {(X.

6. By definition of +,L, and by steps 4 and 5, where oj .onest = oj+i , -
and ~ $ 1 = (oj+l 7 Aj+1) 7

K P ~ + p ~ K$ is one legal transition.

7. By definition of reduce-send applied to A,
3A' E sendCl (A' =reduce-send(X) /\ l indapr im(x) = in (t f) .

8 . By definition of F-LambdaBar applied to Oj+l and Kj+l , and by defi-
nition of A and A',

30j+2 E state I Oj+2 = Oj+l .

3Kj+2 E clos~reset I Tj+2 = (Kj+l - { A)) U {A ') .

9. By definition of J ~ L , and by steps 7 and 8 , where Oj+l .Onext = Oj+2, -
and KT. , = (o j + e , A j + 2) ,

KZ, _ t p ~ is one legal transition.

10 . By definition of r e d u c e - i n ,
r d (s) matches t', since from step 3, (m a t c h ? s t') evaluates true.

11. By definition of r e d u c e - l e t ,
3A" E matchCl I binding t' within A' yields A".

12. By definition of F-LambdaBar applied to Oj+z and and by defi-
nition of t ' , A', and A",

3oj+3 I Oj+3 = -

(A, 7, p, g n e x t) where
O ~ + ~ . A = Oj+2.A,

- -
O ~ + ~ . T = 0j+2.T - { t ') , -
o ~ + ~ . P = { (J E c o n s u m e d , t ')) , and
~ j + 3 .anext is initially undefined.

3Aj+3 I Kj+3 = (7i j+2 - { A ')) U {AN).
13. By definition of +,L, and by steps 1 0 , 1 1 , and 12, where Oj+2.0nezt =

-
Oj+3, and ~ $ 3 = (Oj+3, Aj+3)r

K$, + p ~ K g 3 is one legal transition.

14 . By definition of r e d u c e - r e a c t and AN,
3t"' E tuple I t l " [l] . t y p e = 'Active' A t " ' [l] . c o n t e n t s = C[t l] A

V 1 5 k # l 5 #t. t W [k] = t l ' [k] .

15. By definition of I-+ and tN'[l] in step 1 4 , t2[l] I--+ tl"[l], and
fId fId

By definition of I--+ and t"', tz I-+ t'".
tpl tp l

16. By definition of F-LambdaBar applied to 0j+3 and Kj+s, and by defi-
nition of t", t"', and A",

3Oj+4 1 - Oj+4 = (A, - T , pr ~ n e x t) where

oj +4 .A - = (~ j + ~ . d - - { t ")) (J { t ' ") ,
0.i +4 -7 - = O j + 3 . 7 ,

oj+4 -P = 0,
~j +4 .Onezt is initially undefined.

-
3Kj+4 1 Kj+4 = Aj+3 - { A ")

17. By definition of tp~, and by steps 14 and 16, where oj+3.gnGt = aj+4
-

and ~ : f ~ = (0j+4, Aj+4).

K Z 3 _ t p ~ K& is one legal transition.

18. By definition of H and Oj+4, and by steps 15, and 16, where respec-
cf9 -

tively, t2 c+ t'", and t' E o ~ + ~ . A ,
tpl

19. From the transitions in steps 6, 9, 13, and 17, and by the configuration
equivalence in step 18, we demonstrated the ability of paraDOS for
Linda to perform in n = 4 tranitions the TSspec computational step
of Tuple Removal.

Local Evaluation:

1. Let KTs > {I t[pl : r] and KI'+~' > 4 t[pn : 71 0 ,
where K? + ts Kzs'.
Let tl denote tuple t before, and t 2 denote tuple t after, transition
+ t s .

2. Given K y H KTL, by definition of I-+,
cf9 cf9

and by definition of H, 3 l 1 tl [p' : r] 7 t [l],
tpl

and by definition of H, tl [l] = t [l].contents.
Pd

3. By definition of t the meaning of {I tl [p' : r] yields {I t2[p1' : r] b.
By definition of ~m-camp(), 3t' E tuple (tl[l] .contents = t2[l] A

V1 5 k # l 5 #t. tl[k] =

4. By definition of H and tl[l], t2[l] H tl[l], and
f ld fld

By definition of ct and t', t2 H t'.
tp l tp l

5. By definition of G applied to aj and K j , and by definition of t and t',

30j+~ E state I q+l = (A, 7, P, aneXt) where
-

~ j + ~ . d = (0jj.2 - {t}) U {t'),
- -

gj+l -7 = 0j.7, -
oj+l .P = 8,
oj+l .a,,,t is initially undefined, and

-
3Kj+1 E closureSet I = Aj.

6. By definition of -+,L, and by steps 3 and 5 , where oj .onext = oj+l

and
-

~ $ 1 = (aj+l 7 Aj+i),
K,pL - + p ~ K$~ is one legal transition.

7. By definition of H and oj+l, and by steps 4 and 5 , where respectively,
cf9 -

t2 I-+ t' and t' E aj+l .A,
tpl

Kt',", H K1P+L3.
cf9

8. From the transition in step 6, and by the configuration equivalence in
step 7, we demonstrated the ability of paraDOS for Linda to perform in
n = 1 transition the TSspec computational step of Local Evaluation.

.*. Statement 1. of theorem is true.

Part 2: Consider each case of transitions in a restricted paraDOS for Linda,
i.e. transition density parameter set to one. For each case, demonstrate the
equivalent transition in TSspec.

A Creation: Communication closure creation

-
1. Let KpL, K$~ E SCSPair I K P ~ = (oj, Kj) /\ KjP,L1 = Aj+l),

where ~ j p ~ + p L KP+L~.

2. By definition of communication closure creation and +,L,

3A E asynchCl (J synchCl 1 X 6 Kj /\ X E Kj+1, and
3t E tuple.3k I t E 0 j . 2 /\

C[] is the evaluation context of t[k].contents with

(linda-prim? r) is true.

3. Given K P ~ H KTs, by definition of H, t , and K?,
cfg cf9

3t E Tuple, I t +-+ t A t E Krs.
tpl

4. By definition of +,L, depending on the domain of r, Lm-prim applied
to t, k, Oj, and Kj results in one of the following cases:

v

(a) Asynchronous (r E asynchLPrzrn)
i. Let tl denote t from K T (we define t r later in step 4.a).

ii. By definition of r , we know X E asynchC1.
iii. By definition of H,

tpl
and by steps 2 and 3, tl[k] H t[k]; and

fid
by definition of ++, tl [k] = t [k].contents; and

Ad
by definition of &ynchronous Linda primitive and A,

3tt E Tuple, U Tuple,.3tt E tuple 1 t1 H t' A
tpl

tl [eval(tl) .p : T] if lindaprim(A) = e v a l (t t)
tl [k] =

tl [out (tl).p : T] if lindaprim(X) = out (t ')

iv. Let v be the result of reducing r in C [1.
v. By definition of Lm-prim and v,

3tN E tuple I tH[k].type = t[k].type /\
tl1[k].contents = C[v] /\
v i 5 e # k 5 # t . tye] =t ie] . ---

vi. By definition of +,L and Lm-prim, oj+l = (A, 7, P, onest)
where -

o ~ + ~ -A = (, -2 - {t)) U {t"), -
Oj+l.T - = gj.7,
oj+l .P = 8,
Oj+ 1 . onest is initially undefined.

vii. Let tz denote t from K;~', then by definition of --tt8, K y ,
tl [k], and tl, one possible transition for K:' to KzS1 is

{I tl[k] +t6 {I t 2 [~ : r]rtl
viii. By definition of -+ts, the transition in step 4.a.vi, and the

meaning of t2[k],
t2[k] = t"[k].contents.

ix. By definition of ++, t z , and t I t ,
Pd

V l 5 e 5 #tll.tll[l] ++ t2[e]; and thus
fid

by definition of c-t, tz , and t",
tpl

t" H t2.
tpl

x. By definition of H, KT:, , K:;, and by steps 2, 4.a.ii, 4.a.v,
cf9

4.a.vi, and 4.a.vii, where respectively, A E Kj+l, tr t',

t2 E KZ, and t" H tz,
tpl

K g , H ~ 2 5 .
ch

xi. From the transition in step 4.a.vi, and by the configuration
equivalence in step 4.a.viii, we demonstrated the ability of
TSspec to perform in n = 1 transition the paraDOS for Linda
computational step of asynchronous communication closure
creation.

(b) Synchronous (r E synchLPrzm)
i. By definition of r, we know X E synchC1.

ii. By definition of H, and by steps 2 and 3, t[k] t [k]; and
tpl fid

by definition of I-+, t[k] = t [k] .contents; and
fld

by definition of synchronous Linda primitive and A,
3s E Tuple,.3s E tuple I s H s r\

tvl

iii. By definition of Lm-prim,
3t1' E tuple I tM[k].type = 'Pending A

tl'[k].contents = t[k].contents /\
VI 5 e # k 5 #t. tu[el = t[e].

iv. By definition of +,, and Lm-prim, oj+1 = (A, 7, P, onezt)

where -
oj+l -A - = (oj -2 - {t)) U {t"),
oj+1 .T = aj.T, -
,j+, -P = 0,
oj+l .anezt is initially undefined.

v. By definition of +, , since no transition is a legitimate next
step,

KTS +, KTS
vi. By definition of c+, step 4.b.ii, and the transition in step

fid

vii. By definition of H, t, t", and step 4.b.vi,
fld

V 1 5 t 5 #tll.t"[t] H t[e]; and thus
fid

by definition of H, t, a i d t",
tp l

viii. By definition of H, KE,, K y , and by steps 2, 4.b.ii, 4.b.iv,
cfg

3, and 4.b.vii, where respectively, X E Kj+1, s H S,
tp l -

t" E ai+l .A, t E KTs, and t" H t.
tpl

ix. From the transition in step 4.b.v, and by the configuration
equivalence in step 4.b.viii, we demonstrated the ability of
TSspec to perform in n = 0 transitions the paraDOS for
Linda computational step of synchronous communication clo-
sure creation.

5. From steps 4.a.xi and 4. b.ix, we demonstrated, for the case of commu-
nication closure creation, that

+ p ~ K ~ P + L ~
3n > O s.t. K,TS +-Ys Kzsn /\ KCSn M K~P+L~.

cfs

A Reduction: Consider closure reductions according to whether the closure con-
tains asynchronous or synchronous Linda primitives.

Asynchronous Linda primitives: Closures containing asynchronous
Linda primitives reduce in two steps.

A Reduction I:

1. Let KpL, K::, E SCSPair I
-

KjPL = (aj,Kj) A = (aj+l,Aj+l),
where KjPL + p ~ K;:~.

2. By definition of + p ~ , and reduce-send,
oj+l = aj,

3X E asynchCl I X E Kj /\ A $ xj+l, and
3 X 1 E asynchLPrzm 1 A' 6 Kj /\ A' € xj+17

where
lindaprim(A) = l indapr im(X1) .

3. Given K:' K,pL,
cfg

3 t E Tuple, U Tuple, . 3t E tuple I

lindaprim(A) E {eva l (t) , out (t))
4. By definition of ct, t, t, and step 3, where

tpl
t ++ t , a n d

tpl
by definition of A, A', and step 2, where

A' E Kj+1 A lindaprim(A) = lindaprim(A1),
then by definition of H, K y , and K$, ,

cf9

5. By definition of --t ls, since no transition is a legitimate next

6. By the configuration equivalence in step 4, and from the tran-
sition in step 5, we demonstrated, for the case of A Reduction
1, that

where n = 0.

A Reduction 2:

1. Let KjpL, E SCSPair I
-

KPL j = (aj, Kj) A = (oj+1 Aj+1),
where KPL + p ~ K$~.

2. By definition of --tp~, reduce-eval, and reduce-out,
3A E asynchLPrim . 3t E tuple I

A E & ~ @ K j + l A
lindaprim(A) --- E {eval(t) , out (t)),

and aj+l = (A, 7, P, onezt), where
aj+l .ane,t is initially undefined, and

. indapr - i m (A)

- . -
oj+1 .P = gen gene rating, t)),

else // - lindaprim(A) - = out (t)
aj+l .A = oj.A, -

.T - = 4.7 U {t),
oj+1 . P = { (' ~ c r e a t e d , t)),

3. Given K T K:~,
cf9

3 t ~ T u p l e , U T u p l e , (t~ K? A t - t
tpl

4. By definition of H , t, t, K?, and step 3, where
t p l

t H t / \ tEK,TS ,
tpl

and by definition of aj+l from step 2, where
-

o,+l .A if lindaprim(A) = eva l (t)
-

j otherwise

then by definition of H, K:', and KT:, ,
cf9

5. By definition of --tt,, since no transition is a legitimate next
step ,

K,TS +!, K?
6. By the configuration equivalence in step 4, and from the tran-

sition in step 5, we demonstrated, for the case of X Reduction
2, that

where n = 0.

Synchronous Linda primitives: Closures containing synchronous Linda
primitives reduce in three steps.

X Reduction 1: (similar to A reduction 1 for asynchronous Linda
primitives)

1. Let K!~, K$ E SCSPair (-
KPL = (oj,Kj) /\ ~ $ 1 = (oj+l r Aj+l)r
where K ; ~ + p ~ Kjfl .

2. By definition of +,L, and reduce-send,
aj+l = aj,

3X E synchC1 I X E Kj A A $Kj+l , and
3X' E sendC1 I A' $ K j A A' € Kj+l,

where
lindaprim(X) = lindaprim(X) .

