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The development of distributed applications has not progressed as rapidly as 

its enabling technologies. In part, this is due to the difficulty of reasoning about 

such complex systems. In contrast to sequential systems, parallel systems give 

rise to parallel events, and the resulting uncertainty of the observed order of these 

events. Loosely coupled distributed systems complicate this even further by in- 

troducing the element of multiple imperfect observers of these parallel events. 

The goal of this dissertation is to advance parallel and distributed systems devel- 

opment by producing a parameterized model that can be instantiated to reflect 

the computation and coordination properties of such systems. The result is a 

model called paraDOS that we show to be general enough to have instantiations 

of two very distinct distributed computation models, Actors and tuple space. 

We show how paraDOS allows us to use operational semantics to reason about 

computation when such reasoning must account for multiple, inconsistent and 

imperfect views. We then extend the paraDOS model with an abstraction to 

support composition of communicating computational systems. This extension 

gives us a tool to reason formally about heterogeneous systems, and about new 

distributed computing paradigms such as the multiple tuple spaces support seen 

in Sun's JavaSpaces and IBM's T Spaces. 
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CHAPTER 1 

Introduction 

The development of distributed applications has not progressed as rapidly as its 

enabling technologies. In part, this is due to the difficulty of reasoning about 

such complex systems. In contrast to sequential systems, parallel systems give 

rise to parallel events, and the resulting uncertainty of the observed order of 

these events. Loosely coupled distributed systems complicate this even further 

by introducing the element of multiple imperfect observers of these parallel events. 

Such observers are capable of seeing different views of the same parallel event. 

In the opening paragraph, we alluded to three important characteristics that 

need to be addressed in models of concurrent computation. First, there is the 

nondeterminism of what events might occur next in a system of concurrent pro- 

cesses. Next, there is the requirement to represent any event simultaneity that 

does occur. Finally, there is the need to represent the observers' different poten- 

tially imperfect views of simultaneously occurring events. 

The goal of this dissertation is to advance parallel and distributed systems 

development by producing a parameterized model that can be instantiated to re- 

flect the computation and coordination properties of such systems, by supporting 

nondeterminism, parallel events, and views. The result is a model called para- 

DOS that we show to be general enough to have instantiations of two very distinct 

distributed computational models, Actors and tuple space. We show how para- 



DOS allows us to use operational semantics to reason about computation when 

such reasoning must account for multiple, inconsistent and imperfect views. We 

then extend the paraDOS model with an abstraction to support composition of 

communicating computational systems. This extension gives us a tool to reason 

formally about heterogeneous systems, and about new distributed computing 

paradigms such as the multiple tuple spaces support seen in Sun's JavaSpaces 

and IBM's T Spaces. 

1.1 Dissertation Outline 

We ground our research in Chapter 2 with important background information, 

including the role of models and abstraction in the field of Computer Science, 

paying particular attention to models of computation that play a role in our re- 

search. Chapter 3 introduces the concepts that are important to understanding 

paraDOS, and how these concepts fit together. We present the uninstantiated 

paraDOS model, with formal definitions, in Chapter 4. Chapters 5 and 6 are 

the core of our theoretical work, presenting instantiations of paraDOS for Ac- 

tors and Linda (the canonical example of a tuple space language), respectively. 

We establish the soundness of these two instantiations of paraDOS by proving 

two theorems based on equivalences to established operational semantics for Ac- 

tors and Linda. We reveal paraDOS parameters and the particularly important 

composition parameter in Chapters 7 and 8, respectively. Chapter 9 gives an 

extensive treatment of reasoning about properties of computation, and exercises 

an instance of paraDOS to reason about a Linda definition considered to be am- 

biguous prior to our research. Finally, we conclude in Chapter 10, presenting a 

summary of our major contributions and potential future work. 



CHAPTER 2 

Background 

This chapter considers the role of formal models and abstractions in Computer 
1 

! Science, and an approach to describe them. Section 2.1 begins with a discussion 

of models and abstractions. Sections 2.2 through 2.4 present three diverse compu- 

tational models: Actors, Linda, and CSP. These three models support different 

abstractions of concurrency and are the basis and inspiration for much of the 

research presented in this dissertation. Section 2.6 introduces operational seman- 

tics, the tool used to realize paraDOS, the model developed in this dissertation. 

Finally, Section 2.7 presents related work. 

2.1 Models and Abstraction 

Scientists rely on models to describe, explain, and predict phenomena. The pro- 

cess that develops such models is one of iterative refinement, involving careful 

design and verification. Oxford [Oxf97] defines a model as a "simplified descrip- 

tion of a system . . . to assist calculations and predictions." This simple defini- 

tion reveals two important aspects of any model, its abstraction and its purpose. 

Computer Science is not the science of computers; it is the science of models. It 



W d  exist independent of the invention of computers and, in fact, models largely 

dakinted the invention of computers. 

' 
(rypically, the purpose of a new model influences its level of abstraction. One 

toai to verify a new model is to prove its equivalence to an establighed one. 

So&etimey, the design of two or more existing, equivalent models suggests the 

design of a new, more general model. In this sense, the more general a model, the 

more purposes it serves. Computational models can be predictive, descriptive, or 

used for reasoning about properties of computation. The purpose of paraDOS is 

the: latter. 

Direct observation of a concurrent computer program is problematic, imprac- 

tical, and not conducive to reasoning about properties of concurrent systems 

in general. Limitations of human observation include resource availability, en- 

durance, and consistency (both rate and reproducibility). Furthermore, a single 

correct observation does not exist; multiple views are a consequence of observing 

systems with multiple concurrent processes. Any model for reasoning about prop 

erties of concurrent systems must adequately address the complexities resulting 

from multiple views of computation. 

A concurrent program, in general, requires communication and coordination. 

Mechanisms to support communication vary from shared memory to message 

passing to combinations of both of these mechanisms. The design of paraDOS 

needed to employ a communication abstraction sufficient to support the many 

varieties of concurrency about which we wish to reason, especially those arising 

in distributed computation. 

A critical designation for paraDOS was the selection of an appropriate level 

of abstraction for observable events, the primitives we have chosen for formal 

reasoning. Sequential models of computation often consider the details of inter- 



d computational states, transitions, or subexpression evaluation, but this level 

bf granularity is not desirable for reasoning about properties of concurrent sys- 

m s .  Instead, we are inspired by the approach taken in computability theory, 

md have extended its notion of "input/output behavior" to include interprocess 

c~rnmunication. 

Actors 

The Actors model of concurrent compuatation is due to Agha [Agh86]. We 

present the instantiation of paraDOS for Actors, Pact ,  in Chapter 5 .  Actors is 

an elegant model of concurrency based on message passing behavior. At the core 

of this model is the concept of computational agents (actors). The remainder of 

this section discusses actors and actor computation in sufficient detail to enable 

the reader to understand the semantics presented in Chapter 5 .  

Actors compute in response to messages they receive. For each message an 

actor receives, it can (based on its behavior at  the time it receives this message) 

send messages to other actors, create new actors, and specify its own replacement 

behavior (not necessarily in this or any other prescribed order). There is still 

much to say about implementation assumptions and the implications of these 

requirements (in terms of what is and is not specified). Let's consider each of 

these requirements in turn, and discuss briefly some of the implications. 

An actor can send messages to other actors. This is the only way one actor 

can affect the behavior of another. While there is a guarantee of delivery for all 

sent messages, there is no guarantee that the order of receipt will be the same 

as that of transmission, or even that the order of receipt will be the same for all 



recipients. Thus, the promise of delivery is the total extent of fairness required. 

Furthermore, actors communicate asynchronously since synchronous communi- 

cation would limit parallelism and, in a distributed system, be problematic to  

implement. Asynchronous messages also increase the level of nondeterminism in 

the actor model, an important consequence of PDSs. 

An actor can create new actors. Any sequence of independent expressions 

that can be computed in parallel can take advantage of new actors to do so. Sub- 

expression results can be communicated back to other actors waiting for those 

results. Compilers can perform sub-expression analysis to maximize parallelism, 

based on hardware and run-time constraints, so as not to burden the program- 

mer. Thus, the Actors model does not unnecessarily constrain otherwise inherent 

parallelism, or distributivity. 

An actor can specify its own replacement behavior. This replacement behavior 

will govern what that actor does with the next message it receives. In this way, 

actors can be history sensitive. An actor's actions are a function of its behavior 

at  the time a message is received and the content of the message. 

Actors is a seductive model in that it embodies three simple requirements, 

yet contains all the power and complexity inherent in concurrent computation. 

Given the proliferation of requirements and specifications for other concurrent 

models that possess no greater parallel and distributed processing capabilities 

than actors, the Actors model is the logical choice for the first instantiation of 

paraDOS. 



Linda 

The tuple space model and Linda language are due to Gelernter [Ge185]. We 

present instantiations of paraDOS for Linda in Chapter 6. Linda is very different 

from pure message passing- based models (e.g., Actors) ; therefore they represent 

an important test of the diversity of paraDOS9s instantiation capability. The 

current popularity of commercial tuple space implementations, such as Sun's 

JavaSpaces FHA991 and IBM's T Spaces [WML98], contributes to the relevance 

of Linda instances of paraDOS. 

Linda is not a complete programming language; it is a communication and 

coordination language. Linda is intended to augment existing computational 

languages with its coordination primitives to form comprehensive parallel and 

distributed programming languages. The Linda coordination primitives are rd(), 

in() ,  out (), and eval(). The idea is that multiple Linda processes share a com- 

mon space, called a tuple space, through which the processes are able to commu- 

nicate and coordinate using Linda primitives. 

A tuple space may be viewed as a container of tuples, where a tuple is simply 

a group of values. A tuple is considered active if one or more of its values is 

currently being computed, and passive if all of its values have been computed. 

A Linda primitive manipulates tuple space according to the template specified 

in its argument. Templates represent tuples in a Linda program. A template 

extends the notion of tuple by distinguishing its passive values as either formal or 

actual, where formal values, or formals, represent typed wildcards for matching. 

Primitives rd() and in()  are synchronous, or blocking operations; out() and 

eval() are asynchronous. 



The rd() and in()  primitives attempt to find a tuple in tuple space that 

matches their template. If successful, these primitives return a copy of the match- 

ing tuple by replacing any formals with actuals in their template. In addition, 

the in() primitive, in the case of a match, removes the matching tuple from 

tuple space. In the case of multiple matching tuples, a nondeterministic choice 

determines which tuple the rd() or in()  operation returns. If no match is found, 

both operations block until such time as a match is found. The out()  operation 

places a tuple in tuple space. This tuple is a copy of the operation's template. 

Primitives rd(), in() ,  and out() all operate on passive tuples. 

All Linda processes reside as value-yielding computations within the active 

tuples in tuple space. Any Linda process can create new Linda processes through 

the eval( )  primitive. Execution of the eval() operation places an active tuple 

in tuple space, copied from the template. When a process completes, it replaces 

itself with a passive value within its respective tuple; when all processes within a 

tuple replace themselves with values, the formerly active tuple becomes passive. 

Only passive tuples are visible for matching by the rd() and in() primitives; thus 

active tuples are invisible. 

In the almost two decades since Gelernter first conceived the Linda language 

and tuple space, the computer world has evolved dramatically. During most 

of this time, Linda development and research has primarily been an academic 

exercise. Only recently has the tuple space approach to building distributed 

systems gained widespread acceptance. It  is instructive to look a t  Linda's history 

to understand its current role in distributed computing paradigms. 

The Linda language has several desirable properties that seem particularly 

well-suited for distributed computing. Briefly, since tuples are addressed associa- 

tively, through matching, tuple space is a platform independent shared memory. 



Unlike message passing systems where a sender must typically specify a message's 

recipient, tuple space acts as a conduit for the generation, use, and consumption 

of information between distributed processes. Information generators do not 

need to know who their consumers will be, nor do information consumers need to  

know who generated the information they consume. Gelernter calls this property 

communication orthogonality. Additionally, tuples may be generated long before 

their consumers exist, and tuples may be copied or consumed long after their 

generators cease to exist. This property is time independence. 

When distributed computing didn't seem to be making great progress, the 

focus of Linda research shifted to parallel computing. The difference between 

distributed and parallel computing is loosely coupled versus tightly coupled pro- 

cessors, respectively. Linda's properties serve parallel computing well, with a 

natural notion for barrier synchronization and heterogeneity. 