3. Given K y H K P ~ ,
cf9

3t E Tuple, . 3t E tuple I t E K,TS /\ t H t /\
tpl

4. By definition of H, t, t, and step 3, where t c-t t,
tpl tpl

and by definition of A, A', and step 2, where
A' E Kj+l /\ lindaprim(A) = l indapr im(x) ,

then by definition of H, K?, and Kg1 ,
cfg

5. By definition of + t s , since no transition is a legitimate next

6. By the configuration equivalence in step 4, and from the tran-
sition in step 5, we demonstrated, for the case of the first
synchronous communication closure reduction, that

K ; ~ -+pL K P + L ~ +
372 2 O s.t. K,TS +yS KZSn /\ KzSn H K P + L ~ ,

cfg
where n = 0.

X Reduction 2:

1. Let K;~, K Z I E SCSPair I
-

KPL 3 = (aj, Kj) /\ K!:, = (~ j + ~ , Aj+1),
where ~ j ! ~ - + p ~ K$.

2. By definition of + p ~ , reduce-rd, and reduce-in,
3 A E sendCl . 3A' E reactCl . 38, t E tuple I

A € K j /\ A $Kj+l A
lindaprim(A) E {rd(s), in (s)) A
A' $ K j /\ A' E /\ A' = "react(m,k,t)" /\
(match? s t) is true /\ t E 0j .7, ---

and a ,+~ = (A, 7, P, onezt), where
Oj+l .onezt is initially undefined, and
if lindaprim(A) = rd(s) -

Oj+l .A = 0j.2,
oj+1 .T = 0jj.7, -
Oj+l .P = {('Ecopied, t)) ,

else // lindaprim(A) = in (s) - -
oj+ 1 .A = oj .A, -
o ~ + ~ . T = o j . T - {t),
oj+l .P = { (' E c o ~ s u ~ ~ ~ , t)},

3. Given K y ++ ~ j ! ~ ,
cf.9

3s, t E ~uple, I t E KT /\ match(s, t) is true

4. By definition of H, t, t, K y , and step 3, where
tpl

t t+ t ~ E K ? ,
tpl

and by definition of oj+l from step 2, where -
t E aj+l-T,

then by definition of H, K:s, and K$, ,
cf9

5. By definition of +,, since no transition is a legitimate next

6. By the configuration equivalence in step 4, and from the tran-
sition in step 5 , we demonstrated, for the case of X Reduc-
tion 2, that

where n = 0.

A Reduction 3:

I. Let KTL, K;& E SCSPair I
-

K'pL = (oj,Kj) A ~ $ 1 = (oj+l ,Aj+1),
where KTL --tph K T ' ~ .

2. By definition of -tp~, reduce-react, and synchronous Linda
primitives,

3 X E reactCl . 3t E tuple . 3m, k 1
€ + /\ = 'Lreact (m,k, t)" I\ . .

Itmy s E tuple I
tm E o j . Z A tm[k].type = 'Pending
C [] is the evaluation context of t,[k].contents
with redex r, where

r E {rd(s), in(s)) A
((t E oj .T /\ r = rd(s)) V

(t 6 Oj.7 A r = in (s))) A
3t: E tuple I

tk[k].type = 'Active /\
t:[k].contents = C[t] A
vi I e # k 5 # t . t;[el = tm[el A - --
0j+1 = (A, 7, P, ~next), where

aj+l .anext is initially undefined.

3. Given KjpL H K?, by definition of I-+, t., t, and K?,
cf9 cf9

It, E Tuple, . 3t E Tuple, I
tm H t. A t H t A {tm,t) K,TS-

tpl tpl

4. By definition of I-+, t,, and t, from step 3, and the definition
tpl

of k from step 2,
L[k] tm[k]; and

by definition of H, and redex r and tuple s from step 2,
Ad

~ [k] = t,[k].contents; where
3s E Tuple, I

s H s Amatch(s , t) is true A
tp 1

t,[rd(s).p : r] if r = rd (s)
L[k] =

t ,[in(s) . p : r] otherwise // r = in(s)

5. By definition of -+t,, and h[k] from step 4, one possible
transition for KTs -t ts K;", is either

(I L [~ ~ (s) . P : 71, t o jts a t;[p(t) : TI, t D, Or
4 h [i n (s) . ~ : 71, t D +ts 4 t'.[~(t) : r] D.

6. By definition of tL[k].content s and tk[k], from steps 2 and 5.
where

tL[k].contents = C[t] A
tk[kl = ~ (t) A
C[tl = ~ (t) ,

then by definition of H, since tk[k].contents = t',[k],
Ad

t'.[kl th[kl

7. By definition of ++, t k , t:, and by steps 5 and 6,
Pd

V l 5 e 5 #t;. t k [l] ++ t;[t]; and thus
fld

by definition of H, t;, t k ,
tp 1

t; --t t'..
t p l

8. By definition of H, K!:, , K:", , and by steps 2, 5, and 7.
cfg -

where respectively, t; E uj+l .A, t k E K:;, and t; ++ t'.;
t p l -

and by step 2, where t E gj+1.T iff r = rd(s) , otherwise -
t @ 0j+1 .T , and by step 3, where t H t ,

tp l

K$, H K G .
cf9

9. From the transition in step 5 , and by the configuration equiva-
lence in step 8, we demonstrated, for the case of X Reduction
3, that

K ; ~ _tPL KP+L~ +
372 2 O s.t. K,TS +Ys Kzsn A KzSn 2 KKP+L1,

where n = 1.

Internal Computation: (involves no communication closures)

-
1. Let KTL, Kp,Ll E SCSPair I K : ~ = (oj, K j) A K;fl = (aj+,, Aj+l),

where K ; ~ + p ~ KE1.

2. By definition of -tp~, Lm, and Lm-comp,
- -
Aj+l = Aj A
3t E tuple . 3k 1

t E 0 j . 2 A t[k].type = 'Active A
3t' E tuple 1

t' [k] .type E { 'Active, 'Passive) A
v1 5 e # k 5 #t. tf[!] = t[e]

- - A

oj+ I = (A 7, p, anezt) where
aj+l .a,,,t is initially undefined, and
if 3e 1 tl[l].type = 'Active

- -
ojtl -A = aj.A - {t}) U {t') - -
0j+1.7 = 0 j .7

-
o ~ + ~ -7' = 0

else
- -

aj+l .A = o ~ . A - {t)
-

aj+1.7 = 0 j .7 U {t')
-

0j+1 -7' = {('Egenerated, t')}

3. Given K P ~ ++ K?, by definition of H, t, and K?,
cfs c f s

4. By definition of H, and by steps 2 and 3, t[k] H t [k]; and
tpl P d

by definition of ++, t[k] = t [k] .contents; and
Pd

by definition of internal computation,
t[k] = t[p' : T]

5. By definition of -+,,, K?, t[k], and t', one possible transition for
K,TS to K:sl is

6. By definition of -+t,, the transition in step 5, and the meaning of
t' [kl ,

tl[k] = tl[k] .content s.

7. By definition of I-+, t', and t',
Pd

V l 5 l 5 #tl. tl[l] H t1[!]; and thus
Pd

by definition of I--+, t', and t',
tpl

8. By definition of H , K g , , Kcs', and by steps 2, 5, and 7, where
cf9 - -

respectively, t' E oj+l .A U oj+l.7, t' E K Z , and t' H t',
tpl

9. From the transition in step 5, and by the configuration equivalence in
step 8, we demonstrated, for the case of internal computation, that

K ! ~ + p ~ +
3n > O s.t. K,TS +ys Kcsn A KZSn ++ KT,",,

cf9

where n = 1.

:. Statement 2. of theorem is true.

Since Statement 1 and Statement 2 of the theorem are both true for all re-
spective cases, we conclude Theorem 2 is true.

6.4.4 Beyond the Equivalence

An operational semantics describes how computation proceeds, a t a level of ab-

straction appropriate for reasoning about that computation. Our goals for devel-

oping paraDOS for Linda are different from those of Jensen, so it is not surprising

that our models are at different levels of abstraction. In particular, Jensen points

out that TSspec does not specify precisely what constitutes a Linda program,

and thus it is not a terminal transition system. We would like to reason about

notions such as computation begins, computation ends, and computational qui-

escence with paraDOS for Linda, and therefore the notion of what constitutes a

Linda program is an integral part of our level of abstraction.

Jensen's view of the Linda concept, subtley different from that of Carriero

and Gelernter [CG89], is that it extends a host language with Linda primitives,

resulting in a model for parallelism through the notion of tuple space. The ref-

erence to host language intentionally does not preclude the existence of other

native interprocess communication capability, enabling processes to interact in

ways other than via Linda primitives. But we know from Gelernter [Gel851 that

a Linda program is a collection of ordered tuples, and from Carriero and Gel-

ernter [CG89], that if two processes need to communicate, they don't exchange

messages or share a variable, they communicate via tuple space. Thus, while the

goals of paraDOS for Linda differ from the goals of TSspec, the assumptions of

our operational semantics, in particular our notion of what is a Linda program,

are consistent with the original Linda concept. The semantics of paraDOS for

Linda are at a level of abstraction not limited to reasoning about the transitions

of individual Linda processes, but about entire Linda programs.

CHAPTER 7

Parameters of paraDOS

One of the most important aspects of paraDOS is that it is a general, parameter-

ized model; but what may not be clear yet is the nature of paraDOS parameters.

Almost every element in paraDOS is a parameter. This is not to imply that para-

DOS can become any existing model of computation, simply by specifying the

right combination of parameter values. We designed paraDOS to support view-

centric reasoning about properties of concurrent computation. Details of views of

computation can differ from one system to another, but the approach to reason-

ing about computation through the multiple perspectives of possibly imperfect

observers is the essence of paraDOS. The parameters provide the structure and

rules that define the properties for each paraDOS instantiation.

If one wishes to reason about a particular concurrent system using paraDOS,

the first step is to determine the appropriate level of abstraction; that is, de-

ciding what observable events are possible. For example, events possible for the

Actors model include messages sent and delivered; for Linda, events include tu-

ple creation, consumption, etc. Even though the set of observable events is a

parameter, and can vary widely, we do restrict internal computational events

from eligibility. Internal computation is too granular, and thus not an appro-

priate level of abstraction for the computational properties about which we wish

to reason with paraDOS. Interprocess communication and coordination are the

broad criteria from which observable events may be chosen. This is consistent

with computability theory, where only input/output behavior is observable; com-

munication is one instance of input/output behavior.

7.1 The Model System

With one small syntactic change, we tranform the definition of our model system
-
S from a tuple to a grammar, and with the grammar for s, we propose a general

model for composition. Recall from Chapter 4 the original definition of S is a
- -

3-tuple (a, A, T). Now suppose we define a parameterized grammar with nonter-

minals {S, a , xi;, T), terminals {'(I,')I), and the production S + (S *o, K , F) ,

where nonterminals a, K, and F are parameters that depend on the instance of

paraDOS. This production generates strings that can be represented as composi-

tion trees. Tuples contained in generated strings are delimited by '(I and ')I. The

recursive production permits zero or more tuples to be nested within any such

tuple.

The specification of our model system S is, in fact, a parameter. For instances

of paraDOS without composition, the 3-tuple specification of S suffices. For in-

stances of paraDOS that support composition, we propose a grammar consisting

of just one production; other grammars with more complex productions are pos-
- -

sible. Our production, -+ (S*o, A, 'Y), generates strings that represent

n-ary trees, but more and less restrictive representations of composition are pos-

sible. The degenerate case of our production reduces to the 3-tuple specification

of S; the simplest form of composition is no composition. Composition is such

an important parameter and broad topic that we devote an entire chapter -

Chapter 8 - to this topic.

Configurations and Computation Space

Defining any operational semantics requires defining what a computational state

looks like, and defining a transition relation. Defining paraDOS is no exception.

We gave definitions for state a for the Actors and Linda instances of paraDOS;

other instances will require new definitions. The elements of a should represent

the individual computational processes, abstracting away details of their internal

computations; their interprocess communications, at an appropriate level of ab-

straction, from which the set of parallel events can be derived; the set of parallel

events P; and the recursive next state a, to be lazily evaluated. Again, even

though the computation space a is a parameter, it is restricted to be in the form

of a lazy, n-ary tree. At each level of tree 0, the recursive next state a to be

elaborated represents the child node, chosen by the transition relation, to which

computation proceeds.

Communication Closures

ParaDOS parameterizes communication through its set of communication clo-

sures, x. In general, closures within represent instances of communication or

coordination necessary for a concurrent system to accomplish its computation.

Each time a closure is reduced, as part the transition relation's activity, it is one

discrete step closer to completion. The nature of each reduction, and the total

number of reductions, for a closure to reduce fully depends on the system we wish

to model. For example, actors and Linda processes communicate and coordinate

according to very different paradigms, yet the abstraction of a communication

closure is capable of modeling both forms of communication. In fact, we focused

on message passing models first, then turned to generative communication. We

didn't consider shared memory models because of known scalability issues. How-

ever, communication closures can be instantiated to model shared memory reads

and writes, if we desire to reason about such systems. This capability of paraDOS

revealed itself only after we identified communication closures as a parameter.

One approach to model a shared memory system is to map the shared memory

to a tuple space. Briefly, the state contains a set of processes (continuations),

a set of communication closures (reads and writes), a set of passive tuples, a

parallel event set, and a next state. A shared memory system, unlike a tuple

space, has a common memory model. To accommodate this, our tuple contains

two fields: address and contents. The address field of a tuple is the address of

its corresponding block of memory. The contents field is an array of bytes, of

size corresponding to the blocksize of the shared memory. All tuple matching

is explicit on tuple address fields. The closure for a memory read corresponds

to that of a Linda rd() primitive. The closure for a memory write corresponds

to that of the sequential composition of two Linda primitives, in() and out() ,

where in() and out() remove and replace tuples with identical address fields.

Issues relating to mutual exclusion and race conditions are well-represented with

such an instantiation of paraDOS. This approach also reflects writes taking more

time than reads to complete, due to the number of reductions required by the

respective communication closures. There is an implicit transaction semantics

on the low-level Linda in()/out() operations relative to the high-level shared

memory "read" and "write" operations. Further ideas on modeling transactions

are discussed in Section 10.2, Future Work.

7.4 Transition Relation

The transition relation is a parameter. Actually, the transition relation represents

the composition of several parameters. It relies on the meaning function@) of

native language(s), definitions of (T and A, system feature specifications, and

scheduling policies. Together, the parameters of the transition relation describe

behavior we wish to model in an instance of paraDOS.

For example, scheduling policies influence the choice of a next computational

state within a, by encapsulating nondeterministic behavior among processes and

communication closures. Other parameters, such as transition density, bound

levels of parallelism. Transition density could specify a threshold for the number

of parallel events permitted in a single transition, or even specify choosing a

transition with the maximum number of parallel events from all possible states.

For the remainder of this section, we focus on native features of distributed

systems about which we wish to reason. The first interesting feature is trans-

actions. For our purposes, a transaction is the composition of more than one

event into a single, atomic event. The semantics of a transaction prescribe that

a transaction occurs only when all the individual events that comprise it oc-

cur; there are no partial transactions. The implication for distributed systems

that endeavor to implement transactions as a native feature is that some sort

of rollback-commit or replication strategy is required. Transactions are either

supported or not supported by a distributed system.

The next interesting native feature we consider is messaging type: either

asynchronous or synchronous, or both. The mechanics of asynchronous and syn-

chronous messages are different, but both are computationally equivalent since

each can simulate the other. In the case of asynchronous messages, the sender

of a message may immediately resume further processing, regardless of whether

the receiver has received the message. In the case of synchronous messages, the

sender of a message must wait until the receiver receives (or receives and pro-

cesses, as is the case for Java RMI) the message before the sender may resume

processing.

Another important characterization of a distributed system is whether it em-

ploys a messaging intermediary, and if so, what kind of role the intermediary

plays: active or passive. In a distributed framework that does not use interme-

diaries, processes exchange handles with each other to facilitate direct commu-

nication. An active intermediary assumes the role of a process in its own right,

is generally known to all other executing processes that have a need to com-

municate, and is often responsible for a sent message's routing and delivery. A

passive intermediary usually takes the form of a common, shared memory space

accessible by the system's executing processes, according to some agreed-upon

protocol.

There are three types of message destination characteristics we wish to reason

about in distributed systems: one-to-one, one-to-any, and one-to-many. We do

not consider broadcast messages because they are not scalable in the broadest

sense, but more importantly because they can be modeled computationally by

one-to-any messages. In distributed systems that support one-to-one messages,

the sender knows the handle of its message's intended recipient, and has the

capability to invoke a send command passing some message specifically to that

recipient. One-to-any messages can be viewed like a blackboard architecture,

where the sender writes a message on the blackboard (some shared memory),

and zero or more receivers may read the message from the board if interested.

One of these receivers may even erase the board, thus preventing further receipt

of that message. With one-to-many messages, the sender need not have any

knowledge of the receivers. One-to-many messages are messages that are sent

by a designated sender to a group of designated receivers. In the case of an

active message intermediary, the sender need not know who the receivers are,

but someone - the intermediary -- must keep track of who the receivers are for

a message to be considered one-to-many.

Some distributed systems (e.g., HLA's RTI) provide a native publish-subscribe

service for interprocess communication. Under this approach, a process assumes

the role of publisher or subscriber of an event; a process can assume different

roles for different events. This is another form of anonymous messaging, since

a publisher need not know its subscribers, nor a subscriber know who is the

publisher.

Finally, we are interested in aspects of message delivery, including guaranteed

and order-preserving. The guarantee of message delivery is self-explanatory. The

order-preserving feature also has a straight-forward meaning, relative to each

sender: the order messages are received is the same as the order in which they

are sent.

7.5 Views

The set of views is not a parameter per se, but subject to other paraDOS

parameters. Specifically, each view is a list of ROPES, so the choice of observ-

able events for an instance of paraDOS ultimately affects the base elements of

views. The view function, however, is a parameter. We previously describe the

view function as capable of generating all possible views of a computation, but it

could be more restrictive. Reasons for restricting possible views depend on what

we wish to model. For example, we may wish to reason about security or filtering,

and restrict views of certain events. We may wish to reason about network relia-

bility, and set some threshold or probability for communication failures. Despite

simultaneity of occurrence in a parallel event set, we may wish to impose on the

views of computation different orderings of events, for example, causal only, or

total and causal. Similar to but separate from the transition function, the view

function in general represents the composition of possibly many policies.

CHAPTER 8

Composition within paraDOS

This chapter addresses composition, an essential element of distributed computa-

tion. Section 8.2 discusses composition briefly, then extends paraDOS with gen-

eral support for composition. Sections 8.3 and 8.4 describe composition within

the Linda and Actors instances of paraDOS, respectively.

Evolution

There is no mention of communication closures in our presentation of the Actors

instantiation of paraDOS in Chapter 5 . Actor machines influence other actor

machines' behaviors by sending tasks. The notion of incoming and outgoing

messages exists, dependent upon whether the recipient of a task existed in the

set of local actor mail queues. We introduce functions 3,n and FO,, to route

incoming and outgoing tasks to and from the environment, respectively. Refer-

ences to the environment are the only mention of the composition possible for

the Actors instance of paraDOS. Our approach is legitimate, as further revealed

by Theorem 1 and the accompanying equivalence proof.

The Pact approach to handling incoming and outgoing tasks through func-

tions Fi, and FOut is decidedly focused on point to point communication. We

abandoned this level of abstraction entirely in the next instance of paraDOS -

for Linda. One reason for abandoning 3,, and FOut is the nature of a single,

global tuple space; a passive container through which all distributed processes

can communicate. The notion of incoming and outgoing tasks, or more generally,

messages, no longer applies, since tuples have no intended recipients, but rat her

are placed into tuple space. Further, tuples are not delivered to recipients, but

rather are matched to a template within tuple space. Finally, the nature of a

global tuple space precludes any concept of external messaging. Thus, in the set

theoretic semantics for PTS presented in Section 6.2, there is no analog to &,

and Fout.

Next, we sought to model composition in paraDOS, and could choose from

two existing instances as a starting point, Pact or PTS, or begin from a new

instance. Another decision was to consider homogeneous composition first, before

attempting to model heterogeneous composition. We decided to model tuple

space composition, largely because commercial tuple space implementations were

growing in popularity, and these implementations were based on multiple tuple

spaces.

We made another important decision at this time to reexpress the pTS se-

mantics in the functional language Scheme. This decision was not motivated

by any limitations in the set theoretic semantics, but rather a desire to gain a

stronger intuition into how PTS could be implemented. Also, operational seman-

tics permits the choice of level of abstraction, which includes the expression of the

semantics itself. Among the benefits of using Scheme was the language's support

for closures.

The semantics of Linda primitives with explicit tuple space handles led to

wrapping the primitive expressions in closures, along with their corresponding

Figure 8.1: Example derivation for S

handles. Each closure explicated the routing requirements for a Linda primitive

based on the primitive's tuple space handle and the handle of the tuple space

from which the primitive was issued. Since paraDOS is a model for parallel and

distributed computation, we needed an abstraction to support the evaluation

of multiple simultaneous Linda primitives, or in general, multiple simultaneous

communications. This need evolved into the introduction of the set of message

closures A in paraDOS.

8.2 A Composition Grammar

Consider the derivation in Figure 8.1. Each nonterminal S is labeled with unique

numeric subscripts corresponding to the tuples they derive. The order of deriva-

tion is according to the subscripts of the nonterminals. The final string of Fig-

ure 8.1 corresponds to the composition tree of Figure 8.2.

The grammar produces two kinds of nodes: leaf nodes and composition (inte-
- -

rior) nodes. Leaf nodes look like the old definition of S, (0, A, 'Y); composition
- -

nodes are instances of (S+ 0, A, Y). Technically, composition nodes contain

their children nodes. By extension, the root node r of a composition tree con-

tains the entire tree rooted by r. Thus, representation of r as a tree is really an

expansion of root node r , whose origin is one possible string generated by our

grammar.

Trees are a meaningful abstraction for reasoning about composition. Consider

a node Si within a composition tree. Node Si is a tuple containing a computation

space a, a set of message closures x, and a set of views T. The scope of and
-
Y is the subtree with root node Si. Now consider a composition tree in its

entirety. Since a, K , and are parameters, paraDOS can model composition of

heterogeneous distributed systems. That is, different leaves of the composition

tree may represent different PDS instances, as specified by their respective o, A,

and parameter values.

One of the advantages of event-based reasoning is the ability - through pa-

rameterization - to define common events across heterogeneous systems. Within

each leaf node, multiple simultaneous views of its respective local computation

are possible, just as is possible in paraDOS without composition. Taking the leaf

nodes as an aggregate, though, composition in paraDOS now supports a natural

partitioning of parallel event traces, and their respective views. There is not

necessarily a temporal relationship between corresponding elements of the com-

putational traces of a composition tree's leaf nodes. Such temporal relationships

must be reasoned about using a common composition node.

5 4 = (0, A, r)4 S5 = (a , K, f)5

Figure 8.2: Example composition tree from derivation of S

Finally, consider the composition nodes. A composition node, like a leaf node,

represents the possibility for multiple simultaneous views of its own local com-

putation. Further, since the scope of a composition node c represents that of the

entire subtree rooted at c, a subset of events present in c's parallel event trace, and

corresponding views, may represent some subset of the aggregate events found

in the subtrees of c's children. The extent to which events from the subtrees of

node c7s children occur in c is itself a parameter. For example, one may wish

to compose two or more systems according to certain security policies. Alterna-

tively, or additionally, one may wish to compose systems in a way that allows for

relevance filtering to promote greater scalability. In both of these examples, the

ability to limit event occurrence in composition nodes through parameterization

supports modeling composition at a desirable level of abstraction.

It is difficult to introduce composition without any mention of paraDOS pa-

rameters. Similarly, it is difficult to motivate certain para eters without prior T
mention of composition. We discussed parameters previous1 in Chapter 7. The 4
remaining sections of the current chapter discuss aspects of c

to the tuple space and actors instantiations of paraDOS.

8.3 Tuple space composition

Section 6.3 presents the Scheme-based operational semantics of paraDOS instan-

tiated for Linda and tuple space. We developed the Scheme-based semantics with

tuple space composition in mind, and thus extended the Linda syntax to support

a tuple space handle prefix for the Linda primitives. Prior to introducing tuple

space handles, the Linda primitives assumed a global tuple space. With the intro-

duction of tuple space handles, explicit tuple space references are possible. Two

predefined tuple space handles exist, s e l f and parent, which refer to a process's

own tuple space and that of its parent. The parent handle is a direct reference

to the structure of the paraDOS composition tree, where each node in the tree

represents a distinct tuple space.

I t is possible for processes to communicate either through common ancestor

tuple spaces, or through explicitly referenced tuple spaces. Consider processes p

and q that reside in separate tuple spaces within a paraDOS composition tree,

such that p and q share a common ancestor tuple space. Process p is able to

create a tuple containing its own tuple space handle, and place it directly into

its parent tuple space. A process r within p's parent tuple space can then place

a tuple containing p's tuple space handle into r 's parent tuple space, and so on.

Similarly, a process s residing in a common ancestor tuple space to both p and

q, can pass down to s's children, and so on, s's tuple space handle. In this way,

process q can obtain the handle of ancestor tuple space s, which it shares with

process p, and match the tuple directly in s's tuple space that contains p's tuple

space handle.

We redefine pTS with support for tuple space composition as follows:

-
S + (S'a, A, T)
a -+ (Si,T,F,a) -
A + as before
-
Y -+ as before

Tuple space composition requires a change to reduce-send, the part of the

transition relation that reduces message closures in x. The new version of

reduce-send differs from the noncompositional version mainly in how and where

reduced closures are added to the set. We assume the existence of helper

function incorp-closure that, given a tuple space handle and a reduced clo-

sure, incorporates the reduced closure into the appropriate tuple space handle's
-
A set. The transition function remains otherwise unchanged. The view func-

tion remains completely unchanged, due to paraDOS's separation of computation

from the multiple possible views of computation. Figure 8.3 contains the revised

reduce-send function.

Linda primitives with implicit tuple space references (2. e., no handle prefix)

are equivalent to primitives prefixed with self . Originally specified Linda pro-

grams consist of processes that interact through creating, copying, and removing

tuples from a global, shared tuple space via the four Linda primitives. By inter-

preting these primitives as if they were prefixed with tuple space handle prefix

se l f , pTS with composition preserves program meaning. This means we don't

need to define two versions of reduce-send; the version defined in this section

works for Linda with or without tuple space composition. We presented the non-

compositional version of reduce-send with the original pTS semantics to reflect

Gelernter's definition of a single, shared tuple space [Ge185].