In the early nineties, Internet usage began to enter the mainstream of tech- 

nology with the advent of the world wide web, browsers, Java, and smart de- 

vices. What was missing before was network ubiquity, a platform-independent 

language, and of course, a pervasive motivation. The motivation came when em- 

bedded systems migrated from the military to the general public in the form of 

smart appliances. For the first time, embedded microprocessors, such as those 

found in telephones, televisions, toaster ovens, and automobiles, had an external 

interface. The subsequent desire to network and control these devices remotely 

led to the need for a simple, yet powerful, protocol to enable this technology. 

Researchers at Sun Microsystems and IBM turned to Gelernter's Linda language 

and tuple spaces as the basis for developing their new distributed programming 

tools. Tuple space has returned to its roots, and is now the focus of distributed 

computing once again. 



CSP 

Communicating Sequential Processes (CSP) is due to Hoare [Hoa85]. CSP is 

a model for reasoning about concurrency; it provides an elegant mathematical 

notation and set of algebraic laws for this purpose. The inspiration for developing 

paraDOS based on observable events and the notion of event traces comes from 

CSP. 

CSP views concurrency, as its name implies, in terms of communicating se- 

quential processes. A computational process, in its simplest form, is described by 

a sequence of observable events. In general, process descriptions also benefit from 

Hoare's rich process algebra. The CSP process algebra is capable of expressing, 

among other things, choice, composition, and recursion. The history of a compu- 

tation is recorded by an observer in the form a sequential trace of events. Events 

in CSP are said to be offered by the environment of a computation; therefore, 

they occur when a process accepts an event at  the same time the event is offered 

by the environment. 

When two or more processes compute concurrently within an observer's envi- 

ronment, the possibility exists for events to occur simultaneously. CSP has two 

approaches to express event simultaneity in a trace: synchronization and inter- 

leaving. Synchronization occurs when an event e is offered by the environment of 

a computation, and event e is ready to be accepted by two or more processes in 

the environment. When the observer records event e in the trace of computation, 

the interpretation is that all those processes eligible to accept e participate in the 

event. 

The other form of event simultaneity, where two or more distinct events oc- 

cur simultaneously, is recorded by the observer in the event trace via arbitrary 



interleaving. For example, if events el and e2 are offered by the environment, and 

two respective processes in the environment are ready to accept el and e2 a t  the 

same time, the observer may record either el followed by ez, or ez followed by el. 

In this case, from the trace alone, we can not distinguish whether events el and 

ez occurred in sequence or simultaneously. CSP's contention, since the observer 

must record el and ez in some order, is that this distinction is not important. 

CSP's algebraic laws control the permissible interleavings of sequential pro- 

cesses, and support parallel composition, nondeterminism, and event hiding. Im- 

portant sets within the CSP algebra are the traces, refusals, and failures of a 

process. The set of traces of a process P represents the set of all sequences of 

events in which P can participate if required. A refusal of P is an environment 

- a set of events - within which P can deadlock on its first step. The set 

of refusals of P represents all environments within which it is possible for P to 

deadlock. The set of failures of P is a set of trace-refusal pairs, indicating the 

traces of P that lead to the possibility of P deadlocking. 

Reasoning about a system's trace is equivalent to reasoning about its com- 

putation. CSP introduces specifications, or predicates, that can be applied to 

individual traces. To assert a property is true for a system, the associated predi- 

cate must be true for all possible traces of that system's computation. Examples 

of elegant CSP predicates include those that test for properties of nondivergence 

or deadlock-freedom in a system. Hoare's CSP remains an influential model for 

reasoning about properties of concurrency. Recent contributions to the field of 

CSP research include Roscoe [Ros98] and Schneider [SchOO]. 



Composition 

The conventional notion of composition refers to sequential composition. For 

example, in imperative programming languages, a common way to compose two 

or more individual statements involves delimiting with semicolons (e.g., s l ;  s2). 

The semantics of functional programming languages provides for composition 

through the linking of output values to input values in function application (e.g., 

f ( g ( x ) ) ,  where the output value from function g ( )  becomes the input value to 

function f 0). 

For a non-programming language example, consider the Unix operating sys- 

tem. Unix provides numerous facilities for command composition, including the 

semicolon (;) and the pipe symbol (I), both of which are forms of composition. 

The semicolon is an example of sequential composition; for "a; b", command a 

executes, then command b executes. The pipe is an example of composition that 

permits concurrency; for "a I b", a's output becomes b's input, and a and b may 

run concurrently, subject to b blocking if it needs input from a that has yet to  be 

produced. 

Sequential composition is one possible restriction of parallel composition. 

When we discuss composition within the context of paraDOS, we refer to the 

more general notion of concurrent, or parallel composition [Mi189, CT90, CT92, 

FOT921. Parallel composition provides for the concurrent computation of com- 

posed components. One definition of a distributed system is the composition of 

multiple, loosely coupled sequential processes that communicate and coordinate 

to perform some computation. A more general definition provides for the com- 

position of multiple, loosely coupled distributed systems. Since one of the main 

goals for paraDOS is to be a general model, we sought to capture the essence of 



general composition, not only across instances of paraDOS, but with respect to 

the more general, recursive notion of composition possible in distributed systems. 

Operational Semantics 

In this dissertation, we employ operational semantics to develop a general com- 

putational model for concurrency. By general we mean a parameterized model 

capable of instantiation into multiple parallel and distributed systems. Thus, 

our goal is a model that goes beyond describing the meanings of programs for a 

particular programming language; we intend paraDOS to be generally applicable 

to a broad scope of computational systems and paradigms. The success of our 

research provides further evidence of the utility of operational semantics as an 

effective means to develop elegant models of computation that support reasoning 

about the modeled systems. 

This section provides a brief introduction to operational semantics. The re- 

mainder of this section is organized as follows: Section 2.6.1 defines operational 

semantics. Sections 2.6.2 and 2.6.3 present two important contributions to the 

field of operational semantics, Landin's SECD machine and Plotkin's structural 

operational semantics. 

2.6.1 Definition 

The field of operational semantics encompasses any formal method used to de- 

scribe the meaning of a program through the changes its execution makes to 



the state of some computational model [SK95]. The following definition is from 

Howe [How931 : 

Definition 1 (operational sernantdcs) An operational semantics is a set of 

rules specifying how the state of an actual or hypothetical computer changes 

while executing a program. The overall state is typically divided into a number 

of components, e.g. stacks, heaps, registers, etc. Each rule specifies certain 

preconditions on the contents of some components and their new contents after 

the application of the rule. 

An operational semantics may take many forms, specifying a formal or informal 

model of computation; it is defined at  a level of abstraction appropriate for the 

model's purpose. Important references for work in operational semantics include 

Dijkstra [Dij71], Landin [Lan64], Kahn [Kah87], Plotkin [Plo81], Marcotty, et 

a1 [MLB76], and Hennessy [Hengo]. The remaining subsections present Landin's 

and Plotkin's respective contributions to the field of operational semantics. 

2.6.2 The SECD Machine 

The first example is a classic use of operational semantics, the SECD machine 

by Peter Landin [Lan64]. The purpose of the SECD machine is to evaluate 

lambda expressions. As a result, the computational techniques employed by the 

SECD machine have been used in implementations of functional programming 

languages. SECD's name comes from the names of the four stacks which comprise 

the machine's configuration, or state: 

S for Stack A structure for storing partial results awaiting subsequent use. 



E for Environment A collection of bindings of values (actual parameters) to 

variables (formal parameters). 

C for Control A stack of lambda expressions yet to be evaluated plus a spe- 

cial symbol "@" meaning that an application can be performed; the top 

expression on the stack is the next one to be evaluated. 

D for Dump A stack of complete states corresponding to evaluations in progress 

but suspended while other expressions (inner redexes) are evaluated. 

The notation for a state, then, is cfg(S, E, C, D). Finally, SECD has a transition 

function that maps current states to next states. Formally, we specify this tran- 

sition function by the mapping transform : State + State. Figure 2.1 contains 

the algorithm for the SECD transition function, as specified in Slonneger and 

Kurtz [SK95]. The SECD machine starts in an initial state with the C stack 

containing the lambda expression to be evaluated, and the S, E, and D stacks 

empty. A final state (if one exists for a given lambda expression) is recognized 

by empty C and D stacks; the result is on top of the S stack. Implementing the 

SECD machine in Scheme was an important personal milestone in the author's 

understanding of operational semantics. That implementation is in Appendix A. 

2.6.3 Structural Operational Semantics 

The SECD machine demonstrates one form of operational semantics, whose pur- 

pose is the specification of an abstract machine capable of carrying out the me- 

chanical evaluation of lambda expressions. Another form of operational seman- 

tics, developed by Gordon Plotkin [Plo81], is called structural operational seman- 

tics. Structural operational semantics presents state transitions in the form of 



transform cfg(S, E, C, D) = 
(1) if head(C) is a constant 

then cfg([head(C) I S], E, tail(C), D) 
(2) else if head(C) is a variable 

then cfg([E(head (C)) I S], E, tail(C), D) 
(3) else if head(C) is an application (Rator Rand) 

then cfg(S, E, [Rator,Rand,@ I tail(C)], D) 
(4) else if head(C) is a lambda abstraction XV . B 

then cfg([closure(V,B,E) I S], E, tail(C), D) 
(5) else if head (C) = @ and head(tai1 (S)) is a predefined function f 

then cfg([f(head(S)) I tail(tail(S))], E, tail(C), D) 
(6) else if head (C) = @ and head(tail(S)) = closure(V,B,E1) 

then cfg([ 1, [VH head (S)]El, [B], cfg(tail(tail(S)), E, tail(C), D)) 
(7) else if C = [ ] 

then cfg([head(S) ( S1], El, C1, Dl) where D = cfg(s l ,E l ,C~,D~)  

Figure 2.1: Transition Function for the SECD Machine 

inference rules. Thus, the abstract machine becomes a system of inference rules. 

The classic representation of an inference rule has premises listed above a hori- 

zontal line, a conclusion below the line, and any required condition (if necessary), 

to the right. Formally, here is the general form of an inference rule: 

premise, . . . premise, 
condition. 

conclusion 

Inference rules can be used to specify the abstract syntax of a language, as 

well as the semantics of expressions and commands. Program meaning derives 

from the use of inference rules on a program. Inference rules perform syntactic 

transformations of language elements until no further transformations are possible 

and normal form values remain. The formal technique of structural induction 

on transformations provides a powerful mechanism for proving properties about 

programs. 



2.7 Related Work 

A rich body of work exists proposing process algebraic approaches to model con- 

aurrency and distributed computation. However, they each differ &om paraDOS 

in one or two important ways: single-event transitions and assumption of causal 

relationships between events. For example, CCS and the a-Calculu~, by Mil- 

ner [Mi189, Mi1991, employ singular trsnsitions and interleaving to express con- 

currency. Event structures and causal trees, by Degano, et a{. [DDM88, DDSOb, 

DDSOa], employ graph or tree structures to represent parallel events, whose edgea 

represent causal relationships between individual events. Two important differ- 

ences here are that causal relationships preclude event structures from being con- 

sidered parallel events in the sense of paraDOS, and paraDOS does not proceed 

from the assumption of knowledge of any causal relationships between events; it 

is strictly observational. 

Hoare's Unifying Theories [Hoa94] are not unifying in the same sense of para- 

DOS as a general model; rather Hoare provides a notation and mechanism for 

alternatively representing a given model as a denotational, algebraic, or opera- 

tional semantics. That is, using the proposed notation, a semantics in one form 

can be mechanically translated to either of the other two semantics. 

Joint work in parallel program composition, between the California Insti- 

tute of Technology and Argonne National Laboratory, by Chandy and Tay- 

lor [CTSO, CT92] and Foster, et al. [FOT92], led to PCN (Program Composi- 

tion Notation). According to the PCN approach, two types of variables exist: 

mutable and definitional (single assignment). Mutable variables must be local 

to some composable element of a program, while definitional variables can be 

shared across composable elements. At run time, programs are decomposed into 



pieces, such that single assignment variables may be assigned a value at  most 

once, otherwise they are undefined. At tempts to access an undefined definitional 

variable are blocked until such time as the variable is assigned a value. This 

approach results in a run time environment without race conditions. 