The matter of tuple space composition is of practical importance. Commer-

cial tuple space implementations encourage development of distributed applica-

tions that rely on the notion of one or more tuple space servers and tuple space

handles. For example, the names of Sun's JavaSpaces [FHA991 and IBM's T

Spaces [WML98] are both conspicuously plural. Furthermore, both implemen-

tations employ handles for tuple space reference, and provide discovery services

to promote handle propogation among distributed processes. The instance of

paraDOS for Linda with tuple space composition is a first step toward the abil-

ity to reason formally about applications developed with commercial tuple space

implement at ions.

; reduce-send (with support for TS composition)
; Summary: returns a new state-LBar pair. If the closure
; expression to be sent is delayed, strip the delay() and
; by adding to handle's LambdaBar set, using incorp-closure.
; Otherwise, closure is a forced 'lletH expression. Farm off to
; reduce-let function. If reduce-let fails, then reduce-send
; fails, and the original closure is added to returned
; state-LBar's set of closures (where state-LBar's state is
; unchanged). If reduce-let was successful, the let expression
; bound a tuple into it's delayed subexpression (reactivate).
; reduce-send then "sends" the result to handle's LambdaBar set,
; in the process of returning a new state-LBar pair consisting of
; the subsequent new state and the original LBar.
(define reduce-send

(lambda (closure state-LBar)
(let ((send-arg (get-send-arg closure)))

(handle (get-handle closure))
(if (delayed? send-arg)

(let ((x (incorp-closure handle
(strip-delay send-arg))))

state-LBar)
;else forced
(let ((closure-state

(reduce-let (strip-force send-arg)
state-LBar)))

(if (null? closure-state)
; reduce failed
(list (car state-LBar)

(union (cadr state-LBar)
(singleton closure)))

;else it reduced!
(let ((X (incorp-closure handle

(car closure-state))))
(list (cadr closure-state)

(cadr state-LBar)))))))))

Figure 8.3: Revised reduce-send function to support tuple space composition

Actors composition discussion

Applying the message closure abstraction to Pact, we recognize from composit ion

in PTs that routing handle-prefixed Linda primitives between distributed tuple

spaces is indeed a form of point to point communication, even though the Linda

primitives themselves do not constitute point to point communication between

distributed processes. Similarly, in Pact, when actor machines create new tasks,

they are in fact initiating point to point communication. Thus, the same abstrac-

tion we used for pTS, the message closures set K, is meaningful to use for Pact,

and composition of actor systems. The environment to which F,,, and FOut refer,

allowing for wrapping tasks in closures, is the closure set for an actor system's

corresponding node in the paraDOS for Actors composition tree. The metaphor

for reducing individual message closures represents discrete stages of interpro-

cess communication modeled by paraDOS. For Actors, these stages include the

events Es (task sent) and ED (task delivered), and possibly other intermediate

(non-event) reductions.

We redefine Pact with support for composition as follows:

-
S -+ (S 'o , K, T)
0 + (~ , Z , T , F , D) -
A -+ to be defined, dependent on discrete stages of task delivery -
Y + as before for actors

CHAPTER 9

Reasoning

The greatest problem with communication is the illusion it has been
accomplished - George Bernard Shaw

This chapter discusses how to use paraDOS to reason about the behaviors

of distributed systems. Previously, we identified the need for appropriate levels

of abstraction, and introduced concepts important to paraDOS, like observable

events, and traces and views of computation. Earlier chapters discuss paraDOS

from many different perspectives: paraDOS as a general model of computation,

paraDOS instantiated for Actors, paraDOS instantiated for Linda (twice), para-

DOS composition trees, and the parameters of paraDOS.

One of the goals of paraDOS is to be able to reason formally about distributed

computation, that is, to characterize possible behaviors that result from different

approaches to distributed computation. The nondeterminism of multiple com-

municating distributed processes leads to a potentially intractable combinatorial

explosion of possible behaviors. The sources of nondeterminism in a distributed

system, and the corresponding policies and protocols in effect, impact the process

by which paraDOS constructs traces and views of computation. By considering

the sources of nondeterminism in a distributed system, the policies and protocols

that govern choice, and the possible traces and views that result, one can utilize

paraDOS as a framework to reason about the behavior of instances of distributed

computation.

This chapter includes a review of some of the background material already

presented in Chapter 2, but with an emphasis on using models to reason about

distributed systems. We have attempted to make this presentation self-contained,

since reasoning is the primiary purpose of paraDOS. Section 9.1 discusses the

early history of formal event-based reasoning, leading up to the study of corn-

put ability theory. Sect ion 9.2 continues our discussion of computation with the

progression of computational models, from sequential to parallel and distributed,

and issues important to concurrency. We discuss the CSP approach to repre-

senting concurrency in Section 9.3, then introduce properties of computation in

Section 9.4. Having provided background for concurrency, CSP, and computa-

tional properties, Section 9.5 presents trace-based reasoning about properties of

computation with CSP, and motivates the need for paraDOS. Section 9.6 contin-

ues the topic of trace-based reasoning with a focus on paraDOS, its abstractions,

its extensions to classic CSP, and its focus on scheduling policies and proper-

ties of computation for which reasoning with CSP is less well-suited or capable.

This chapter concludes in Section 9.7 with a compelling demonstration of the

usefulness of paraDOS.

9.1 Early Event-based Reasoning

Theoretical computer science is the formal study of computational models, in-

cluding, through abstraction, the development of new models and metamodels of

computation. Abstraction is the intellectual mechanism for cognitive progression.

The inherent need for humans to communicate is manifest throughout our his-

tory, from cave drawings and ancient writings to stories and art and music. Each

step of our evolution represents an abstraction from one or more steps before.

The development of words and language arose from the need to represent and

communicate concepts to one another. The ability to record words, first through

drawings and symbols, then alphabets, is a written abstraction of language itself.

Early writings, in one sense, reduce to sequences of events, or traces, ordered in

time. These event traces help preserve the original meanings of stories, enabling

humans to understand stories passed down from previous generations. In fact,

event-based reasoning is used to understand the past, even that which occurred

before recorded history.

Returning to the importance of abstraction, Euclid designed some of the first

known numeric algorithms over 2300 years ago. Euclid used the abstraction of a

recurrence relation to describe his algorithm to find the greatest common divisor

of two integers. Euclid's algorithm is not only an example of a computational ab-

straction, but its use results in an event trace of sorts. Such a trace is formed from

the history of evaluations, a trace of the intermediate, recursive expressions lead-

ing to the final solution. The expression corresponding to the initial invocation of

the recurrence represents the first event of such an evaluation trace, followed by

subsequent expressions (events), each corresponding to the subsequent recurrence

invocations, until the base condition of the recurrence is satisfied, resulting in the

greatest common divisor itself corresponding to the final event in the trace. An

event trace that results from applying Euclid's algorithm represents a computa-

tional history. The events abstracted for this example consist of input-output

behavior as follows: expressions corresponding to recurrence invocations repre-

sent input behavior, the expressions that result from such recurrence invocations

represent output behavior, and the intermediate expressions of a recurrence eval-

uation represent both input and output behavior, since the output expression

from the i th recurrence invocation is also the input expression to the (i + l)s t re-

currence invocation. This abstraction of using input-output behavior to represent

computational events emerges again within the study of computability theory.

In the 1930's, the research of logicians Church, Godel, Kleene, Post, and n r -

ing formed the basis for modern theoretical computer science. Computability

theory permits us to distinguish formally between problems for which there are

algorithms and those for which there are none [DSW94]. In other words, com-

putability theory is the study of language properties, undecidability, and what

problems can and cannot be solved algorithmically. Computability theory pro-

motes its own versions of event-based reasoning. For example, the input-output

behavior of Turing machines, with specific instances of output behavior including

halting, acceptance, and rejection, is an event-based means of reasoning. Two

characteristics of Turing- based computability theory are implicit: computation

is sequential and reasoning about computation is based on observable events.

Turing-based computability theory does not preclude reasoning about concur-

rency, but its level of abstraction most naturally focuses on sequential computa-

tion.

Beyond Sequential Computation

New computational paradigms give rise to new classes of models. Without par-

allel or distributed computation, there is no need to distinguish computation as

sequential. Classifications of sequential and concurrent computation do not repre-

sent a partitioning of computation; rather, there exists a relationship between the

two classifications such that concurrent computation subsumes sequential compu-

tation. Within the paradigm of event-based reasoning, we can define sequential

computation as being restricted to proceeding at most one event at a time, and

concurrent computation as permitting zero or more events at a time. Multiple

concurrent events suggest multiple concurrent processes, and with concurrency

comes the need for communication and coordination among those processes.

A thread of execution refers to the individual path of a computational process.

Single-t hreaded (i.e., sequential) computation consists of an individual computa-

tional process. Multi-threaded (i.e., concurrent) computation consists of multiple

computational processes. In this sense, sequential computation is the degenerate

case of concurrency, where multi-threaded reduces to single-threaded computa-

tion.

The concepts of interprocess communication and coordination do not exist

when reasoning about sequential computation. These concepts require new,

meaningful abstractions to create useful parallel and distributed models of com-

putation. One of these abstractions is that of communication coupling, a term

that refers to levels of speed and reliability of communication among threads of

execution. Tightly-coupled processes exhibit properties of fast, reliable, inter-

process communication behavior. Loosely-couple processes exhibit properties of

slower, less reliable, interprocess communication behavior. Parallel computation

and distributed computation are special cases of concurrency, each represent-

ing opposite ends of a concurrency continuum with respect to their degrees of

communication coupling. Parallel computation is composed of tightly-coupled

processes; distributed computation is composed of loosely-coupled processes.

Interest in reasoning about concurrency ranges from the desire to take com-

putational advantage of available computer network infrastructures, such as the

Internet, to the need for modeling concurrent phenomena in the real world. When

Table 9.1 : Examples requiring parallel events - -

Example Instance Description
Digit a1 media Digital media requires the synchronization of video and

sound.

Olympic race

Articulated
animation

Nuclear missile
launcher

Player piano

Push-button
combination lock

Olympic race competitions require detecting false starts
(athletes who anticipate the starter's gun), and the final
outcome, including the possibility of ties.

Articulated animation requires concurrent, coordinated
movements of arms and legs.

A nuclear launch system may require two keys to be
turned simultaneously to initiate a launch sequence.

A player piano must allow keys to be pressed simultane-
ously as well as in sequence, to support both chords and
musical runs.

A push-button combination may require two buttons be
pushed simultaneously as part of its combination.

Troupe movement Many venues involving coordinated troupe movement ex-
ist, including dance productions, military simulations,
and gaming environments.

Baseball game If the runner reaches first base before the ball, he's safe.
If the throw to first beats the runner, he's out. In the
case of a tie, the runner is safe.

reasoning about events, many real world systems or human endeavors require par-

allel events. For some examples, see Table 9.1.

9.3 Representing Concurrency

How do we represent concurrency in models of computation? Currently the dom-

inant approach is one developed by C.A.R. Hoare [Hoa85] that treats concurrency

as a group of communicating sequential processes. In CSP, an individual process

is defined by one or more possible sequences of observable events. CSP repre-

sents concurrency via an interleaving of event traces from two or more sequential

processes. An idealized observer of computation records the events that occur,

one after another, as computation proceeds. It is possible for two or more events

to occur simultaneously, in which case the observer records the events in some

arbitrary order. Hoare's approach is to ignore simultaneity in this case, since the

events must be recorded in some order, and any such order represents a correct

partial ordering of computational history. CSP thus employs nondeterministic

interleaving to represent the different possibilities introduced by concurrency.

9.4 Properties of Computation

The questions we ask when we reason about computation concern properties of

computation. A property of a program is an attribute that is true of every possi-

ble history of that program and hence of all executions of the program [AndOO].

Many interesting program properties fall under the categories of safety, liveness,

or some combination of both safety and liveness. A safety property of a program

is one in which the program never enters a bad state; nothing bad happens during

computation. A liveness property of a program is one in which the program even-

tually enters a good state; something good eventually happens. Table 9.2 contains

some example properties, and their corresponding categories and descriptions.

Table 9.2: Example properties of computation
Property Category Description
partial correctness safety A program is partially correct if the final state

is correct, assuming the program terminates.

terminat ion

total correctness

mutual exclusion

finite
postponement

liveness

both

safety

liveness

A program terminates if every loop and pro-
cedure call terminates; that is, the length of
every history is finite.

Total correctness is a property that combines
partial correctness and termination. A pro-
gram is totally correct if it always terminates
with the correct answer.

Mutual exclusion is an example of a safety
property in a concurrent program. The "bad"
state in this case would be one in which two
or more processes are executing simultaneous
actions within a shared resource's critical sec-
tion.
Finite postponement, or eventual entry to
a critical section, is an example of a live-
ness property in a concurrent program. The
"good" state for each process is one in which
it is executing within its critical section.

Questions arise when reasoning about concurrency that do not otherwise arise

in sequential computation. Sequential computation has no notion of critical sec-

tions, since a process need not worry about competing for resources with other

processes within a given environment. Since critical sections do not exist in se-

quential computation, there is no need for mutual exclusion, nor any concern for

race conditions, deadlock, or infinite postponement. The two properties from Ta-

ble 9.2 that pertain solely to concurrent systems are mutual exclusion and finite

postponement.