An informal operational semantics of the C-Linda programming language was 

developed by Narem [Nar89]. An operational semantics for Actorspaces [AC93, 

AC941, an extension of the actors model that supports Linda-like tuple spaces, 

was presented by Callsen [Ca194]. A structured operational semantics for Linda 

tuple space was developed by Jensen [CJY94, Jen941, as an important part of the 

development of a computational model for multiple tuple spaces. As one of the 

points addressed in building a refinement calculus for tuple spaces, Semini and 

Montangero [SMSS] define a reference language and its operational semantics. 

While the model presented in this paper is also an operational semantics for 

Linda and tuple space, our work is distinguished from previous work in several 

ways. ParaDOS directly supports multiple simultaneous views of a computation. 

'Ikansition steps in previous models correspond to single event occurrences; tran- 

sitions in paraDOS correspond to parallel event occurrences. In Narem [Nar89], 

an informal operational semantics is given for a limited implementation of eval(). 

In Jensen (CJY94, Jen941, eval() is treated, but at  a different level of abstrac- 

tion. Support for views and parallel events is a more natural level of abstraction 

for reasoning about parallel and distributed computation. Finally, paraDOS is a 

general model for reasoning about parallel and distributed computation that can 

and has been instantiated for computational paradigms other than tuple space, 

e.g. see [SPH98]. Previous operational semantics developed by the other re- 

searchers mentioned in this section were specific to Linda and tuple space. These 

ideas will be explored further in the following chapters. 



CHAPTER 3 

paraDOS Concepts 

ParaDOS uses a convergence of tools and techniques for modeling different forms 

of concurrency, including parallel and distributed systems. It is designed to im- 

prove upon existing levels of abstraction for reasoning about properties of con- 

current computation. The result is a model of computation with new and useful 

abstractions for describing concurrency and reasoning about properties of such 

systems. This chapter discusses important concepts needed to understand para- 

DOS's features and the motivations for their inclusion. 

ParaDOS models concurrency using a parameterized operational semantics. 

The reasons for choosing operational semantics to develop paraDOS are twofold. 

First, an operational semantics describes how computation proceeds. Second, 

an operational semantics permits choosing an appropriate level of abstraction, 

including the possibility for defining a parameterized model. The motivation for 

including parameters is to make paraDOS a general model that can be instanti- 

ated. Each such instance can be used to study and reason about the properties 

of some specific parallel or distributed system within a consistent framework. 

From CSP we borrow the practice of event-based reasoning and the notion 

of event traces to represent a computation's history. The first concept to discuss 

is that of events, or, more precisely, observable events. The events of a system 

are at a level of abstraction meaningful for describing and reasoning about that 



system's computation. Events are the primitive elements of a CSP environment. 

CSP events serve a dual purpose; they describe the behavior of a process, and they 

form an event trace when recorded in sequence by an observer. CSP represents 

concurrency by interleaving the respective traces of two or more concurrently 

executing processes. CSP is a process algebra, a system in which algebraic laws 

provide the mechanism for specifying permissible interleavings, and for expressing 

predicates to reason about properties of computation. 

One of the great challenges of developing a general model concerns the iden- 

tification of common observable behavior among the variety of possible systems. 

Interprocess communication is one such common behavior of concurrent systems, 

even if the specific forms of communication vary greatly. For example, in message 

passing systems, events could be message transmission and delivery; in shared 

memory systems, events could be memory reads and writes. Even among these 

examples, many more possibilities exist for event identification. Since paraDOS 

is to be a general model of concurrency, event specification is a parameter. 

CSP is a model of concurrency that abstracts away event simultaneity by in- 

terleaving traces; the CSP algebra addresses issues of concurrency and nondeter- 

minism. This event trace abstraction provides the basis for our work. ParaDOS 

extends the CSP notion of a trace in several important ways. First, paraDOS 

introduces the concept of a parallel event, an event aggregate, as the building 

block of a trace. A trace of parallel events is just a list of multisets of events. 

Traces of event multisets inherently convey levels of parallelism in the compu- 

tational histories they represent. Another benefit of event multiset traces is the 

possible occurrence of one or more empty event multisets in a trace. In other 

words, multisets permit a natural representation of computation proceeding in 



Some observable, sequential events: A 

A parallel event: Some possible, corresponding ROPES: 

Figure 3.1: paraDOS Concepts: events, parallel event, and ROPEs. 

the absence of any observable events. The empty multiset is an alternative to 

CSP's approach of introducing a special observable event ( r )  for this purpose. 

In concurrent systems, especially distributed systems, it is possible for more 

than one observer to exist. Furthermore, it is possible for different observers 

to perceive computational event sequences differently, or for some observers to 

miss one or more event occurrences. Reasons for imperfect observation range 

from network unreliability to relevance filtering in consideration of scalability. 

ParaDOS extends CSP's notion of a single, idealized observer with multiple, 

possibly imperfect observers, and the concept of views. A view of computation 

implicitly represents its corresponding observer; explicitly, a view is one observer's 

perspective of a computation's history, a partial ordering of observable events. 

Multiple observers, and their corresponding views, provide relevant information 

about a computation's concurrency, and the many partial orderings that are 

possible. 



I A trace: 
One possible view: Another possible view: A 3rd possible view: 

i i i 
t 

Figure 3.2: paraDOS Concepts: trace and views. 

To describe views of computation in paraDOS, we introduce the concept of 

a ROPE, a randomly ordered parallel event, which is just a list of events from 

a parallel event. The concepts of observable events, parallel events, and ROPEs 

are depicted - using shape primitives for events - in Figure 3.1. Because 

paraDOS supports imperfect observation, the ROPE corresponding to a parallel 

event multiset need not contain all - or even any -- events from that multiset. 

Indeed, imperfect observation implies some events may be missing from a view 

of computation. 

Another consideration for ROPEs is the possibility of undesirable views. Para- 

DOS permits designating certain event sequences as not legitimate, and then 

constraining permissible ROPEs accordingly. Views of a computation are de- 

rived from that computation's trace, as depicted in Figure 3.2. While a trace is 

a list of event multisets, a corresponding view is a list of lists (ROPEs) of events. 

The structure of a view, like that of a parallel event, preserves concurrency infor- 

mation. An important parameter of paraDOS is the view relation, which permits 

the possibility of imperfect observation and the designation of undesirable views. 



Parallel events, ROPES, and the distinction of a computation's history from its 

views are abstractions that permit reasoning about computational histories that 

cannot, in general, be represented by sequential interleavings. To see this, assume 

perfect observation, and assume different instances of the same event are indis- 

tinguishable. Given these two assumptions, it is not possible to reconstruct the 

parallel event trace of a computation, even if one is given all possible sequential 

interleavings of that computation. Thus, while it is easy to generate all possible 

views from a parallel event trace, the reverse mapping is not. in general, possible. 

For example, consider the sequential interleaving (A, A, A, A), and assume this 

trace represents all possible interleavings of some system's computational history. 

It is not possible to determine from this trace alone whether the parallel event 

trace of the same computation is ({A, A, A ) ,  A) or ({A, A), {A,A)), or some 

other possible parallel event trace. 

The phenomenon of views is not the only concept that derives from parallel 

event traces; there is also the concept of transition density. Consider a paraDOS 

trace as a labeled, directed graph, where the parallel events represent nodes, the 

possible sequences of parallel events in the trace define the directed edges of the 

graph, and the cardinality of each parallel event multiset serves as a weight with 

which to label the corresponding node's incoming transition. In other words, we 

can represent a paraDOS trace as a labeled transition system, where each label 

measures the number of observable events that occur during that node's corre- 

sponding transition. Thus, transition density is a measure of parallelism in each 

transition of a concurrent system, or, when aggregated over an entire trace, is a 

measure of overall concurrency. Alternatively, transition density serves as a pa- 

rameter in paraDOS. A transition density of one models sequential computation; 

transition densities greater than one specify permissible levels of parallelism. 



The concepts described to this point are the primitive elements of trace-based 

reasoning within paraDOS. What remains are descriptions of the concepts our 

operational semantics employs to generate parallel events, traces, and views of 

concurrent computation. To define an operational semantics requires identifying 

the components of a system's state, and a state transition function to describe how 

computation proceeds from one state to the next. In the case of an operational 

semantics for parallel or distributed computation, a transition relation often takes 

the place of a transition function due to inherent nondeterminism. When multiple 

independent processes can make simultaneous computational progress in a single 

transition, many next states are possible; modeling to which state computation 

proceeds in a transition reduces to a nondeterministic choice from the possible 

next states. 

Several general abstractions emerge concerning the components of a system's 

state in paraDOS. The first abstraction is to represent processes as continuations. 

A continuation represents the remainder of a process's computation. The second 

abstraction is to represent communications as closures. A closure is the binding 

of an expression and the environment in which it is to be evaluated. The third 

abstraction is to represent observable behavior from the preceding transition in a 

parallel event set, discussed earlier in this chapter. The final abstraction concern- 

ing components of a paraDOS state is the next (possibly unevaluated) state to 

which computation proceeds. Thus, the definition of state in paraDOS is recur- 

sive (and, as the next paragraph explains, lazy). The specifics of processes and 

communications may differ from one instance of paraDOS to another, but the 

above abstractions concerning a system's components frame the paraDOS state 

parameter. 



Lazy evaluation -- delaying evaluation until the last possible moment - is 

an important concept needed to understand the specification of a paraDOS tran- 

sition relation. Lazy evaluation emerges in paraDOS as an effective approach to 

managing the inherent nondeterminism present in models of concurrency. The 

computation space of a program modeled by paraDOS is a lazy tree, as depicted in 

Figure 3.3. Nodes in the tree represent system configurations, or states; branches 

represent state transitions. A program's initial configuration corresponds to the 

root node of the tree. Branches drawn with solid lines represent the path of 

computation, or the tree's traversal. Nodes drawn with solid circles represent the 

elaborated configurations within the computation space. Dashed lines and circles 

in the tree represent unselected transitions and unelaborated states, respectively. 

The transition relation only elaborates the states to which computation proceeds 

(i.e., lazy evaluation). Without lazy evaluation, the size of our tree (computation 

space) would distract us from comprehending a system's computation, and at- 

tempts to implement an instance of paraDOS without lazy evaluation would be 

time and space prohibitive, or even impossible in the case of infinite computation 

spaces. 

Each invocation of the transition relation elaborates one additional state 

within the paraDOS computation space. The result is a traversal down one 

more level of the lazy tree, from the current system configuration to the next 

configuration. The abstraction for selecting which state to elaborate amounts to 

pruning away possible next states, according to policies specified by the transi- 

tion relation, until only one selection remains. The pruning occurs in stages; each 

stage corresponds to some amount of computational progress. Two examples of 

stages of computational progress are the selection of a set of eligible processes and 

a set of communication closures, where at each stage, all possible sets not chosen 

represent pruned subtrees of the computation space. Two additional stages in- 



Figure 3.3: ParaDOS computation space: a lazy tree. 

volve selecting a sequence to reduce communication closures, and a sequence to 

evaluate process continuations. Once again, sequences not chosen in each of these 

two steps represent further pruning of subtrees. The transition relation assumes 

the existence of a meaning function to abstract away details of the internal com- 

putation of process continuations. As well, during the stages of the transition 

relation, it is possible to generate one or more observable events. The generated 

events, new or updated process continuations, and new or reduced communica- 

tion closures contribute to the configuration of the newly elaborated state. Since 

the number of stages and the semantics of each stage may differ from one instance 

of paraDOS to another, the specification of the transition relation is a parameter. 

One additional paraDOS parameter transcends the previous concepts and pa- 

rameters discussed in this chapter. This parameter is composition. Implicitly, 

this chapter presents paraDOS as a framework to model a single concurrent sys- 



tem, whose configuration includes multiple processes, communications, and other 

infrastructure we use to support reasoning about computational properties. How- 

ever, especially from a distributed system standpoint, a concurrent system is also 

the result of composing two or more (possibly concurrent) systems. 

For example, consider businesses who have an Internet presence, and wish to  

integrate their respective systems to take advantage of the benefits of electronic 

commerce. The result of such integrations (ideally) is concurrent, multiway trans- 

actions between the respective business systems. It is more natural to model such 

systems as the composition of individual business systems than as a single con- 

current system. 

Since the desire exists to model the composition of concurrent systems, one 

of paraDOS's parameters is a composition grammar. The degenerate specifica- 

tion of this parameter is a single concurrent system. In general, the composition 

grammar is a rewriting system capable of generating composition graphs. In 

these graphs, a node represents a system and an edge connecting two nodes rep- 

resents the composition of their corresponding systems. Each system has its own 

computation space, communication closures, and observers. One possible com- 

position grammar - presented in Chapter 8 -- generates string representations 

of a composition tree, where each node is a system, and a parent node represents 

the composition of its children. Other composition grammars are possible. 



CHAPTER 4 

paraDOS Uninstantiated 

This chapter presents the uninstantiated paraDOS model. First, we introduce 

helpful notation to understand the subsequent definitions and discussion. Next, 

we formalize the concepts presented previously in Chapter 3, and lay the foun- 

dation for further formal discussion in this dissertation's remaining chapters. 

The model presented in this section is denoted S, and the components for S 

are described below. The bar notation is used to denote elements in the model 
- 
S which correspond to elements in system S .  

- - 
Formally, S is represented by the btuple (a, A, T), where a represents the 

- - 
computation space of S, A represents the set of communication closures within 

0, and represents the set of views of the computation within a. The remainder 

of this section discusses in greater detail the concepts embedded within 3. In 

Table 4.1: paraDOS Notation 
Notation Meaning 
S A concurrent system 

Model of S 
Computation space (lazy tree) of S, or a decorated state 
within tree a 
Set of communication closures 
A communication closure 
Set of views 
A view 
4 ROPE 



turn, we cover computation spaces, communication closures, observable events, 

traces, and views. 

The state CT is a lazy tree of state nodes. When we refer to the tree a,  we 

refer to S 's  computation space. Each node in the tree represents a potential 

computational state. Branches in the tree represent state transitions. The root 

node a is S's start state, which corresponds to a program's initial configuration 

in the system being modeled by S. State nodes carry additional information to 

support the operational semantics. The specific elements of cr vary from instance 

to instance of paraDOS. 

Each level of tree cr represents a computational step. Computation proceeds 

from one state to the next in o through S's transition function. Given a current 

state, the transition function randomly chooses a next state from among all pos- 

sible next states. At each transition, the chosen next state in a is evaluated, and 

thus computation proceeds. The logic of the transition function may vary, but 

must reflect the computational capabilities of the system being modeled by S. 

Two special conditions exist in which the transition function fails to  choose 

a next state in o: computational quiescence and computation ends. Computa- 

tional quiescence implies a temporary condition under which computation cannot 

proceed; computation ends implies the condition that computation will never pro- 

ceed. Both conditions indicate that, for a given invocation, the transition function 

has no possible next states. The manner of detecting, or even the ability to detect, 

these two special conditions, may vary. 

To model the variety of approaches to parallel and distributed computation, 

paraDOS needs to parameterize communication. The set of communication clo- 

sures is the realization of this parameter, where the elements of K, the individual 

closure forms, A, vary from instance to instance of paraDOS. 



These concepts are illustrated in Figures 3.1 and 3.2, and we formally define 

them next. We define an observable event formally as follows: 

Definition 2 (observable event) An observable event is an instance of in- 

put /out put (including message passing) behavior. 

In our research, we further distinguish sequential events from parallel events, 

and define them formally as follows: 

Definition 3 (sequential event) A sequential event is the occurrence of an 

individual, observable event. 

Definition 4 (parallel event) A parallel event is the simultaneous occurrence 

of multiple sequential events, represented as a set of sequential events. 

The traversal of computation space a represents the actual history of corn- 

putation of a program within s. We borrow the notion of a trace from Hoare's 

CSP [Hoa85], with one significant refinement for distributed systems: it is possi- 

ble for two or more observable events to occur simultaneously. We define sequen- 

tial and parallel event traces as follows: 

Definition 5 (sequential event trace) A sequential event trace is an ordered list 

of sequential events representing the sequential system's computational history. 

Definition 6 (parallel event trace) A parallel event trace is an ordered list of 

parallel events representing the parallel system's computational history. 



For the remainder of this paper, unless otherwise stated, a trace refers to  a 

parallel event trace in paraDOS. In the case of paraDOS, a parallel event trace 

is a trace of S, constructed from the traversal of o, and is a representation of S 's  

computational history. 

One additional concept proves to be useful for the definition of views. We 

introduce the notion of a randomly ordered parallel event, or ROPE, as a lin- 

earization of events in a parallel event, and define ROPE formally as follows: 

Definition 7 (ROPE) A randomly ordered parallel event, or ROPE, is a ran- 

domly ordered list of sequential events which together comprise a subset of a 

parallel event. 

ParaDOS explicitly represents the multiple, potentially distinct, views of com- 

putation within 3. The notion of a view in paraDOS is separate from the notion 

of a trace. A view of sequential computation is equivalent to a sequential event 

trace, and is therefore not distinguished. We define the notion of a view of parallel 

computation formally as follows: 

Definition 8 (view) A view, v, of a parallel event trace, t r ,  is a list of ROPEs 

where each ROPE, p, in v is derived from p's corresponding parallel event in a 

tr. 

Thus, views of distributed computation are represented at  the sequential event 

level, with the barriers of ROPEs, in paraDOS; while traces are at  the parallel 

event level. 

There are several implications of the definition of ROPE, related to the con- 

cept of views, that need to be discussed. First, a subset of a parallel event can 

be empty, a non-empty proper subset of the parallel event, or the entire set of se- 

quential events that represent the parallel event. The notion of subset represents 



the possibility that one or more sequential events within a parallel event may not 

be observed. Explanations for this phenomenon range from imperfect observers 

to unreliability in the transport layer of the network. Imperfect observers in this 

context are not necessarily the result of negligence, and are sometimes intentional. 

Relevance filtering, a necessity for scalability in many distributed applications, is 

one example of imperfect observation. 

The second implication of the definition of ROPE concerns the random or- 

dering of sequential events. A ROPE can be considered to be a sequentialized 

instance of a parallel event. That is, if an observer witnesses the occurrence of 

a parallel event, and is asked to record what he saw, the result would be a list 

in some random order: one sequentialized instance of a parallel event. Addi- 

tional observers may record the same parallel event differently, and thus ROPEs 

represent the many possible sequentialized instances of a parallel event. 

Element of S is a set of views. Each v in is a list of ROPEs that represents 

a possible view of computation. Let v, be a particular view of computation in 

Y. The jth element of vi, denoted pj, is a list of sequential events whose order 

represents observer vi's own view of computation. Element pj of v; corresponds 

to the jth element of S's trace, or the jth parallel event. Any ordering of any 

subset of the jth parallel event of S's trace constitutes a ROPE, or valid view, of 

the jth parallel event. 

We express the view relation with two functions as shown in Figure 4.1. In- 

stances of the view relation differ only by the definitions of their respective states 

a .  The view relation Fu traverses its input view v and tree a, until an unelabo- 

rated ROPE is encountered in v. Next, 3, calls relation V to continue traversing 

0, for some random number of transitions limited so as not to overtake the cur- 

rent state of computation. While V continues to traverse 0, it also constructs a 



3;, : view x state -+ view 
ESv, 0)  = 

if v empty 

V ( 4  
else 

append ((head ( v ) ) ,  Fv (tail (v), nextstate(a))) 

V : state + view 
V ( 0 )  = 

if 0 undefined 
0 

else 
let viewset g e t F ( a )  
in let p = list (viewset) 
in random choice of 

(append ( ( p ) ,  V (nezts tate(a)) ,  or 

Figure 4.1: paraDOS View Functions 

subsequent view v' to return to Fv. For each state traversed, the corresponding 

pi in v' is a random linearization of a random subset of 7. Upon return, Fu 

appends v' to the end of v, thus constructing the new view. 

Finally, one useful way to characterize the computation space and transition 

function of S is as a labeled transition system (LTS)  . An LTS is a labeled, directed 

graph. We can map the trace of S to an LTS as follows: each state in the trace 

maps to a node; each transition between states maps to  a directed edge between 

the corresponding nodes; and each label on a state transition denotes a weight. 

The weight of each edge represents its transition density, which we define as: 

Definition 9 (transition density) Let M represent an LTS, and t represent 

a transition within M. The transition density of t is the number of observable 

events that occur when t is chosen within M. 



Transition density is an attribute of LTS-based models of computation. For 

different instances of ParaDOS, transition density may vary. Transition density 

exists both as a parameter and an attribute, as a specification for and a measure 

of parallelism. ParaDOS doesn't require the services of an idealized observer to 

produce a trace precisely because our model supports parallel events, and thus a 

transition density greater than one. 



CHAPTER 5 

paraDOS Instantiated for Actors 

Section 5.1 presents Pact, paraDOS instantiated for the Actors model of compu- 

tation. Section 5.2 presents AT, Mason and Talcott's Actor Theories [MT97]. 

Section 5.3 states and proves a theorem concerning the equivalence of a restricted 

version of the Pact semantics and the semantics of AT. 

5.1 The Pact Instance of ParaDOS 

Section 5.1.1 defines the computational elements of the Actors model, and the 

state of an actor system. Section 5.1.2 gives the domain specification for S, and 

defines Pact's transition and view relations. Section 5.1.3 discusses the functions 

that help specify Pact's operational semantics. We present the equivalence theo- 

rem and proof in Section 5.3. Section 5.1.4 discusses some decidable predicates 

within Pact, and some that are not decidable. 



5.1.1 An Actor System 

Section 2.2 presented background information regarding the Actors model. In 

addition, we define the following computational elements of an actor system: 

Definition 10 (actor) An actor is a computational agent that has a behavior 

and is uniquely identified by its mail queue address. 

Definition 11 (actor machine) An actor machine is an instance of an actor 

and its current behavior, bound to a particular element (address) of that actor's 

mail queue. 

Definition 12 (task) A task is the content of a message sent to a designated 

recipient (an actor) that is uniquely identified by its task id. 

Given the definitions of actor, actor machine, and task, we define the state 

of S at  an instant in time t to be composed of the contents of two sets, active 

actors and active tasks. The set of active actors, A, contains actor machines 

still performing computation within S. The set of active tasks, 7, consists of 

undelivered messages within S. Both A and 7 from S have counterparts 2 and 
- 
7 in S, the equivalent paraDOS system. 

5.1.2 The Pa" Specification 

The instance of paraDOS for Actors, Pact, is an operational semantics for reason- 

ing about properties of computation in an Actor system, S. To instantiate Pact,  
--  

we must define S = (0, A, T), and Pact 's transition and view relations. Table 5.1 

contains the domain specification for Pact. 
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seqEvent 
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etype 
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Domain Specification 
state x closureSet x viewset 
mailqSet x actmachSet x taskset  x 

parEventSet x state 
I undefined 
p(mail9)  

~ ( a c t m a c h )  

list ( task )  
mqloc x beh x beh 
tidtype x mailq x msg 
etype x task 
mailq x int 
continuation (unspecified) 
task identifier (unspecified) 
message content (unspecified) 
{Es,ED) 
actmach x mailqSet x actmachset  x 

taskset  x actmachset 
0 
p ( v i e w )  

list (ROPE) 
list (seqEvent)  

Figure 5.1 : Pact Domain Specification 

The remainder of this section discusses the Pact domain specification in greater 

detail, and the Pact semantics. Section 5.1.3 contains the helper functions and 

predicates over the Pact domain. These helper functions and predicates support 

both the Pact semantics in this section and the equivalence theorem and proof in 

Section 5.3. 

Before proceeding, we need to comment on the three Pact types left unspecified 

in Table 5.1. Type msg represents the data domain of messages and actors, and 

the semantics is parameterized with respect to this domain. The type for the 



continuation of an actor, beh, is specfic to the particular actor meaning function 

and is thus unspecified in Pact. The only requirement for type tidtype is that it 

be possible to generate unique elements for all tasks within the model. Closure 

set remains empty for Pact, since the paraDOS abstraction of communication 

closures did not emerge until after we had defined Pact. 

The state of S, denoted a, consists of all possible states reachable from the 

start state of S; for this reason, o is also the computation space of S. Each state 

at  some time t in S corresponds to at least one state in o. The root node of 0 

corresponds to the start state in S. The one-to-many relationship between states 

in S and states in o reflects only the multiple computational paths possible, not 

additional or different computational power. These multiple paths represent the 

nondeterminism possible during parallel and distributed computation. 

Since S is a model, the states in 0 carry additional information to facil- 

itate Pact's operational semantics. A state, a, is represented by the 5-tuple 

( ,  , 7, , oneZt), where is the set of mail queues for the actors, is 

the set of actor machines, 7 is the set of tasks, is the set of parallel events, 

and onest is either undefined, or the state to which computation next proceeds, 

as assigned by the transition relation. 