The increasingly pervasive Internet, and subsequent demand for Internet ap-

plications, appliances, resources, and services, compels us to reason about prop-

erties of decentralized, loosely-coupled systems. In this context, loosely-coupled

refers to more than communication, it refers more generally to the interoperability

of open systems. We are in an age of open systems development. Distributed ob-

jects provide protocols, and middleware provides both frameworks and protocols,

for heterogeneous n-tier and peer-to-peer application development.

The need to manage shared resources and maintain system integrity in the

decentralized environment of Internet applications emphasizes the importance of

formal reasoning to describe and verify such complex systems. Indeed, we are

concerned with safety and liveness properties of distributed systems. Schedul-

ing policies prescribe how access among competing processes to shared system

resources proceeds, based on some criteria. To this end, we are interested in

modeling scheduling policies of processes and their respective communications to

determine their effect on system properties. Furthermore, given a set of prop-

erties that hold for a system, we wish to identify and model varying notions of

fairness.

9.5 Reasoning with Traces

Event traces are one possible framework from which to reason about properties

of computation. Since a trace of events represents a history of computation, and

a property must be true for every possible history of a computational system,

a property of a computational system must hold for all possible traces of that

system. In Section 9.5.1 we discuss how to reason about computation with CSP

traces, then in Section 9.5.2 we discuss limitations of CSP, and motivate the

extensions to CSP that paraDOS provides.

Reasoning with CSP

Table 9.3 exhibits some notation for reasoning about properties of computation

using CSP. For a complete presentation of this topic, see Hoare [Hoa85]. For the

purpose of this discussion, it suffices to elaborate a few points from Table 9.3, and

give some examples. Process P is nondeterministic, due to the possible existence

of a refusals set (i.e., environments in which P can deadlock). Nondeterminism

in this sense represents the ability of a process to exhibit a range of possible

bahaviors, with no way to predict these behaviors based on the external environ-

ment alone. This form of nondeterminism encourages developing higher levels of

abstraction for describing physical behavior. Returning to Table 9.3, predicate S

represents a property of computation, which may or may not be true for process

P. Instances of predicate S are expressions that may include tr and ref. The

meaning of a relation denoted sat is that P satisfies S (P sat S) if S is true for

all possible traces tr and refusals ref of P.

Some examples describing computational properties within CSP are in order.

Consider two safety properties: deadlock-free and divergent-free. The property of

a process being deadlock-free specifies that a process with alphabet A (an event

alphabet) will never stop, thus NONSTOP = (ref # A). If P sat NONSTOP,

and if P has an environment that permits all events in A, P must choose to

perform one of them. To prove a process does not diverge, we proceed as follows.

The CSP definition of a divergent process is one that can do anything and refuse

Table 9.3: Some CSP notation for reasoning about traces
Notation Meaning
P A process.
tr
P/ tr
traces (P)
X

ref
refusals (P)
P sat S(t r , ref)

An arbitrary trace of process P.
P after (engaging in events of trace) tr.
The set of all traces of a process, P .
A set of events which are offered initially by the
environment of P. X is a refusal of P if it is possible for
P to deadlock on its first step when placed in this
environment.
An arbitrary refusal set of process P.
The set of all refusals of a process, P .
Vtr, ref. tr E traces(P) /\ ref E refusals(P/tr) +
S(tr , ref)

anything [Hoa85]. Following this definition, if there exists a set that cannot be

refused, then the process is not divergent. We define predicate NONDIV =

(ref # A). Notice NONSTOP z NONDIV! This demontrates proving the

property absence of divergence requires no more work than proving the absense

of deadlock property.

9.5.2 Why paraDOS?

With all the benefits that CSP provides for reasoning about concurrency, in-

cluding event abstraction and event traces, what motivated the development of

paraDOS? For all its elegance, CSP has limitations. In general, the CSP model

does not directly represent event simultaneity (i.e., event aggregation). Two ex-

ceptions are synchronized events common to two or more interleaved processes, or

abstracting a new event to represent the simultaneous occurrence of two or more

designated atomic events. CSP does not provide extensive support for imper-

fect observation; CSP supports event hiding, or concealment, but this approach

is event specific and all-or-nothing, which amounts to filtering. Since CSP rep-

resents concurrency through an arbitrary interleaving of events, it provides no

support for multiple simultaneous views of an instance of computation.

To overcome the limitations to CSP just mentioned, paraDOS extends CSP

with the notion of parallel events. Parallel event traces don't require interleaving

to represent concurrency. Also, paraDOS replaces CSP's idealized observer with

the notion of multiple, possibly imperfect observers. Multiple observers inspire

the existence of views of computation. Thus, paraDOS distinguishes a computa-

tion's history - its trace - from the multiple possible views of a computation.

ParaDOS differs from CSP in other important ways. CSP is an algebraic

model; paraDOS is a parameterized, operational semantics. As an operational

semantics, instances of paraDOS require definition of a transition relation to

describe how computation proceeds from one state to the next. The notion of

state in paraDOS, across instantiations, is essentially composed of processes and

communication closures - a potentially unifying characterization of concurrency.

Finally, paraDOS introduces, as one of its parameters, the notion of a composi-

tion grammar, which may be represented as a tree. The composition grammar

is an elegant mechanism for specifying rules of composition across instances of

paraDOS.

9.6 Reasoning with paraDOS

This section discusses reasoning about properties of computation with paraDOS.

We begin with a review of paraDOS constructs in Section 9.6.1, then discuss

features of our model that distinguish it from CSP in Section 9.6.2. Section 9.6.3

discusses the role of policies in the paraDOS transition relation, and gives some

examples from Linda. Finally, Section 9.6.4 discusses paraDOS approaches to

reasoning about system properties.

9.6.1 ParaDOS Basics

The primitive element for reasoning in paraDOS is the observable event, or just

event. An event is a discrete instance of observable behavior at a desired level

of abstraction. Briefly, we review the definitions of paraDOS structures built up

from these events. A set of events is a parallel event. A list of events selected

from a parallel event is a ROPE. A list of parallel events is a trace. A list of

ROPEs is a view. Each element of a view of computation, a ROPE, corresponds

positionally to a parallel event in that computation's trace. For a given trace,

in general, multiple views are possible. The choice of observable events for an

instance of paraDOS does not change the definition of parallel event, ROPE,

trace, or view.

ParaDOS is an operational semantics whose computation space is a lazy tree

from which it is possible to construct parallel event traces from respective in-

stances of computation. For a given trace of computation, paraDOS is capable

of generating all possible corresponding views of that computation. A view is

a sequentialized partial ordering of an instance of concurrent computation. The

structure of a view is that of a list of ROPEs, which is by definition a list of lists

of sequential events. Thus, a single perfect view of computation in paraDOS is

analogous to a CSP trace; the transformation of a paraDOS view to the form of

a CSP trace is straightforward, and described by the Scheme function flatten.

Given this correspondence of views to CSP traces, it is possible to reason about

properties of computation in paraDOS using the same tools and techniques as

those from CSP.

Beyond CSP

ParaDOS is not restricted to standard CSP abstractions for reasoning about

computation, though we certainly can instantiate paraDOS to be capable of gen-

erating event traces like those of CSP, and restrict reasoning about traces to a

single view. ParaDOS is capable of generating parallel-event traces and multiple

views of a given parallel-event trace, abstractions that don't exist in standard

CSP. Multiple views permit reasoning about multiple perspectives of a computa-

tion, such as those of users of distributed systems (e.g., discrete event simulations,

virtual worlds). Multiple perspectives of a system's computational trace includes

the possibility for imperfect observation by design.

The purpose of paraDOS is to provide an overall higher level of abstraction

for reasoning about distributed computation, a model that more closely approx-

imates the reality of concurrency. ParaDOS differs in two significant ways from

CSP: its traces preserve the concurrency inherent in the history of computation,

and its semantics are operational rather than algebraic. CSP imposes the restric-

tion that an idealized observer record arbitrary, sequential partial orderings of

simultaneously occurring events, and in so doing, does not preserve event simul-

taneity. These differences impact reasoning about properties of computation in

important ways, as will be demonstrated in Section 9.7.

We introduce one last paraDOS notion for reasoning about properties of com-

putation, the unsuccessful event, or un-event. There are two categories of events

in paraDOS: successful and unsuccessful. By default, events refer to successful

events. The definition of un-event that we are using is, "an attempted computa-

tion or communication activity, associated with an event, that fails to succeed."

The ability to observe successful and unsuccessful events within the context of

parallel events and views permits us to reason directly about nondeterminism

and its consequences. Parallel events that include un-events allows us to reason

not only about what happened, but also about what might have happened.

CSP has a notion similar to paraDOS un-events that it calls refusal sets.

Recall from Table 9.3, that refusal sets represent environments in which a CSP

process might immediately deadlock. The notion of refusal sets is from a passive

perspective of event observation. Since paraDOS is an operational semantics, our

model employs the active notion of event occurrence, where designated compu-

tational progress corresponds to the events abstracted. The purpose of refusal

sets in CSP and un-events in paraDOS is the same, to support reasoning about

properties of concurrent computation.

9.6.3 Policies

We now discuss the implications of parameterized policies as they concern rea-

soning about properties of concurrent computation. Policies dictate the selection

of processes to make computational progress during a transition, and the se-

lection of message closures to be reduced during a transition. Policies are also

parameters within a paraDOS transition relation. These parameters specify the

sequence in which chosen processes attempt to make computational progress, and

the sequence in which selected communication closure reductions attempt to re-

duce. When we choose policies for the transition relation, we can reason about

resulting system behavior, and use paraDOS to prove properties of distributed

systems with those policies.

Policies may determine access to critical regions, or specifiy the resolution of

race conditions. The outcome of such shared resource scenarios, and the policies

that lead to that outcome, influence what views are possible, and meaningful.

In determining process and message closure selection, one policy could be pure

randomness, and another policy could prioritize according to a particular scheme.

The choice of a selection policy impacts the nature of nondeterminism in a con-

current system.

For the Linda instance of paraDOS, transitions from one state of computa-

tion to the next consist of individual processes making internal computational

progress, or communication closure reductions that lead to instances of tuple

space interaction. During each transition, the set of possible next states depends

on the current state and the policies of the transition relation.

Consider policies that effect the level of parallelism in a tuple space, including

maximal parallelism, minimal parallelism, and levels somewhere in between. A

policy of selecting only one Linda process per transition to make computational

progress, or one communication closure per transition to reduce, results in sin-

gular transition density, or sequential computation. In contrast, a policy that

requires selecting every eligible Linda process and every communication closure

is part of a set of policies needed to model maximal parallelism. The ability

to model all possible transitions in a distributed system requires a policy that

selects a random subset of Linda processes and communication closures. Other

properties of distributed systems we wish to reason about may limit or bound

the level of parallelism possible, for example, based on the number of processors

available. ParaDOS permits the specification of appropriate policies for all the

levels of parallelism discussed herein.

An important set of policies in tuple space systems concerns different protocols

for matching tuples. Tuple matching is a significant source of nondeterminism

in Linda programs, and it comes in two varieties. First, two or more matching

operations, at least one of which is an in() , compete for a single, matching tuple.

The second kind of nondeterminism involves just one synchronous primitive, but

its template matches two or more tuples. In both cases, the outcome of the sub-

sequent tuple space interactions is nondeterministic, but tuple matching policies

can influence system properties. For example, a policy that attempts to match

operations with the most specific templates first, and saves matching the most

general templates for last, is likely to match more tuples than if the sequence of

attempted matches is reversed. Another example of maximizing tuple space in-

teractions would prioritize out() operations before any rd() and in() operations,

and then attempt to match the rd() operations before any in()%.

9.6.4 Properties

Depending on the presence or absence of mutual exclusion in a distributed system,

and the policies in effect, we can use paraDOS to reason about a variety of safety

and liveness properties. The following is a brief discussion of how elements of

paraDOS contribute to new and meaningful approaches to reasoning about such

systems.

Important safety properties - that bad states are never reached - include

whether or not a system is deadlock free, whether or not race conditions ex-

ist, and whether or not transition density remains within a desired threshold.

Consider the problem of deadlock, and the canonical dining philosophers exam-

ple. An instantiation of paraDOS very naturally represents a trace where all five

philosophers pick up their left forks in one parallel event - including all 120 (5!)

possible views (ROPES) of that event. In the next transition, paraDOS demon-

strates very elegantly the un-events of five (or fewer) philosophers attempting to

pick up their right forks. Reasoning about the trace of this history, or any of the

views, a condition exists where after a certain transition, only un-events are pos-

sible. ParaDOS7s decoupling of distributed processes' internal computations from

their communication behavior, using the abstraction of communication closures,

helps us reason that the dining philosophers are deadlocked.

Liveness properties - that good states are eventually reached -- are also

important. Some examples of particular interest when using paraDOS to reason

about these properties include true concurrency of desired events, eventual entry

into a critical section, guarantee of message delivery, and eventual honoring of

requests for service. Liveness properties are especially affected by system policies,

such as those discussed in the previous section. Instances of paraDOS, with their

parallel events and ROPEs, readily handle properties of true concurrency, such as

those examples in Table 9.1. The un-events of paraDOS also facilitate reasoning

with traces about properties of message delivery and eventual entry as follows.

Guarantee of message delivery is the property that, for all traces where a delivery

un-event occurs, a corresponding (successful) delivery event eventually occurs.

Similar descriptions exist for entry into critical sections, requests for service, etc.

Of course, beyond these formulations, traces in paraDOS are subject to the same

restrictions as in CSP. In cases where infinite observation is possible, or required,

undecidability results similar to those from the Halting problem apply.