Sets A and 7 in S consist of active actors and tasks, respectively. Their 
- - 

counterparts in S, A and T, have been introduced as two of the parts comprising 
- - 

the 5-tuple that represents a state, o, in S. M contains the mail queues of the 

actors whose actor machines are in x. In particular, the ith actor's mail queue 

in M ,  denoted mi, contains the tasks delivered to actor mi. 

Formally, actor machine 5, an element of 3, is represented by the 3-tuple 

(mi [Zoc], @init, qCont), where mi [loe] is the element loe in mail queue mi within 

to which E is bound, is the initial behavior of 5, and qmt is the current 



inboundtasks : taskset x mailqSet + taskset -- 
inboundtasks(7, M) = 
(7 17 E TA3mi E M s.t. recip(7) = mi} 

outboundtasks : taskset x mailqSet -+ taskset 
a- 

outboundtasks (7, M) = 
- -- 
T - inboundtasks (7, M) 

Figure 5.2: Pact Inbound and Outbound Tasks in 7 

continuation behavior of E. No two actor machines in 3 are bound to the same 

mail queue element of any mail queue in M. 

Formally, model task T ,  an element of in o, is represented by the 3-tuple 

(tid, mi, n), where tid is the unique task identifier, mi is the task recipient (an 

actor's mail queue within M), and n is the communication (message content). Set 
- -- 
7 can be divided into two subsets: the set of inbound tasks, inboundtasks(7, M), 

-- 
and the set of outbound tasks, outboundtasks(7, M). An inbound task is a 

task 7 whose recipient is an actor whose mail queue mi is in B; otherwise 7 is 

an outbound task. Functions inboundtasks () and outboundtasks () are given in 

Figure 5.2. 

Now that the representations of actor machines and tasks comprising 2 and 
- 
7 within a state, a, have been defined, discussion returns to the events in 7. 
The formal definition of an observable event is as follows: 

Definition 13 (observable event) An observable event is a task that has been 

sent by, or delivered to, an actor. 

An event, E ,  is represented by the pair ( Etype, 7 ), where values for Etype are 

either Es for a sent task or ED for a delivered task. Thus, 7 in o is a set of 

instances of the two types of sequential events. 



There is an important derivative relationship between these two elements. In 

a sense, 7 is a special derivative of 7; it represents the changes in 7 with respect 

to time. Time in Pact is measured discretely by the transitions from one state 

to the next. Specifically, events in of type Es represent those 7's added to 7 
in the last transition; events in of type ED represent those 7's removed from 

-- 
inboundtaslcs(7, M) in the last transition. Since is derivable from 7, it is not 

necessary to represent 7 explicitly in o. However, it is useful to maintain 

within each a to facilitate the construction of views. 

The meaning structure, p, is not part of S, but it supports the Pact meaning 

relation shown in Figure 5.3. The meaning relation returns one meaning p from 

the set of possible meanings for an actor machine's computation. The formal 

definition of meaning is as follows: 

Definition 14 (meaning) The meaning of actor machine h's computation from 

time t to time t + 1 is information consisting of 6 's  remaining computation, the 

(possibly empty) set of new actors created, the (possibly empty) set of new tasks 

created, and h's (possibly unspecified) replacement behavior. 

In Pact, we define a meaning structure p to represent one of the many possible 
- - 

meanings of 3's computation, and represent p by the 5-tuple ( hWnt, M ,,, , Anew, 
- - 
Tnew, AVl ). Element scant represents h updated with its new continuation. The 

- 
sets Mne, A,,,, and Tnew are the sets of new mail queues, new actor machines, 

and new tasks created by 5's computation. Element xWpl is either the empty 

set, or a singleton set containing 3 s  replacement actor machine. 

We assume the existence of an actor meaning function Am that abstracts away 

the details of actor machine execution. This is a reasonable assumption since such 

semantics are already specified in Agha [Agh86] and more recently in Agha et 



FP : actmach -+ meaning 
7, ((mi [lot] $init @ m t ) )  = 

p where - - - 
P E { @con1 M new , Anew , ?new - zrep,  )J - 

Am(@cmt) yields a w n t  M n e w  , A n e w  , ?new r x n p l  ) 

Figure 5.3: Pact Meaning Function 

al. [AMS97]. Function Am takes as its input argument an actor continuation, 

QCmt. Function Am returns a finite set of meanings for a given actor machine. 

The set of meanings returned by Am represents all the possible continuations of 

QCmt. This set must be finite since the language of an individual actor machine, 

as specified by Agha [Agh86], does not permit infinite execution. From Am, we 

construct the Pact meaning relation 7' shown in Figure 5.3. Relation Fp maps 

an actor machine to a meaning of 3 s  current behavior. Relation 7, randomly 

chooses one meaning for 5 ' s  computation from the set of all possible meanings 

of 5 's  current continuation, $,t. 

In Pact, computation proceeds by calling the transition relation, 36. The 

transition relation, shown in Figure 5.4, is itself composed of three functions, the 

inbound tasks function Fin, the outbound tasks function FOut, and the generate 

children function G. Relation F6 traverses a until it finds a state whose on,,t 

is undefined. Such a state is the current state of S, denoted a,,,. Relation Fd 

assigns to ocU,.anezt the result of applying the composition of FOut, Fin, and G to 

o C .  Figure 5.5 contains Fout and F,n; Figure 5.6 contains 9. We consider the 

cumulative effect of applying each of these functions (relations) to a,,,, in turn, 

elaborating the next computational state in o. 

The innermost function application Fout(a,,,) returns a new state a,,', in 
- - 

which a random subset of outbound tasks is removed from 7, P is empty, and 

the remaining elements are unchanged from a,,,. In the case where no outbound 



.Fa : state + state 
Fa( (M,  2, 7, p, anezt)) = 

if anext undefined 
(M, 3, 7, P ,  B(F,n(&ut((M, 3, 7, 7, amzt))))) 

else 

(m, 2, 7, 7, F ~ ( 0 n e z t ) )  

Figure 5.4: Pact Transition Relation 

FOut : state --+ state 
Fout((m, 3, 7, P, gnezt)) = -- 

let Tsub outboundtasks (7, M) 
in (M, 2, 7 - TSub, 0, undefined) 

F,, : state + state 
F,n((M, 3, 7, P, anext ) )  = 

let E, {? ( T is from the environment } 
in ( , U E ,  0, undefined) 

Figure 5.5: Pact Outgoing and Incoming External Tasks 

- 
tasks exist in a,,,, Tremains unchanged in a,,,'. Set 7 in a,,,' is empty because 

forwarding outbound tasks beyond S does not constitute an observable event; 

these tasks were previously observed as sent, and have yet to be delivered. 

The middle function application F,n(~cur') returns a new state a,,,", in which 

a random subset of inbound tasks is chosen from the environment and added to 
- 
7, is empty, and the remaining elements are unchanged from a,,,'. In the 

case where no inbound tasks exist from the environment, state a,,," remains 

unchanged from a,,,'. Notice that 7 remains empty in a,,," because tasks added 

to 7 from the environment do not constitute observable events; these tasks were 

already sent from some other location in the environment, so it is too late to 

observe such tasks as sent within S. 



The outermost function application G(ocur") returns the elaborated a,,t of 

ocu,", which represents the random choice of a next state, from among all possible 

next states in the o. Function G constructs its return state based on a random 

selection of inbound tasks Tr to deliver, the delivery of those tasks Mdel(7,), and 

the subsequent random selection of eligible actor machines & to make computa- 

tional progress. The set Mdel(7,) is constructed by removing those mail queues 

from M to which tasks will be delivered, then adding back those mail queues 

with their delivered tasks. An eligible actor machine is an h whose message state 

is delivered or consumed, and whose current continuation represents unfinished 

computation. The set m of randomly chosen meanings is obtained from applying 
I -I 

Fp to each in zr. The specification of x, A ,  and 7 is tedious but straight- 

forward and follows this paragraph's discussion. The specification of 7' warrants 

further attention. Set 7 will be empty regardless of any inbound or outbound 

task activity in 7 that results from the two innermost function applications FOut 

and Fin. Set 7' includes events of type Es and ED that derive from the meanings 

of actors in 2, that created new tasks 7 or had tasks from Tr delivered to them. 

Pa" Predicates and Helper Functions 

Figure 5.7 contains accessor functions for actors and tasks in Pact.  Functions 

actnarne and cont return an actor machine's name (mail queue identifier) and 

continuation (behavior), respectively. Functions content and recip return a task's 

message content and recipient actor's name, respectively. Function delzveredtask 

returns the task delivered to the specified actor machine. 



: state + state 
9((M,  2, T, P, onez t ) )= (m,  A', T', P,  oneXt1) where 

crneXtt is undefined, and 
let 7, inboundtasks(7, M )  - 
in let %del(5r) = (M - {ma&named (recip(T), M )  1 7 E 7,)) u 

(deliver(7, mailqnamed (reczp (T), M)) ( ? E 7,) -- 
in let 2 r  eligact, (A, Mdel ( ' f r ) )  

in let m = {.F,(z) 1 E Er) 
in 

Figure 5.6: Pact Generate Children 

Figure 5.8 contains modifier functions for actors and tasks in Pact. Function 

newcont updates an actor machine's current behavior with the specified continu- 

ation. Function deliver "delivers" a task to the specified actor's mail queue. For 

p a c t  , an actor mail queue is a list of tasks, and new tasks are always appended to 

the end of the list, but this need not be the case, in general. For example, a pri- 

ority mail queue may have a different delivery strategy, specified by a paraDOS 

parameter, based on some system policy we wish to model. Function retrieveMsg 

binds an actor machine's behavior to the message contents of the task delivered 

to the actor machine's mail queue location. 



hnc t ion  actname : actmach + int 
act name(^) = k 

where k is from C.mk [loc]. 

Function cont : actmach -+ beh 
c o n t ( ~ )  = E.qCont. 

Function content : task + msg 
content (7) = 7.n. 

Function recip : task ---+ int 
recip (7) = k 

where k is from T.mk. 

Function deliveredtask : mailqSet x actmaeh + task 
delzveredtask (m, 6) = mk [loc] 

where r n k  E 
- 
cr is bound to ~ . m ~ [ l o c ]  

Figure 5.7: Pact Accessor Functions 

Figure 5.9 contains predicate functions for actor machines in Pact. Predicate 

und? is true if an actor machine's task has not yet been delivered, predicate 

del? is true if an actor machine's task has been delivered but not consumed, 

and predicate cons? is true if an actor machine has consumed its task. In del? 

and cons?, the tests for equality and inequality are syntactic in the predicates' 

respective true cases. 

5.1.4 Pact Decidable Predicates 

We now present several decidable predicates in Pact that are useful for reasoning 

about distributed computation. Our first predicate deals with the consumption 



Function newcont : actmach x beh + actmach 
newcont (8, $) = 

8' where 
zl*lClcont = $7 
-I a . * = E * .  

Function deliver : mailqSet x task -+ mailqset 
d e E v e r ( m ,  7 )  = 

- 
M' where 
let k = reczp(7) in 

M1 = (M - {mk)) U{append(mk ,  F ) )  

Function retrieveMsg : actmach x mailqSet + actmach 
retrieveMsg (E ,  M )  = 

5' where 
let C [  ] be the evaluation context from E.Qmnt, 
and k = content (deliveredtask(m, E ) )  in 

E1.$cont = replace C [  ] with C[k] in E . L n t ,  
- - al.* = am* .  

Figure 5.8: P OCt Modifier Functions 

of tasks. This activity is not observable since it occurs internal to some actor 

machine. It is, however decidable for an actor machine. We define the consumed 

function formally as: 

Definition 15 (consumed ( E ) )  Boolean function consumed returns true if actor 

machine Z has consumed its task, and returns false otherwise. This is easily 

decided by comparing elements $init and qCmt of 5. If qinit and qCmt are syntac- 

tically equal, then 5 has not begun its computation, and thus consumed returns 

false. 

- -  
We define two states to be equivalent (E) if their respective M, A, and 7 

sets are identical. Formally: 



Function und? : mailqSet x actmach -t Boo1 
und?(m, Z) = 

True if h.mk [loc] in rn Null, 

False otherwise. 

Function del? : mazlqset x actmach -+ Bool 
d e l ? ( m ,  3) = 

True if 5.rnk[loc] in R not Null /\ E.$Jinit = E.$JCmt, 

False otherwise. 