Properties that are both safety and liveness, such as levels of parallelism,

including maximal and minimal, are particularly well suited for paraDOS. The

magnitude of parallel events in traces of computation can be transformed to

our notion of transition density, a measurable quantity. Once we have done

this, we can reason about possible traces, and ask whether, for each transition,

all communication closures are chosen to be reduced, and whether this ensures

that these closures all reduce successfully (i-e., no inappropriate un-events). The

existence of un-events in a trace does not necessarily preclude the possibility of

maximal parallelism, since un-events can be due to system resource unavailability.

The absence of un-events from a trace is not sufficient to conclude the property

of maximal parallelism, either. As just discussed, all communication closures

must be chosen for possible reduction, and all eligible processes must be chosen

to make internal computational progress. The latter condition requires that we

abstract non-communication behavior as observable events.

Demonstration of Reasoning with ParaDOS

To demonstrate the utility of reasoning with parallel events and views, we present

a case study of two primitive operations from an early definition of Linda. In

addition to the four primitives rd(), in() , out (), and eval(), the Linda definition

once included predicate versions of rd() and in() . Unlike the rd() and in() prim-

itives, predicate operations rdp() and inp() were nonblocking primitives. The

goal was to provide tuple matching capabilities without the possibility of block-

ing. The Linda predicate operations seemed like a useful idea, but their meaning

proved to be semantically ambiguous, and they were subsequently removed from

the formal Linda definition.

First, we demonstrate the ambiguity of the Linda predicate operations when

restricted to reasoning with an interleaved sequential event trace semantics like

that provided by CSP. The ambiguity is subtle and, in general, not well described

in the literature. Next, we demonstrate how reasoning about the same computa-

tion with an appropriate instance of paraDOS disambiguates the meaning of the

Linda predicate operations. The instance of paraDOS for Linda presented earlier

in this dissertation did not include the predicate operat ions. We discuss attributes

required by a new instance for this purpose. Finally, we discuss the importance

of this model for reasoning about these extended tuple space computations.

9.7.1 Ambiguity

Predicate operations rdp() and inp() attempt to match tuples for copy or re-

moval from tuple space. A successful operation returns the value one (1) and the

matched tuple in the form of a template. A failure, rather than blocking, returns

the value zero (0) with no changes to the template. When a match is successful,

no ambiguity exists. It is not clear, however, what it means when a predicate

operation returns a zero.

The ambiguity of the Linda predicate operations is a consequence of modeling

concurrency through an arbitrary interleaving of tuple space interactions. Jensen

noted that when a predicate operation returns zero, "only if every existing pro-

cess is captured in an interaction point does the operation make sense." [Jen94].

Figure 9.1: Case Study for Linda predicate ambiguity: an interaction point in

tuple space involving three processes.

Suppose three Linda processes, pl, pz, and p3, are executing concurrently in tuple

space. Further suppose that each of these processes simultaneously issues a Linda

primitive as depicted in Figure 9.1.

Assume no tuples in tuple space exist that match template t', except for the

tuple t being placed in tuple space by process p3. Together, processes pl , pz, and

p3 constitute an interaction point, as referred to by Jensen. There are several

examples of ambiguity, but discussing one possibility will suffice. First consider

that events are instantaneous, even though time is continuous. The outcome of

the predicate operations is nondeterministic; either or both of the rdp(tr) and

inp(t l) primitives may succeed or fail as they occur instantaneously with the

o u t (t) primitive.

For this case study, let the observable events be the Linda primitive operations

themselves. For example, o u t (t) is itself an event, representing a tuple placed

in tuple space. The predicate operations require additional decoration to convey

success or failure. Let bar notation denote failure for a predicate operation. For

example, inp(t') represents the event of a successful predicate, returning value

1, in addition to the tuple successfully matched and removed from tuple space;

rdp(ti) represents the event of a failed predicate, returning value 0.

The events of this interaction point occur in parallel, and an idealized ob-

server keeping a trace of these events must record them in some arbitrary order.

Assuming perfect observation, there are six possible correct partial orderings.

Reasoning about the computation from any one of these traces, what can we say

about the state of the system after a predicate operation fails? The unfortunate

answer is "nothing." More specifically, upon failure of a predicate operation, does

a tuple exist in tuple space that matches the predicate operation's template? The

answer is, it may or it may not.

This case study involves two distinct levels of nondeterminism, one dependent

upon the other. Since what happens is nondeterministic, then the representation

of what happened is nondeterministic. The first level concerns computational

history; the second level concerns the arbitrary interleaving of events. Once we

fix the outcome of the first level of nondeterminism, that is, determine the events

that actually occurred, we may proceed to choose one possible interleaving of

those events for the idealized observer to record in the event trace. The choice of

interleaving is the second level of nondeterminism.

Suppose in the interaction point of our case study, process pl and pz's pred-

icate operations fail. In this case, the six possible partial orderings an idealized

observer can record are the following:

1. rdp(tf) -+ inp(tf) -+ out (t)

2. rdp(tl) -+ out (t) --+ inp(tt)
3. inp(tf) -+ rdp(tf) .t out(t)
4. inp(tl) -+ out (t) ---t rdp(tf)
5. out (t) --+ rdp(tf) --+ inp(tf)
6. out(t) + inp(tf) + rdp(tl)

The idealized observer may choose to record any one of the six possible inter-

leavings in the trace. All but the first and the third interleavings make no sense

when reasoning about the trace of computation. Depending on the context of

the trace, the first and third interleavings could also lead to ambiguous mean-

ings of failed predicate operations. In cases 2, 4, 5, and 6, an out(t) operation

occurs just before one or both predicate operations, yet the events corresponding

to the outcome of those predicates indicate failure. It is natural to ask the ques-

tion: "This predicate just failed, but is there a tuple in tuple space that matches

the predicate's template?" According to these interleavings, a matching tuple t

existed in tuple space; the predicates shouldn't have failed according to the defi-

nition of a failed predicate operation. The meaning of a failed predicate operation

breaks down in the presence of concurrency expressed as an arbitrary interleav-

ing of atomic events. This breakdown in meaning is due to the restriction of

representing the history of a computation as a partial ordering of atomic events.

Reasoning about computation with a sequential event trace leads to ambiguity

for failed Linda predicate operations rdp(tf) and inp(tl).

9.7.2 Clarity

Recording a parallel event sequentially does not preserve information regarding

event simultaneity. With no semantic information about event simultaneity, the

meaning of a failed predicate operation is ambiguous. The transformation from

a parallel event to a partial ordering of that parallel event is one-way. Given an

interleaved trace - that is, a partial ordering of events, some of which may have

occurred simultaneously - we cannot in general recover the concurrent events

from which that interleaved trace was generated.

A fundamental principle underlies the problem of representing the concur-

rency of multiple processes by interleaving their respective traces of computation:

entropy. In this context, entropy is a measure of the lack of order in a system; or

alternatively, a measure of disorder in a system. The system, for our purposes,

refers to models of computation. There is an inverse relationship between the

level of order represented by a model's computation, and its level of entropy.

When a model's computation has the property of being in a state of order, it has

low entropy. Conversely, when a model's computation has the property of being

in a state of maximum disorder, it has high entropy. We state the loss of entropy

property for interleaved traces.

Property: (Loss of Entropy) Given a concurrent computation c, let
trace tr be an arbitrary interleaving of atomic events from c, and let
el and ez be two events within t r , such that el precedes ez. A loss
of entropy due to tr precludes identifying whether el and e* occurred
sequentially or concurrently in c

By interleaving concurrent events to form a sequential event trace, a model

(e.g., CSP) loses concurrency information about its computation. Interleaving

results in a partial ordering of the events of a concurrent computation, an over-

specification of the order in which events actually occurred. Concurrent models

of computation that proceed in this fashion accept an inherent loss of entropy.

A loss of entropy is not always a bad thing; CSP has certainly demonstrated its

utility for reasoning about concurrency for a long time. But loss of entropy does

limit reasoning about certain computational properties, and leads to problems

such as the ambiguity of the Linda predicate operations in our case study.

The relationship between the trace of a computation and the multiple views of

that computation's history reflects the approach of paraDOS to maintain multi-

ple possible losses of entropy (i-e., views) from a single high level of entropy (i.e.,

parallel event trace). Furthermore, paraDOS views differ from CSP trace inter-

leavings in two important ways. First, paraDOS distinguishes a computation's

history from its views, and directly supports reasoning about multiple views of

the same computation. Second, addressing the issue from the loss of entropy

property, a view is a list of ROPES, not a list of interleaved atomic events. The

observer corresponding to a view of computation understands implicitly that an

event within a ROPE occurred concurrently with the other events of that ROPE,

after any events in a preceding ROPE, and before any events in a successive

ROPE.

The parallel events feature of paraDOS makes it possible to reason about

predicate tuple copy and removal operations found in commercial tuple space

systems. A parallel event is capable of capturing the corresponding events of

every process involved in an interaction point in tuple space. This capability

disambiguates the meaning of a failed predicate operation, which makes it possible

to reintroduce predicate operations to the Linda definition without recreating the

semantic conflicts that led to their removal.

The additional structure within a view of computation, compared to that of an

interleaved trace, permits an unambiguous answer to the question raised earlier

in this section: "This predicate just failed, but is there a tuple in tuple space

that matches the predicate's template?" By considering all the events within

the ROPE of the failed predicate operation, we can answer yes or no, without

ambiguity or apparent contradiction. In our case study from Figure 9.1, given

both predicate operations nondeterministically failed within a ROPE containing

the out (t) and no other events, we know that tuple t exists in tuple space. The

transition to the next state doesn't occur between each event, it occurs from

one parallel event to the next. For this purpose, order of events within a ROPE

doesn't matter; it is the scope of concurrency that is important.

Importance

Our case study of the Linda predicate operations is important for several reasons.

First, we demonstrated the power and utility of view-centric reasoning. Second,

we provided a framework that disambiguates the meaning of the Linda predicate

operations rdp() and inp(), making a case for their reintroduction into the Linda

definition. Third, despite the removal of predicate operations from the formal

Linda definition, several tuple space implementations, including Sun's JavaSpaces

and IBM's T Spaces, provide predicate tuple matching primitives. ParaDOS

improves the ability to reason formally about systems developed with commercial

tuple space implementations by providing a framework capable of modeling the

Linda predicate operations.

CHAPTER 10

Conclusions

We have presented a new parameterized model of parallel and distributed com-

putation, paraDOS, and instantiations of two very different approaches to con-

currency, the Actors model and the Linda communication language for tuple

space. Our goals were to motivate the importance of views in reasoning about

parallel and distributed computation, reveal useful abstractions for representing

concurrency, and demonstrate the utility of operational semantics as an effective

framework to model this computation.

We conclude this dissertation, beginning with a list of the primary contribu-

tions this research has made to the discipline of computer science. Section 10.1

reviews the state of reasoning about properties of concurrent systems - before

paraDOS - as a basis for expounding upon each of our research contributions.

and Section 10.2 discusses future work.

Contributions

Section 10.1.1 contains concise statements of our research contributions. The

remaining sections discuss each of our contributions in more detail.

10.1.1 Concise Contributions

This research led to six major contributions:

1. Identification of the loss of entropy property for interleaved traces.

2. Introduction of two entropy-preserving abstractions - ordered and un-

ordered parallel events - for representing event simultaneity within Hoare's

CSP model.

3. Differentiation of a computation's history from its views, and direct support

for reasoning about multiple, simultaneous views of a computation.

4. Creation of a general, composable model of computation - parameterized

and capable of individual instantiation - for reasoning about properties of

parallel and distributed systems.

5 . Abstraction of a concurrent system's state, whose general definition includes

process continuations, communication closures, parallel events, and a next

state.

6. Utilization of view-centric reasoning to disambiguate the meaning, upon

failure, of Gelernter's Linda predicate operations rdp() and inp(), in tuple

space.

10.1.2 Loss of Entropy Property

Building on Hoare's seminal research that resulted in CSP, paraDOS has a proven

model of concurrency from which to proceed. CSP provides the metaphor of an

idealized observer recording the observable events of a concurrent computation,

where concurrency is realized by communicating sequential processes. An event

trace of an individual sequential process represents the history of that process's

computation. Thus, in CSP, a history of a concurrent system is not a collection of

individual event traces, but is rather a single trace that results from a sequential

interleaving of those individual event traces.

In the case where the events from two or more processes occur simultaneously,

CSP's observer interleaves those events in some sequential order. There is no

incorrect order, since in a sequential event trace, the events must be recorded in

some order. But once such an interleaving occurs, some potentially important

information about the computation is lost, since the event trace represents a

partial ordering, or overspecification, of the sequence of events in a computation's

history.

Something apparently contradictory occurs when simultaneous events are in-

terleaved in a trace. By specifying more information about event order, inter-

leaving causes a loss of information concerning event simultaneity. This is a case

where "more is less." The challenge is to identify a property for this phenomenon

that does not confuse the issue further. Entropy is the measure of disorder in

a system. A system with high entropy has a high level of disorder; low entropy

corresponds to low disorder, or in the extreme, order.

An interleaved trace represents information from a system whose events may

have occurred at a high level of disorder, but by interleaving simultaneous events,

the CSP observer effects a loss of entropy for reasoning about the system. The

characterization of loss of entropy is counter to what occurs in nature, where sys-

tems tend, over time, to increase thek levels of entropy. For many computations,

a loss of entropy is inconsequential; but for some computations, and more specif-

ically for some reasonings about properties of computations, we need to model

concurrency using an abstraction that preserves entropy.