Function cons? : mailqSet x actmach 4 Bool 
cons? (M, E )  = 

True if h.mk [loc] in M not Null A Z.llinit # Z~.I,!J-~, 

False otherwise. 

Figure 5.9: Pact Predicate Functins 

Definition 16 (oi 2 a j )  a, E aj a 

(ai .Xf = oj .J?) A (ai .A = aj .Zi) A (oi .7 = oj -7) 

During computation, S may enter one or more states of computational qui- 

escence. Typically, computational quiescence is the result of S waiting for an 

incoming task (message) from the environment. These periods of time can be de- 

tected by following the traversal of a, searching for consecutive, computationally 

equivalent states. 

The notion of an end of computation for S in Pact is not practical. Candi- 

dates for this condition include traversals of a in a current state of computational 

quiescence. In general, it is not decidable whether S, in a current state of com- 

putational quiescence, is also in an end of computation state. We cannot know 

whether S will ever receive another inbound task. Furthermore, even if is in a 

current state a,,, that contains no remaining actors performing computation, no 



tasks, and no actor machines waiting for inbound tasks, o,,, could still be acting 

as a task conduit for its environment. Inbound tasks that immediately become 

outbound tasks in 3 constitute meaningful computation. 

Actor Theories 

5.2.1 The AT Model 

We briefly describe Actor Theories. For a complete presentation of Actor The- 

ories, see Mason and Talcott [MT97]. An Actor Theory structure is a 3-tuple, 

defined as follows: AT = ( (A,S,M,L) ,  (acq,:), RR ). 

The first AT element is a 4-tuple of actor theory primitives: actor names, 

actor states, message contents, and labels. From these primitives follow the spec- 

ification of actor entities (actors), messages, and configuration interiors. Thus, 

[s], represents an actor a in state s, aoM represents a message intended for recip- 

ient actor a with contents M, and I represents a multiset of actors and messages 

such that no two actor entities have the same name. 

The second AT element is a Ztuple containing the actor theory primitive 

operations. The acquaintance function acq extracts actor names from an actor 

state, the contents of a message, or a label. The renaming function renames 

actor names within actor states, message contents, and labels. 

The final AT element RR is a set of reaction rules. Reaction rules are triples 

of the form 1 : I + I f ,  where 1 is the reaction rule's label, I is the configuration 

interior prior to transition, and I' is the configuration interior that results from 

transition. 



(internal) 

(idle) 

if a E p A acq(M) n InAct (I) G p 

(( I, a a M ))' 0~3~)  (( I )) pu(acq(M)-x)  
if a 4 InAct (I) 

X X 

Figure 5.10: AT Transition Rules 

An actor configuration consists of a configuration interior I ,  along with I 's 

corresponding set of receptionists p and set of externals X .  The receptionists 

of I are members of a subset of the actors within I whose names have been 

communicated externally. The set of I ' s  external actors contains those actor 

names referenced within I but not found in I .  

The set of actor configurations is defined as follows: 

K = { (  I ) )  1 p InAct (I) A EztAct(1) x ) .  K ranges over K. 

Finally, the AT transition rules are specified by a labeled transition relation 

of the form K & Kt ,  where the range of 1 includes not just the labels of rules 

within RR, but the three new label forms in, out, and idle. The heart of the 

AT semantics are the four transition rules found in Figure 5.10. An in transition 

reflects a message coming in from the environment; an out transition reflects a 

message transmitted to the environment. An idle transition does not change the 

actor configuration. 



5.2.2 AT Predicates and Helper Functions 

We assume the existence of two predicates on an actor state s ,  ready?(s) and 

busy?(s), that return true if an actor in state s is not busy computing and ready 

to receive a new message, or busy computing in its current state, respectively. 

Since actor replacement behavior differs between AT and Pact, a one-to-many 

relationship exists between the actor machines in Pact and actors in AT. For 

comparison purposes between respective A T states and Pact states, we assume 

the existence of a helper function, ICfg(I), to filter out those actors in I eligible 

for garbage collection [AMS97]. 

5.3 Equivalence Proof for actors 

The equivalence proof presented in this section also appears in Smith, et al. 

[SPH98]. We prove the equivalence of a restricted version of Pact, denoted Ft, 

with AT, the Actor Theory semantics presented by Mason and Talcott [MT97]. 

5.3.1 Pact Restricted 

Figure 5.11 contains restricted versions of the transition relation, and the inbound 

and outbound tasks functions. The restriction permits only singular transition 

density in Ft .  The restricted transition relation elaborates only next states that 

reflect the computational progress of at  most one outbound or inbound task, or 

the meaning of a single actor machine's computational progress. 



F8 : state -+ state 
Fi((M7 2, 7, 7, onext))  = 

if onext undefined 
(M, 2, T,  7, F k ( ( M ,  29 7, 7 7  onezt))), or 
(M, 2, T,  p, ~ ~ ( ( x )  2) 7) 7, anext))), or 
( M ,  2, 7, 7, a'), where 

o' is derived from F,(h) where & E 2 
else 

( M ,  3, 77 p, F6(onext)) 

Fz : state -+ state 
F-((M, out- - 3, - 7, P, onest)) = 

( M ,  A, 7 - {T~], 0, undefined) where 

FG : state ---+ state 
3 k  ((my 3, 7, 7, anext))  = 

( M ,  3, 7 U { y r ) ,  8, undefined) where 
rT is from the environment 

Figure 5.11: Ft Restricted Transition Function 

5.3.2 Theorem and Proof 

The theorem and proof presented in this section rely on three equivalence relations 

that specify the conditions under which a state from Ft and a state from AT 

are considered equivalent. We define the configuration equivalence relation cfs 

using actor equivalence relation M act and message equivalence relation I-+. On a 
msg 

high level, H ensures that each active actor machine from Pact is equivalent to 
cfq - - 

some actor in AT not eligible for garbage collection (i.e., active), and conversely, 

that each active actor from AT is equivalent to some active actor machine in - 
Pact. Similarly, each undelivered tasks from Pact must be equivalent to some 

undelivered message in AT, and vice versa. 



The H relation accommodates two differences between actors in Pact and 
act 

AT. The first difference concerns actor machines in Ft and anonymous actors 

in AT. The actor machine approach is consistent with that of Agha's origi- 

nal work [Agh86]. An actor machine's computation is a function of the task it 

consumes; an actor machine consumes only one task during its lifetime. The 

anonymous actors approach of AT is different, but equivalent; anonymous actors 

have already consumed their message, and by definition, no new messages can be 

sent to them. The use of function anon() in I-+ is consistent with renaming from 
act 

AT. Both cases of H identify equivalent actor names by taking into account 
act 

the possibility of renaming. 

The second difference between actors in Pact and AT is one of granularity. 

Pact distinguishes message delivery from message consumption. For A T, message 

delivery and consumption are a single, atomic instance of computational progress. 

Among two candidate instances of actor behavior, H must determine the proper 
act 

equivalence test based on the state of message delivery and consumption for the 

Pact actor machine. The continuation of an actor machine whose task has been 

delivered but not consumed, for 1-4s purposes, is a function of the unconsumed 
act 

task. 

The I---+ relation returns true for two messages (tasks) that have identical 
msg 

content, and whose recipients are the same actor. For both H and H, syntactic 
msg act 

equality implies semantic equality. The three equivalence relations are defined as 

follows: 



P 
Definition 17 ( H )  Let K t T  = (( I )) and KT"' = o,, where oj = 

cfg X 

(m, 2, 7, 7, u,,,~). Then K t T  H K* iff 
cfg " 

(v[s] ,  t IC fg ( I )  3Ep  E A s . t  [ s ] ,  - act ap) A 

( V Z ~  E 2 3 1 ~ 1 ~  E I C ~ ~ ( I )  8.t. [a], H act aP) /\ 

( ~ a  t x . V ~ i ~  E E;i.actname(ZTP) # a ) .  

Definition 18 (-) [ s ] ,  c-t 3, iff 
act act 

if del? (M, 
( ( a  = actname@,)) V ( a  t { b  I b = anon(actname(ir , ) ) ) ) )  A 

( s  = cont ( re t r ieveAlsg(~ ,  , M ) ) )  . 
else 

( ( a  = act name(^,)) V ( a  t { b  1 b = anon(octname(a,) )}))  A 

( s  = cont (a,)) . 

Definition 19 (H) a a M w T r  iff 
ms9 msg 

( a  = recip (T,))  A ( M  = content (7,)) . 

Theorem 1 states that we can model the computations of all Actor programs 

equivalently in both AT and Pact. Specifically, if the initial configuration of an 

Actor program pgm reaches a certain configuration under AT, it can reach an 

equivalent configuration under Pact .  Similarly, if the initial configuration of an 

Actor program pgm reaches a certain configuration under Pact, it can reach an 

equivalent configuration under AT. The proof is by induction on the number of 



transitions, in both directions. The proof from AT to Pact must consider all the 

cases corresponding to possible transitions program pgrn can make under AT. 

The proof from Pact to AT must consider all the cases corresponding to possible 

transitions program pgrn can make under Pact 

Theorem 1 

of Pgm from 
~ ~ ; ' ( ~ ~ m ) .  

For all actor programs, pgm, let K t T  be the initial configuration 
~ ~ ~ ~ ~ ~ ( ~ ~ m ) ,  and ~ 0 ' ~ ~  be the initial configuration of pgrn from 

--.- - 
K ~ T  s* KAT i f l  ~f~~~ s* K P ~ ~ ~  

where 
KAT ,KP~~~, 

cfg 

Proof: (*) 
V i  2 0.3j 2 0. K t T  Si K t T  

C- 
- 

+ K,~act sj K p ~ ~ t  3 

By induction on i. 

Base: ( i  = 0 )  
i = 0 K t T  = K t T .  - 

p a c t  . - 
So, it suffices to prove 3 j  2 0 s.t. KfaCt +J K3PUCt /\ K t T  I--+K~~~;'. 

cfs 

But K t T  is the initial configuration of pgrn in  AT^". 
3 ~t~ = (( I )):, where I contains one actor, [s],, and no messages. Thus 

I = {[sla). 
p = { a ) ,  KtT 's  only receptionist; and x = 0, since initially, pgrn has no 
knowledge of external actors. 

- 
K,paCt is the initial configuration of pgrn in Pact. 

--.- - - - -  * KOPaCt = 00 = ( M ,  .A, 7, P, oneXt). 

+ 7 = - 0, and initially, is undefined; and 
M = {a), - 
A = {EP), where   act name(^^) = a) /\ (cont  (EP) = s) ,  and - 
'T = 0. 



From the definition of H, w.r.t. K tT  and K,i'"", notice 
cf9 

[s], H 3, satisfies the condition for actor correspondence, 
act 

message correspondence is true vacuously, 
the condition for receptionists is true, since a E p and 
actname(3,) = a,  
and the condition for external actors is true vacuously. 

:. By definition of H, for i = 0, j = 0, 
cfs 

K t T  - K [ ~ ~  is true. 
cf9 

I.H.: Assume for some i 2 0 steps, 
K t T  Si K t T  implies 3 j  2 0, s.t. 

I.S.: (Prove true for i + 1 steps) 
K ~ T  s i + l  KAT = 

2+ 1 

KtT si K t T  3' K&:, by definition of 3. 

By I.H. we know 3 j  s.t. 

Consider cases for K t T  3' K$. Prove 372 2 0 s.t. 

Case la: create actor 

Let K t T  = (( I,, I ) )P, K$ = (( I*+r, I ) )P, and K t T  3 K&;, 
X X 

where Ii = {[s],) and &+I = {[s],, [st] , ,  [ t ] b ) .  

By I.H. and ct, 
cfg 

3Ep E o ~ - X ,  set. [s], c--t 3,. 
act 



By definition of 3, A~( [ s ] , )  yields {[st],, [tIb) 

By definition of Fp, 3p E Fp(EP), where 
- - - - 

P = @cant M n e w  Anew T n e w  , Arepl) , 
cont (ZiCont) = st (syntactic equality implies semantic equality), 
- 
Anew = { z r }  9 

actname(&) = b, and 

M n e w  = {b}. 