10.1.3 Parallel Events and ROPEs

The challenge faced in this research is to preserve the usefulness of event traces as

provided by CSP's process algebra, while extending the notion of event traces in

a way that preserves entropy. To meet this challenge, paraDOS introduces new

event abstractions, parallel events and ROPEs. A parallel event is an event ag-

gregate, representing events of a computation observed to occur instantaneously

in parallel. Parallel events serve as the primitives that form event traces in para-

DOS. ROPEs are another event aggregate, denoting randomly ordered parallel

events. A ROPE corresponds to some parallel event, and specifies a (possibly

incomplete) partial ordering. In general, a parallel event has many possible corre-

sponding ROPEs. ROPEs serve as the primitives that form views of computation

in paraDOS.

Parallel events and ROPEs reveal the nondeterminism that results from a

concurrent computation. By preserving entropy, parallel events convey levels of

concurrency and provide intuition into other possible outcomes of nondetermin-

ism. ROPEs provide intuition into the many possible perspectives (views) of a

parallel event.

10.1.4 One History, Multiple Views

The paraDOS abstractions of parallel events and ROPEs permit us to distinguish

a computation's history from possible views of that computation. We extend the

notion of a CSP trace with parallel event primitives. In paraDOS, a trace is

a sequence of parallel events - a parallel event trace. A parallel event trace

corresponds to a computation's history.

ParaDOS introduces the notion of views. A view of computation refers to

any (possibly incomplete) partial ordering of events from a computation's history.

A view is constructed from a parallel event trace, built up from a sequence of

ROPEs. Given a view of computation, each ROPE in the view corresponds

positionally to its respective parallel event from the computation's trace. In

general, for a given history of computation, multiple corresponding views of that

computation's history are possible.

10.1.5 General Model for Reasoning

Many approaches to concurrent computation exist, and many models have been

developed to reason about properties of such computation. When we wish to

reason about different approaches to concurrency, it is useful to proceed from

a common framework, rather than utilize separate computational models, with

different abstractions. Our model is general enough to reason about many diverse

approaches to concurrent computation, two of which are considered here, Actors

and Linda. ParaDOS is an operational semantics, most of whose elements are

parameterized; it establishes a framework of observable events, traces, views,

and compositions. Based on CSP, paraDOS supports reasoning about properties

of concurrent systems, such as deadlock and divergence. With its extensions,

paraDOS provides abstractions for reasoning directly about properties related to

event simultaneity and multiple views of computation.

Concurrent State Abstractions

One of the benefits of building a general model for reasoning about concurrency is

the development of abstractions for representing the state of a concurrent system,

independant of a system's approach to concurrency. Concurrent systems consist

of a collection of processes capable of some form of interprocess communication.

ParaDOS represents processes by their continuations, and instances of interpr*

cess communication by bound expressions we call communication closures. Com-

munication closures prove to be a unifying abstraction capable of representing

a variety of communication paradigms. We abstract observable events from the

communication behavior of a concurrent system. Generally, events arise from

reductions of communication closures by the paraDOS transition relation. The

collection of all such events that result from one state's closure reductions com-

prise the next state's parallel events. The transition relation chooses the next

state to which computation proceeds.

10.1.7 Example of View-centric Reasoning

View-centric reasoning proves to be useful for describing the behavior and ca-

pabilities of concurrent systems. ParaDOS's parallel events and views provide a

framework for reasoning about the predicate tuple space operations rdp() and

inp() that Gelernter removed from Linda. Previous attempts to formally define

these operations resulted in ambiguous meanings for some cases in which these

predicates fail to match a tuple in tuple space. In Section 9.7.2 we demonstrate

the problem and use view-centric reasoning to disambiguate the meaning of these

failed predicate operations.

10.2 Future Work

There are several areas of future work that we plan to pursue. First, since com-

mercial tuple space implementations support transaction semantics, we need to

consider how paraDOS can be used to reason ablout such systems. Section 10.2.1

presents some initial thoughts on modeling transactions within the paraDOS

framework, and Sect ion 10.2.2 discusses two commercial tuple space implemen-

tations that are candidates for paraDOS instantiation. Finally, Section 10.2.3

presents other potential future work.

10.2.1 Transactions

For some systems we modeled (see Section 7.3), transactions were implicit, but

this is not always the case. The approach to composition within paraDOS pro-

vides some clues toward an abstraction for transactions in distributed systems.

The composition we presented in Chapter 8 may suggest an a priori (static)

approach - indeed, this may have been true during the time we developed com-

position as a paraDOS parameter - but this need not be the case. If paraDOS

utilizes composition to model transactions, we must accommodate the need to

compose a system with existing system(s) dynamically, that is, at run time.

Transactions are initiated and then either committed or rolled-back at run

time. One way to view a transaction is as a subprocess with the special quality

that it only modifies its environment if it commits (success); in the case of roll-

back, the environment reflects the state that would have existed had the trans-

action never been attempted. This all-or-nothing quality of transactions also

suggests a natural filtering of observable events within transactions. It is also

possible that views could play a role in modeling transactions within paraDOS

(i.e., we can limit the observers of a transaction to be only those participating in

the transaction).

Models of Commercial Systems

Relative to pTS, we are investigating two major commercial tuple space imple-

mentations, JavaSpaces [FHA991 from Sun Microsystems and T Spaces [WML98]

from IBM. Both JavaSpaces and T Spaces evolved from Gelernter's original work

in Linda, but they evolved differently. We are in the process of using PTS to

analyze both these implementations, and reason about their respective computa-

tional properties. This analysis could lead to the identification of new parameters

for paraDOS. The paraDOS model might eventually be used as a tool to com-

pare commercial tuple space implementations for the purpose of selecting the

most appropriate system for different application needs.

For example, JavaSpaces and T Spaces both provide predicate, or asyn-

chronous versions of Linda's rd and in operations, even though Gelernter re-

moved both primitives from Linda due to semantic ambiguity (see Jensen [Jengl]

for further discussion on asynchronous matching operations). The ambiguity is

subtle, and elusive to understand, but view-centric reasoning demonstrates and

disambiguates this problem. Similar issues with event notification primitives and

other Linda extensions could possibly be exposed and formally understood.

Until recently, lack of efficient tuple space implementations limited reasoning

about tuple spaces to academic pursuits. The ubiquity of the Internet and Java

programming language, and the endorsement of companies like Sun Microsystems

and IBM, have propelled Linda's popularity much closer to the forefront of dis-

tributed computing. continued development of our paraDOS for Linda instanti-

ation, toward a paraDOS for JavaSpaces or paraDOS for T Spaces instantiation,

could provide an important framework for proving soundness properties about

space based distributed protocols and systems.

10.2.3 Other Future Work

Other important areas of potential future work include modeling composition of

heterogeneous systems, including the challenges associated with gateways and

middleware in n-tier Internet applications. A first step toward modeling hetero-

geneous composition in paraDOS would probably consider how to represent a

gateway between Actors and Linda programs.

We discussed one approach to modeling filtering with transactions and touched

on the possible role views could play in this area. Regardless of how we model

filtering, paraDOS7s ability to filter events is important with respect to modeling

security and scalability within distributed systems. In the case of security, we

wish to intentionally filter certain events from certain observers. In the case of

scalability, systems we model may have thresholds for maximum number of events

before degrading performance, or in the case of relevance filtering, different ob-

servers may require the ability to observe different kinds or different numbers of

events.

We just mentioned system performance as a scalability issue. In the back-

ground chapter of this dissertation (Chapter 2), we discussed the different pur-

poses for models - prediction, description, or reasoning. While our research

in developing paraDOS has focused on a model for reasoning about properties

of concurrency, the process algebra paraDOS inherits from CSP may provide a

bridge to performance modeling. This avenue of research became apparent to

us during a presentation at the 2000 Future of Information Processing Sympo-

sium, in which Harrison [HarOO] discussed current research investigating the use

of stochastic process algebras (SPAS) to model systems composed of concurrently

active cooperating components. What we believe makes paraDOS relevant to this

is its view-centric approach, which can model probabilistic events. It is this con-

nection which we intend to pursue to investigate the use of paraDOS as a tool to

study both behavioral and performance properties.

APPENDIX A

Scheme Implementation of SECD Machine

This appendix contains my Scheme implementation of the SECD machine.

; *
; * transform: Transi t ion function f o r t h e SECD machine
; *
(define transform

(lambda (s e c d)
(cond

; Case 7: i f C = [I
; -- Must be f i r s t . I f c is n u l l , can ' t check
; anything e l s e !
((nu l l ? c)

; I f d is a l so empty s tack , then f in i shed ,
; re turn top of s tack s
(i f (nu l l? d) (car s)
; e l s e continue by popping saved environment
; from dump s tack d , and pushing r e s u l t
; current ly on s on top of res tored s
(transform (cons (car s) (caar d)) ; - the new s

(cadar d) (caddar d) (cadddar d))))

; Case 0: i f head(C) is a func
((func? (car c))

(transform (cons (car c) s) e (cdr c) d))

; Case 1: i f head(C) is a constant
((const? (car c))

(transform (cons (cadar c) s) e (cdr c) d))

; Case 2: if head(C) is a var iab le
((iden t? (car c))

(transform (cons (lookup e (cadar c)) s)
e (cdr c) d))

; Case 3: i f head(C) is an appl icat ion (Rator Rand)
((app? (car c))

(transform s e
(cons (cadar c) (cons (caddar c)

(cons (cons 'eval '0) (cdr c)))) d))

; Case 4: i f head(C) i s a lambda abs t r ac t i on
j lambda (V) . B
((lambda-ab? (car c))

(transform
(cons (cons 'c losure

(cons (cadar c) (cons (caddar c)
(cons e '0)))) s)

e (cdr c) d))

; Case 5 : i f head(C) = Q and head (t a i l (S)) i s a
s predef . funct ion f
((and (eval? (car c)) (func? (cadr s)))

(transform (cons (eval (cadadr s) (ca r s))
(cddr s))

e (cdr c) d))

; Case 6 : i f head(C) = Q and
3 head(ta i1 (S)) = closure (V ,B ,El)
((and (eval? (car c)) (closure? (cadr s)))

(transform
(mk-empty)

; which i s t he new s - empty
(cons (cons (cadadr s)

(cons (car s) (mk-empty)))
(cadddadr s))

; which is t h e new e , with V-->B added t o
; El from closure

(cons (caddadr s) (mk-empty))
; which i s t h e new c - i n i t i a l i z e d t o B
s from closure

(cons
(cons (cddr s)

(cons e
(cons (cdr c)

(cons d
(mk-empty))))) d)))

; which is t he new d - t h i s saves t h e
; current c fg a f t e r eval

; close t he cond, lambda, and def ine . . .
1))

; *
; * addl: A "predefined function" which does what it says . . .
; *
(define addl

(lambda (n) (+ n 1)))

; *
; * app?: Boolean test which returns true when e an "application"
; * of form ('app e e)
; *
(define app?

(lambda (e)
(eq? (car e) 'app)))

; *
; * closure?: Boolean test which returns true when e is a
; * "closure11 of form ('closure v b e)
; *
(define closure?

(lambda (e)
(eq? (car e) ' closure)))

; *
; * const?: Boolean test which returns true when e is a "const"
; * of form ('const n)
; *
(define const?

(lambda (e)
(eq? (car e) 'const)))

; *
; * func?: Boolean test which returns true when e is a
; * "predefined function" of form ('func n), where n
; * is the name of the function
; *
(define func?

(lambda (e)
(eq? (car e) 'func)))

; *
; * iden t? : Boolean t e s t which r e tu rns t r u e when e is an
; * " i d e n t i f i e r " of form (' iden t x)
; *
(define ident?

(lambda (e)
(eq? (car e) ' i d en t)))

; *
; * lambda-ab?: Boolean t e s t which r e tu rns t r u e when e i s a
; * "lambda abs t rac t ionM of form ('lambda x e)
; *
(define lambda-ab?

(lambda (e)
(eq? (car e) 'lambda)))

; *
; * eval? : Boolean t e s t which r e tu rns t r u e when e is a t h e
; * "eval" symbol (Q) of form (' eva l)
; *
(define eval?

(lambda (e)
(eq? (car e) J e v a l)))

; *
; * eval : Function which assoc ia tes t h e symbol f with a
; * predefined funct ion of t he same name, then r e tu rns
; * t he r e s u l t of applying a t o f .
; *
(define eval

(lambda (f a)
(i f (eq? f 'addl)

(add1 a)
(display (cons f (cons a '0))))))
; ' e r r o r)))

; *
; * mk-empty: Returns an empty l is t
; *
(define mk-empty

(lambda 0 ' 0 1)

; *
; * lookup: Checks environment env f o r var iab le name, and i f
; * found re turns i ts bound value
; *
(define lookup

(lambda (env name)
(cond

((nu l l? env) ' e r ror)
((eq? name (caar env)) (cadar env))
(#t (lookup (cdr env) name) 1)))

; *
; * update-env: Adds the binding of name t o va l t o t he
; * environment env
; *
(define update-env

(lambda (env name val)
(cons (l i s t name va l) env)))

; *
; * caddadr: Apparently I reached a l i m i t ?
; *
(define caddadr

(lambda (s)
(car (cdr (cdr (car (cdr s)))))))

; *
; * cadddadr: Apparently I reached a l im i t ?
; *
(def ine cadddadr

(lambda (s)
(car (cdr (cdr (cdr (car (cdr s))))))))

; *
; * cadddar: Apparently I reached a l im i t ?
; *
(define cadddar

(lambda (s)
(car (cdr (cdr (cdr (car s)))))))

The following are three test functions for the SECD transform function.