... [ t ] b  E,- 
act 

a By definition of G, for n = 1, 
---- 

3 ~ ~ + ~  s.t. gj+j = (M, A, 7, P, ,next) where 
- 
M = g j . M  U Mne,, 
- 

= ( - { )  U { w n t  } IJ X n e w  , 
- 
T = -7, 
- 
P = 0, and 

gnmt is initially undefined, 

where 

[st], H Zwnt, since cont (cWnt) = sf, [s]. 2 Ep, 
act 

and by definition of Ewnt. 

:. By definition of H, K&' r--t Kj;";'. 
cfg cfg 

By definition of F8 (limited transition function), aj.anezt = o,+l is one legal 
transition. 

:. Proved I.S. for case la.  

Case lb: send message 

Let K?' = (( I,,I))", KG = (( 1j+1,1 ) )P, and K:' 3 K:,C, 
X X 

where Ii = {[s],) and Ii+1 = {[s],, [s'],, b a M ) .  



a By I.H. and H ,  
cf9 

3Zp E a j .S ,  s.t. [s], H Epp. 
act 

By definition of 3, Am([s],) yields {[s']~, b 4 M) 

:. By definition of F,, 3p E FP(sp), where 
- - 

P = (Econt M new Anew Tnew , Tirepi) 7 

cont (ZiCont) = s' (syntactic equality implies semantic equality), 

a By definition of G, for n = 1, 
---- 

3aj+l s.t. Oj+l = ( M , A , ' T , P , O ~ ~ ~ ~ )  where 

- 
P = { E ) ,  where E = (Es, T ~ )  (a send event), and 

anat is initially undefined, 

where 

[s'], ++ Zcont7 since cont (Zimnt) = s', [s], H sp, 
act act 

and by definition of Smnt.  

:. By definition of c-t, KC' I-+ KPact . 
cfg cfg J + l  

By definition of F6 (limited transition function), oj .anext = aj+l is one legal 
transit ion. 

:. Proved I.S. for case lb.  

Case lc: actor/message synchronization 

Let K : ~  = (( I,, I ))', KG = (( 1,+1, I ))', and ~t~ 3 KG, 
X X 

where Ii = ([s],, a a M )  and I~+I = {[s]a, [sl]a), 

s.t. ready?([s],) is true A busy?([st],) is true. 



By I.H. and M, 
cfg 

3Ep E oj .Z,  s.t. [s], H Ep A 
act 

By definition of 3, Am([s],) yields {[slIa}.  

:. By definition of F', 3p E E'(E,), where 
- 

P = ( ~ c o n t  M n e w  z n e w  T n e w  9 &epl) 7 

cont (scant) = s' (syntactic equality implies semantic equality). 

By definition of G, for n = 1, 
---- 

30,+1 s.t. oj+l = (M, A, 7, P, onnext) where 
- 
M = deliver (gj .M, c), 
A (gj .Z - {sp}) U {Ewnt } 7 

T 1 Oj.T - {yr}, 
- 
P = { E ) ,  where E = (ED, T ~ )  (a deliver event), and 

onnext is initially undefined, 

where 

[s'], I-+ hWnt, since cont (i?iCont) = s', [s], ++ hp, 
act act 

and by definition of Econt. - 
:. By definition of H, K$ H K ~ ' " ~ .  

cfg cfg 
3+1 

By definition of F8 (limited transition function), gj .onext = oj+1 is one legal 
transition. 

:. Proved I.S. for case lc .  

Case Id: replacement specification 

Let ~t~ = (( I,, I ))P, KC: = (( I.+1, I ))P, and K tT  3 K$, 
X X 

where I, = {[s],} and I~+I = {[s]a, [sl](a), [ t ] a ) .  



By I.H. and H, 
cf9 

3Ep E oj .2 ,  sat. [s], H olP 
act 

By definition of 3, Am([s],) yields {[t],, [st](,)), where t is the replacement 
behavior continuation of actor a,  and st is the continuation of actor a's initial 
behavior, s, carried out by an anonymous actor (a). 

:. By definition of F,, 3p E F'(GP), where 
- - 

P = (acont 3 M new Anew 7 n e w  , srepi) 
- 
Arepl = {Er ) 
cont (5,) = t (syntactic equality implies semantic equality), 

cont (smnt) = st (syntactic equality implies semantic equality). 

By definition of G, for n = 1, 
---- 

gojtl s.t. ~ j + l  = (M, A, 7, P, oneXt) where 
- 
M = 0 j . M  U {(a)), 
- 
A = ( 2 - { )  IJ {scont  } IJ Xrepl 
- 
T = oj .T, 
P = 0, and 

onest is initially undefined, 

where 

[sf] (,) Econt, since cont (TiCont) = st, 
act 

and by definition of (a), ++, and Econt 
act 

and 

[t], +-+ Gr since cont (E,) = t ,  [s], I-+ Gp, 
act act 

and by definition of Z,. - 
:. By definition of H, K$: ct 

cf9 cf9 

By definition of F8 (limited transition function), 0j .on,oxt = oj+l is one legal 
transit ion. 

-h - pac t  

. . 

:. Proved I.S. for case Id. 



Case 2: in 

, and ~t~ 3 K$?, 

where (a E p) l\ (acq(M) n InAct (I) C_ p) . 

a By I.H. and c-t, 
cfg 

a By definition of 3, message ao  M is added to K&;'S internal configuration 
by an external entity. 

:. 3 7 -  from the same external entity, s.t. a a M H 7, 
msg 

(+ reczp(c) = actnarne(ap), by definition of ++) msg 

a By definition of and F', for n = 1, 
---- 

s.t. Oj+l = (M, A, 7, P, oneZt) where 

- 
P = { E ) ,  where E = (Es, T ~ )  (a send event), and 

anext is initially undefined, 
AT 

:, KAY H KG', since by definition of e, I.H., and *, only aaM 
cf9 cfg 

is added to K t T %  internal configuration, and a Q M H F,.. Conditions 
ms9 

for actors and receptionists in H are unchanged. (acq(M) - p) adds a t  
cf!? 

most external actor names to X ,  thus preserving the condition for external 
actors. 

a By definition of F8 (limited transition function), Oj .one,t = Oj+l is one legal 
transition. 

:. Proved I.S. for case 2. 



Case 3: out 

P U ( ~ ~ ~ ( M ) - X )  
~ e t  K y  = ( ( I , a o ~ ) ) ' ,  KC: = ((I)) , and K t T  3 K&:, 

X X 

where a $ InAct (I) 

By I.H. and H, 
cfg 

3, E 0j.7,  s.t. ( a a  M H ~ , ) A ( r e c i p ( ~ , - )  f 0j .M) .  
m s g  

AT 
By definition of +, message a a M is removed from internal configuration 
of KA:. 

By definition of and FZ, for n = 1, 
---- 

30j+~ sot.  ~ j + l  = ( M ,  A, 7, P, onezt) where 
- 
M = oj.M, 
- 
A = aj .Z, 
- 
7 = 0 j .T  - {T,), 
- 
P = 0, and 

an,,, is initially undefined, - 
:. K$" I--+ K ~ ~ " ,  since by I.H., definition of I--+, and 3, 

cfs 3+1 cfg 

only a a M is removed from internal configuration, and 

a o M H c. Conditions for actors and external actor names are 
m s g  

unchanged. (acq (M) - X )  adds at most internally defined actor names 

to p, thus preserving the condition for receptionists. 

By definition of F' (limited transition function), aj .anezt = aj+l is one legal 
transition. 

:. Proved I.S. for case 3. 

Case 4: idle 

P 
Let K t T  = (( I )) , KG = (( I ))', and KfT % KS, 

X X 



By I.H., 

K t T  - KF, and since K t T  = KAT 
cf9 

i+ l ,  

AT By definition of *, after zero transitions (n = 0). 

:, Proved I.S. for case 4. 

p a c t .  
Vi 2 O.Ij 2 0. ~ 0 ' ~ ~  jZ K:~" 

K,AT sj K P T  3 A ~r~~ - K ~ T ,  
cf9 

By induction on i, where i is the height of tree with root 00.  

Base: (i = 0) - 
i = 0 j K:"" = K,P"'~ . 
So, it suffices to prove 3j 2 O s.t. K t T  %j ~f~ A K : ~ ~  I---+K?~. 

cf9 

But K{"" = 00, its root, the initial configuration of pgm in Pact. - - - - + 00 = (M, A, 7, P, on,,t), where oo contains one actor machine, E p ,  

whose continuation corresponds to pgm, initially denoted s; and no tasks. 

Thus, - 
M = { a ) ,  - - - 
A = {G,), where  actn name(^,) = a) A ( c o n t ( ~ ~ )  = s ) ,  - 
T-(A 
- 
P = 0, and 
on,,t is initially undefined. 

K t T  is the initial configuration of pgm in AT% 
=. K t T  = (( I )):, where I contains one actor, [s], and no messages. 

Thus I = {[s].), p = {a), and x = 0. 



- 
By definition of H, K:"" H K t T ,  since 

cfg cfg - 
QP Isla, 
message correspondence is true vacuously, 
the condition for receptionists is true, since a E p and act name(^^) = a,  
and the condition for external actors is true, vacuously. 

:. Base case holds with j = 0. 

I.H.: Assume - for tree - a0 of height i 2 0, 
q ( K T a C t )  = KIP"" implies 3 j  2 0, s.t. 

AT . 
K$T jJ Kj?T A KpTt C f  K ; ~ T  

cfg 

I.S.: Prove true for tree 00 of height i+l:  
That is, prove J$+'(KfaCt) = K G t  implies 

3k 2 0, s.t. K t T  Sk K t T  A KZ I-+ K t T .  
cf9 

+I KpTt By definition of 3 8 ,  5 ( ) = F ~ ( . ~ ( K : ~ ~ ) ) .  

By I.H., q(K,PaCt)  = KFaCt implies 

3 j  s.t. K , A ~  %j K;* ~p~~ +--+ K K ; ~ ~ .  
cf9 

Consider cases for F~(K;"") = K c t .  

Prove 372 2 0, where k = j + n, s.t. - 
K;'T Sn K;& A K:;' H ~;4,'n. 

cf9 

Let ~p~~ = ( M ,  2, 7, 7, onex,). 

Case la: create actor 

Let K G '  = o,+l s.t. aneXt = a,+l and a,+l = (m, Z, T', P,  ~ n e z t ' ) ,  

where a;,,, is initially undefined, and by definition of create actor: 

36 E s.t. b @ M ,  
35,. E 2 s.t. Gr @ 2 A actname(5,) = b, 



--I 

3Ek € A ,  Ep E 3 s.t. actname(Ek) = a A actname(EP) = a A 
cont (sP) # cont (s;), 

s.t. Ff' = M U {b ) ,  

- 'f = T,  and 

a By I.H. and H, for ~t~ = 
cf9 

. *. By definition of H, cont (Ep)  = s .  
act 

- - - - 
By definition of Fp, Fp ( Z i p )  = = (Econt, M n e w  , A n e w ,  7 n e w  , A r e p i )  , 

where mneW = { b } ,  X n e w  = { & } .  
:. By definition of 3; and Fi, SWnt = 

a By definition of Am, Am([s] , )  yields { [ s l ] , ,  [tIb), where s1 = cont(E;) and 
t = eont(Zi,.). Let = Ij U{[ s l ] , ,  [tIb). 

:. By definition of H ,  EL H [s l ] ,  and Er [t]*. 
act act 

AT 
a By definition of *, for n = 1, 

3 ~ : ;  s.t. K t T  3' K t ' ,  where K t !  = (( 1j+1 ))'- 
X 

a By definition of ++, 
cf9 - 

p a c t  

a Proved I.S. for case la. 



Case lb: create task 
- 

Let ~5~ = a,+l s.t. onext = o,+l and o,+l = (m, 2, TI, p, aneZtf), 

where a;,,, is initially undefined, and by definition of create task: 

3 b  E s.t. b $! M, 
3 c  €7 s.t. 7, $7, and 

35; E XI, E, E 2 s.t. actnarne(~;) = a /\ aetname(~, )  = a A 
cont ( G ~ )  # cont (z;), 

s.t. M1 = M, 
= (2 - { )  u {6;}, 

- 7' = T U {T,}, and 
-I 
P = { E ) ,  where E = (ES, 7,). 

By I.H. and H, for ~f~ = 
cfg 

3[sIa E I j  set. Ep 2 [s]a 

:. By definition of H, cont ( G ~ )  = s. 
act 

- - 
By definition of 3,, 3, ( z ~ )  = p = (EWnt, M new, Anew TneW 2 m p l )  , 

- 
where TneW = { T ~ ) .  