(define t e s t 1
(lambda ()

(transform ' 0 ' 0
' ((app (f unc addl) (const 6))) ' ())))

(define t e s t 2
(lambda ()

(transform ' () ' (1
' ((app (lambda x (app (func addl) (ident x)))

(const 6))) '0)))
(define t e s t 3

(lambda ()
(transform ' () ' 0

'((app (lambda x (ident x)) (const 4 2))) '0)))

Thus, in the Scheme Read-Eval-Print loop, the following transactions occur:

1]=> (test11

Gul Agha and Christian J. Callsen. "ActorSpace: an open distributed
programming paradigm." A CM SIGPLA N Notices, 28 (7) :23-32, July
1993.

Gul Agha and Christian J. Callsen. "Open Heterogeneous Computing
in ActorSpace." Journal of Parallel and Distributed Computing, pp.
289-300, 1994.

[Agh86] Gul A. Agha. ACTORS: A Model of Concurrent Computation in Dis-
tributed Systems. The MIT Press Series in Artificial Intelligence. The
MIT Press, Cambridge, Massachusetts, 1986.

[AMS97] Gul Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. "A
Foundation for Actor Computation." Journal of Functional Program-
ming, ?(I): 1-72, 1997.

[AndOO] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Dis-
tribu ted Programming. Addison-Wesley , 2000.

Christian J. Callsen. Open Distributed Heterogeneous Computing.
PhD thesis, Aalborg University, Denmark, 1994.

Nicholas Carriero and David Gelernter. "Linda in Context." Commu-
nications of the ACM, 32(4), April 1989.

[CJY94] Paolo Ciancarini, Keld K. Jensen, and Daniel Yankelevich. "On the
Operational Semantics of a Coordination Language." In Paolo Cian-
carini, Oscar Nierstrasz, and Akinori Yonezawa, editors, Object-Based
Models and Languages for Concurrent Systems, volume 924 of LNCS,
pp. 77-106. Springer Verlag, 1994.

[CT90] K. Mani Chandy and Stephen Taylor. "A primer for program composi-
tion notation." Technical Report CRPC-TR90056, California Institute
of Technology, Pasadena, CA, jun 1990.

[CT92] K. Mani Chandy and Stephen Taylor. An Introduction to Parallel
Programming. Jones and Bartlett , Boston, MA, 1992.

[DDgOa] Philippe Darondeau and Pierpaolo Degano. "Causal Trees: Interleav-
ing + Causality." In Irene Guessarian, editor, Semantics of Systems
of Concurrent Processes, volume 469 of LNCS, pp. 239-255. Springer
Verlag, 1990.

[DDgOb] Philippe Darondeau and Pierpaolo Degano. "Event structures, Causal
trees, and Refinements." In Branislav Rovan, editor, Mathematical
Foundations of Computer Science 1990, volume 452 of LNCS, pp. 239-
245. Springer Verlag, 1990.

[DDM88] Pierpaolo Degano, Rocco De Nicola, and Ugo Montanari. "Partial Or-
dering~ Descriptions and Observations of Nondeterministic Concurrent
Processes." In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg,
editors, Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency, volume 354 of LNCS, pp. 438-466. Springer
Verlag, 1988.

[Dij 7 11 E. W. Dijkstra. "Hierarchical Ordering of Sequential Processes." Acta
Inforrnatica, 1:115-138, 1971.

[DSW94] Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability,
Complexity, and Languages: Fundamentals of Theoretical Computer
Science. AP, AP:adr, second edition, 1994.

[FHA991 Eric Freeman, Susanne Hupfer, and Ken Arnold. JavaSpaces Prin-
ciples, Patterns, and Practice. The Jini Technology Series. Addison
Wesley, 1999.

[FOT92] Ian Foster, Robert Olson, and Steven Tuecke. "Productive Parallel
Programming: The PCN Approach." Scientific Programming, 1:51-
66, 1992.

[Gel851 David Gelernter. "Generative Communication in Linda." ACM Trans-
actions on Programming Languages and Systems, ?(I), January 1985.

Peter Harrison. "Performance Modeling." Guest speaker, The Future
of Information Processing Symposium, October 2000. Prof. Harrison
discussed the role of stochastic process algebras in current performance
modeling research.

Matthew Hennessy. The Semantics of Programming Languages: An
Elementary Intmduction Using Structural Operational Semantics. Wi-
ley, New York, 1990.

[Hoa85] C. A.R. Hoare. Communicating Sequential Processes. Prentice Hall
International Series in Computer Science. Prentice-Hall International,
UK, Ltd., UK, 1985.

[Hoa94] C. A.R. Hoare. Unified Theorzes of Programming. Unpublished Mono-
graph, July 1994.

[How931 "The Free On-line Dictionary of Computing."
http://www.foldoc.org/, 1993. Editor Denis Howe.

URL

[Jen91] Keld K. Jensen. "Decoupling of Computation and Coordination in
Linda." In D. Heidrich and J.C. Grossetie, editors, Computing with
2'. Node Parallel Architectures, pp. 43-62. unknown, 1991.

[Jen94] Keld K. Jensen. Towards a Multiple Tuple Space Model. PhD
thesis, Aalborg University, November 1994. http://www .cs.auc.dk/-
research/FS/teaching/PhD/mts.abstract .html.

[JenOO] Keld K. Jensen, February 2000. Personal communication with Marc
L. Smith.

[Kah87] Giles Kahn. "Natural Semantics." In F. Bandenburg, G. Vidal-
Naquet, and M. Wirsing, editors, Fourth Annual Symposium on The-
oretical Aspects of Computer Science, volume 247 of Lecture Notes in
Computer Science, pp. 22-39, Berlin, 1987. Springer Verlag.

[Lan64] Peter Landin. "The Mechanical Evaluation of Expressions."
Computer Journal, 6(4):308-320, January 1964.

The

[Mil891 Robin Milner. Communication and Concurrency. Prentice Hall In-
ternational Series in Computer Science. Prentice Hall International
(UK) Ltd, Campus 400, Maylands Avenue, Heme1 Hempstead, Hert-
fordshire, HP2 7EZ, 1989.

[Mi1991 Robin Milner. Communicating and Mobile Systems: the T-Calculus.
Cambridge University Press, 1999.

[MLB76] Michael Marcotty, Henry Ledgard, and Gregor Bochmann. "A Sam-
pler of Formal Definitions." Computing Surveys, 8(2):191-276, 1976.

[MT97] Ian A. Mason and Carolyn L. Talcott. "A Semantics Preserving Ac-
tor Translation." Lecture Notes in Computer Science, 1256:369-378,
1997.

[SchOO]

James E. Narem. "An Informal Operational Semantics of C-Linda
V2.3.5." Technical report, Yale University, December 1989.
YALEU/DCS/TR-839.

F'rank R. Abate, editor. The Oxford Desk Dictionary and Thesaurus.
Oxford University Press, Inc., american edition, 1997.

Gordon Plotkin. "A Structural Approach to Operational Semantics."
Technical report, Computer Science Department, Aarhus University,
Aarhus, Denmark, 1981.

A. W. Roscoe. The Theory and Practice of Concurrency. Prentice
Hall International Series in Computer Science. Prentice Hall Europe,
1998.

Steve Schneider. Concurrent and Real-time Systems: The CSP Ap-
proach. Worldwide Series in Computer Science. John Wiley & Sons,
Ltd., 2000.

Kenneth Slonneger and Barry L. Kurtz. Formal Syntaz and Semantics
of Programming Languages: A Laboratory Based Approach. Addison-
Wesley, Reading, Massachusetts, 1995.

Laura Semini and Carlo Montangero. "A Refinement Calculus for Tu-
ple Spaces." Science of Computer Programming, 34(2) :79-140, June
1999.

Marc L. Smith, Rebecca J . Parsons, and Charles E. Hughes. "Op-
erational Semantics for Actors: Toward a Parameterized Model for
Reasoning about Parallel and Distributed Computation." Technical
Report CS-TR-99-05, School of Computer Science, University of Cen-
tral Florida, 1998.

[WML98] Peter Wyckoff, Stephen W. McLaughry, Tobin J . Lehman, and
Daniel A. Ford. "T Spaces." IBM Systems JournaZ, 37(3) :454-474,
1998.

DATE W E

	View-centric reasoning about parallel and distributed computation
	STARS Citation

	FRONT COVER
	Cover

	TITLE PAGE
	Title Page

	COPYRIGHT

	Copyright

	ABSTRACT

	iii

	DEDICATION

	iv

	ACKNOWLEDGMENTS

	v

	vi

	vii

	TABLE OF CONTENTS

	viii

	ix

	x

	xi

	LIST OF TABLES

	xii

	LIST OF FIGURES

	xiii

	xiv

	CHAPTER ONE: INTRODUCTION

	001

	1.1 Dissertation Outline

	002

	CHAPTER TWO: BACKGROUND

	2.1 Models and Abstraction

	003

	004

	2.2 Actors

	005

	006

	2.3 Linda

	007

	008

	009

	2.4 CSP

	010

	011

	2.5 Composition

	012

	2.6 Operational Semantics

	2.6.1 Definition

	013

	2.6.2 The SECD Machine

	014

	2.6.3 Structural Operational Semantics

	015

	016

	2.7 Related Work

	017

	018

	CHAPTER THREE: PARADOS CONCEPTS

	019

	020

	021

	022

	023

	024

	025

	026

	027

	CHAPTER FOUR: PARADOS UNINSTANTIATED

	028

	029

	030

	031

	032

	033

	034

	CHAPTER FIVE: PARADOS INSTANTIATED FOR ACTORS
	5.1 The Pact Instance of ParaDOS

	035

	5.1.1 An Actor System

	5.1.2 The Pact Specification

	036

	037

	038

	039

	040

	041

	042

	5.1.3 Pact Predicates and Helper Functions

	043

	044

	5.1.4 Pact Decidable Predicates

	045

	046

	047

	5.2 Actor Theories

	5.2.1 The AT Model

	048

	049

	5.2.2 AT Predicates and Helper Functions

	5.3 Equivalence Proof for Actors

	5.3.1 Pact Restricted

	050

	5.3.2 Theorem and Proof

	051

	052

	053

	054

	055

	056

	057

	058

	059

	060

	061

	062

	063

	064

	065

	066

	067

	068

	069

	070

	071

	CHAPTER SIX: PARADOS INSTANTIATED FOR LINDA, TUPLE SPACE
	6.1 Instance Evolution and Definitions

	072

	073

	6.2 Set-theoretic Semantics for Linda

	074

	075

	076

	077

	078

	079

	080

	6.3 Scheme-based Semantics for Linda

	081

	082

	083

	084

	085

	086

	087

	088

	089

	090

	091

	092

	093

	094

	095

	096

	097

	098

	099

	100

	101

	6.4 Equivalence Proof

	102

	6.4.1 The TSspec Model

	103

	104

	105

	106

	6.4.2 Definitions and Assumptions

	107

	108

	109

	6.4.3 Theorem and Proof

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	6.4.4 Beyond the Equivalence
	131

	132

	CHAPTER SEVEN: PARAMETERS OF PARADOS

	133

	7.1 The Model System

	134

	7.2 Configurations and Computation Space

	7.3 Communication Closures

	135

	136

	7.4 Transition Relation

	137

	138

	139

	7.5 Views

	140

	CHAPTER EIGHT: COMPOSITION WITHIN PARADOS

	8.1 Evolution

	141

	142

	8.2 A Composition Grammar

	143

	144

	8.3 Tuple Space Composition

	145

	146

	147

	148

	8.4 Actors Composition Discussion

	149

	CHAPTER NINE: REASIONING

	150

	9.1 Early Event-based Reasoning

	151

	152

	9.2 Beyond Sequential Computation

	153

	154

	155

	9.3 Representing Concurrency

	9.4 Properties of Computation

	156

	157

	9.5 Reasoning with Traces

	158

	9.5.1 Reasoning with CSP

	159

	9.5.2 Why paraDOS?

	160

	9.6 Reasoning with paraDOS?

	161

	9.6.1 ParaDOS Basics

	162

	9.6.2 Beyond CSP

	163

	9.6.3 Policies

	164

	165

	9.6.4 Properties

	166

	167

	9.7 Demonstration of Reasoning with ParaDOS

	168

	9.7.1 Ambiguity

	169

	170

	171

	172

	9.7.2 Clarity

	173

	174

	9.7.3 Importance

	175

	CHAPTER TEN: CONCLUSIONS

	10.1 Contributions

	176

	10.1.1 Concise Contributions

	10.1.2 Loss of Entropy Property

	177

	178

	10.1.3 Parallel Events and ROPEs

	179

	10.1.4 One History, Multiple Views

	10.1.5 General Model for Reasoning

	180

	10.1.6 Concurrent State Abstractions

	10.1.7 Example of View-centric Reasioning

	181

	10.2 Future Work

	10.2.1 Transactions

	182

	10.2.2 Models of Commercial Systems

	183

	10.2.3 Other Future Work

	184

	185

	APPENDIX
	A Schemem Implementation of SECD Machine

	186

	187

	188

	189

	190

	191

	192

	LIST OF REFERENCES

	193

	194

	195

	196

	BACKMATTER

	197

	BACK COVER

	Back Cover