-I :. By definition of F, and F8, Zwnt = a,. 

By definition of Am, Am([s],) yields {[sf]., b a M) ,  

where st = cont (E;) /\ b = reczp(~,) /\ M = content (7,). 

Let Ij+l = I j  U{[slIa, b 4 M ) .  

:. By definition of c-t, E; t-+ [sf],; by definition of H, 7, H b a  M .  
act act msg msg 

AT 
By definition of *, for n = 1, 

3~;; s t .  K;PT s1 K; ' ,  where Kj'; = 
X 

By definition of c-t, 
cfg 

Proved I.S. for case lb. 



Case lc: deliver task 

I_ - - - -  
Let KC~ = =*I ~ . t .  onezt = oi+l and a * + ~  = (MI, A', TI, P', 

where cr;,,, is initially undefined, and by definition of deliver task: 

3YT E 7 s.t. $? 7, 
and 3a E M1 s.t. r e c i p ( ~ ~ )  = a, 

and 3Sp E 2', Qb E 2 s.t. actname(Zip) = a A 
de1?(R1, Zip) True /\ m d ? ( M ,  E ~ )  True, 

s.t . = deliver(M, c), 
-I 
A = X ,  
- 7' = 7 - {yr), and 
-I 
P = { E ) ,  where E = (ED, 7,). 

By I.H. and w, for KfT  = 
cfg 

3[~],  E I j  s.t. ZYp H [s], /\ 3a a M E I j  s.t. 7, a a M .  
act m s g  

:. By definition of +-+, cont(ZEP) = s 
act 

(syntactic equality implies semantic equality) 

and by definition of H, content(%) = M 
"Jsg 

(syntactic equality implies semantic equality) 

By definition of actor/message synchronization, 

Let = ( I j  - { a  a M)) U{[sl],), where Am([s],) yields {[slIa), sat .  
ready?([s],) True /\ busy?([sl],) True 

:. By definition of I---+, for ai+l, Ep w [sl], 
act act 

AT By definition of +, for n = 1, 
P 

3KfS  s-t. K t T  3' ~ f l ,  where 
= (( I,+I )) . X 

By definition of H, 
cfg 

KP"" 
,.+. ~f; .  . . 
cfg 

Proved I.S. for case lc. 



Case Id: consume task 

- - - - 
Let K,P,~ = ~ . t .  oneXt = and o,+l = (MI,  A', T', PI, h a t f ) ,  

where is initially undefined, and by definition of consume task: 

3E; E z', Ep E 3 s.t. 

actnarne(~L) = a A a c t n a r n e ( ~ ~ )  = a A 
cons?(N1, E;) True del?(M, Ep) True, 

s.t. M' = M ,  
-I 
d = (2 - {sP} U {z;}, 
- f = 7, and 
-I 
P =O. 

By I.H. and +-+, for ~t~ = (( I) ))', 
cfg X 

By definition of I-+, cont (retrzeveMsg ($, s)) = s 
act 

(syntactic equality implies semantic equality) 
- - - 

By definition of 3,, Fp ( sP)  = = (scant, mnew, Anew, T n e w  , Arepi) , 
:. By definition of 7, and F8, Emnt = Ek. 

By definition of actor/message synchronization, 

:. By definition of I--+, E; I-+ [s], 
act act 

By definition of 3, for n = 0, 
AT AT 0 :. Kj  * K ; L ~ .  

By definition of ++, 
cfg 

pact H K;LT. .-. K,,, 
cfg 

Proved I.S. for case Id. 



Case le: replacement specification 

I_ 

Let K G '  = 0,+1 ~ . t .  onest = ~ i + l  and ai+l = (m, 2, T ,  7, oneztt)? 

where okex, is initially undefined, and by definition of replacement 

specification: 

2Er € 2 ' s . t .  Er 6 2, 
2 ~ ;  E 2', Ep E 2, and 

actname(Er) = a A actname(E;) = a act name(^^) = a /\ 
cont(5,) # cont(E',) A cont (z,.) + cont(sP) /\ 
cont(E',) # cont(E,), 

s.t. mt = m, 
-I 

A = (2- {sp}) U { ~ b , s r } Y  
- 'f = 7, and 
-I 
P =O. 

By I.H. and H ,  for ~ j ' ~  = 
cfs 

3[sIa E I j  S-t. Ep H [s] ,  
act 

:. By definition of H ,  cont(sp) = s. 
act 

- - - 
By definition of Fp,  Fp (sp) = = (scant, M new,  A n e w ,  T n e w  A r e p i )  

- :. By definition of 3, and F', Zmnt = a',, and z,~ = { & I .  
By definition of Am, Am([s],) yields {[st](,), [t],), 

where st = cont (5;) and t = cont (E,). 

Let Ij+1 = I j  U{[st](a), [t]a). 

:. By definition of H, 5; I-+ [st](,) and 5, ++ [t],. 
act act act 

AT 
By definition of &, for n = 1, 

3~;; s.t. K t T  3' Kf$, where Kt$ = (( 
))P. X 



By definition of ct, 
cf!? 

Proved I.S. for case le. 

Case 2: incoming external task 

Let KG' = o,+l ~ . t .  onezt = O,+I and 0i+1 = (M', 2, T', F', onezt1), 

where o;,,, is initially undefined, and by definition of incoming external 

task: 

3TT E 7 s.t. 7, 4 T,  
A rec ip (c )  = a A content ( T ~ )  = M 

A 3% E 2, E, E 2' s t .  act name(^,) = a, 

s.t. m1 = m, 
-I 
A =z, 
- f = 7 U {T,), and 
-I P = { E ) ,  where E = (Es, T ~ ) .  

P 
By I.H. and ti, for K t T  = (( Ij )) , 

cf9 X 

3[sIa E I j  s.t. Z p  2 [s],  

:. By definition of -, con t ( zP)  = s. 
act 

By definition of F;,, .F8, 

task 7,. is added to K:;' by an external entity. 

:. 3ao  M from the same external entity, s.t. F,  H a o  M. 
*s9 

Let = I j  U { a  M), and let X' = x U ( a c q ( M )  - p) .  

A T  
By definition of *, for n = 1, 

3 K S  s.t. K t T  3' Kt;, where K:! = (( I,+l )):,. 



By definition of H, and I.H. 
cfg - - . KP"Ct . . ,+, H K;;, since only 71 is added to K G t ,  and a a M H 7,. 

cfg msg 

Conditions for actors and receptionists in H are unchanged, and 
cfg 

(acq(M) - p)  adds only external actor names to X ,  thus preserving 

the condition for external actors. 

a Proved I.S. for case 2. 

Case 3: outgoing external task 

- 
Let ~ , p p ; ~  = ai+l s.t. a,,,t = oi+l and ~ i + l  = (M', 3, 7, P ,  aneXt1), 

where a;,,, is initially undefined, and by definition of outgoing external 
task: 

3Tr € 7 sat. Tr $7, 
/\ rec zp (~ )  = a /\ content (yr )  = M 

/\ VE, E 3, E 2 ' .  actname(Zip) # a, 

s.t. m1 = 33, 
- 
A' = 2, 
- 
f = T  -{T,.}, and 
-I 
P =O. 

By I.H. and I--+, for KtT = 
cf9 

a By definition of .FZ, .?;, 

task 7, is removed from K c t .  

a Let = I j  - {a a M ) ,  and let p' = p U(acq(M) - x ) .  
AT 

By definition of *, for n = 1, 

3~ : :  s.t. KtT 3' K$, where K?! = (( 4+1 )):. 



a By definition of I-+, and I.H. 
cfg 

:. KC' H K::, since only 7, is removed from KC;', 
cfg 

and a a M ++ 5',. Conditions for actors and external actor names 
msg 

in I-+ are unchanged, and (acq(M) - X )  adds only internally 
cfg 

defined actor names to p, thus preserving the condition for 

receptionists. 

a Proved I.S. for case 3. 

Since a and * hold for all respective cases, we conclude Theorem 1 is true. 



CHAPTER 6 

paraDOS Instantiated for Linda, Tuple Space 

This chapter presents two operational semantics for Linda, and an equivalence 

proof between our semantics and the work by Jensen [Jen94]. Section 6.1 discusses 

the evolution of the two semantic versions of paraDOS for Linda, and definitions 

and notation that apply to both semantics. The first semantics describes how 

computation proceeds using functions defined in set-theoretic notation, similar 

to our approach in Pact.  We describe the second operational semantics for Linda 

using the programming language Scheme. We present these two semantics in 

Sections 6.2 and 6.3, respectively. Section 6.4 contains the theorem and proof. 

Instance Evolution and Definitions 

Section 6.2 presents our original efforts instantiating paraDOS for Linda, and is 

self-contained with function descriptions and formal definitions. We conceived 

this set-theoretic semantics prior to distilling parameters for paraDOS, prior to 

considering how to represent composition in paraDOS, and thus prior to abstract- 

ing a set of message closures for s. The set-theoretic semantics lends itself to 

a more direct comparison with Pact .  It is also instructive to compare the two 

operational semantics for Linda, since we derived the Scheme-based implemen- 



tat  ion from the set-theoretic description. The major difference between the two 

semantics, other than message closures, is that the Scheme-based semantics per- 

mitted us to discard the meaning structure used to accumulate multiple Linda 

processes' computational progress. Later, we augmented the Scheme semantics 

with message closures in consideration of composition. The equivalence proof in 

Section 6.4 refers to the Scheme-based semantics. We defer further discussion of 

composition until Chapter 8. 

Let S denote tuple space S's corresponding pTS model. It remains to define 

the structure of states 0 within S, the transition function .Fs of S, and what 

constitutes an observable event in S. We begin our discussion with the structure 
--- 

of 0 .  A state o is represented by the 4-tuple (A, 7, P, o,,,~), where 3 represents 

the multiset of active tuples, 7 represents the multiset of passive tuples, 7 rep- 

resents the parallel event multiset, and o,,,t is either undefined, or the state to 

which computation proceeds, as assigned by the transition function. 

We introduce a mechanism to refer to specific tuples in a multiset of a state. 

To access members of the ith state's multiset of active tuples, consider oi = 
- - -  

(Ai ,Ti ,Pi ,Oi+l) .  ~ l emen t s  o f Z ,  can be ordered 1,2,. . . , lX,I; let t l , t z , .  . . , t lx, ,  

represent the corresponding tuples. The fields of a tuple t j  , for 1 5 j 5 lxi 1, can 

be projected as t j  [k], for 1 5 k 5 Itj 1.  See Figures 6.1 and 6.6 for the respective 

set-t heoretic and Scheme-based domain specification of states, tuples, and fields. 

The Scheme-based pTS semantics classifies the type of a tuple field as either 

active, pending, or passive. The set-t heoretic semantics distinguishes only active 

and passive tuple field types. An active field is one that contains a Linda pro- 

cess making computational progress. A pending field contains a Linda process 

executing a synchronous primitive, but still waiting for a match. A passive field 

is one whose final value is already computed. Tuple t is active if it contains at 



least one active or pending field, otherwise t is passive. An active tuple becomes 

passive, and thus visible for matching in tuple space, when all of its originally 

active or pending fields become passive. 

Multiple possible meanings of an individual Linda process's computation ex- 

ist, when considered in the context of the multiple Linda processes that together 

comprise tuple space computation. Each state transition in pTS represents one 

of the possible cumulative meanings of the active or pending tuple fields making 

computational progress in that transition. We address these many possible indi- 

vidual and cumulative meanings when we describe the PTS transition function. 

6.2 Set-t heoretic Semantics for Linda 

This section discusses the set-t heoretic semantic functions that comprise pTS . 

Figures 6.2 through 6.5 contain the corresponding algorithmic descriptions, not 

all of which are presented at the same level of detail. Specifically, we focus 

on the functions (generate children), Lm (Linda meaning), and Fv (the view 

function), as they perform the interesting work for tuple space inst antiation. 

Figure 6.1 contains the original domain specifications for the set-theoretic PTS. 

For domains tupleset and parEventSet , ~ ( ~ ~ p ' ~ )  and s ( ~ ~ ~ ~ ~ ~ ~ )  are, respectively, 

multiset powersets of tuples and sequential events. As was the case for Pact, 

the set of communication closures remains empty for the set-theoretic pTS 

specification. 

Computation proceeds in PTS through invocation of transition function Fd, 

shown in Figure 6.2, along with the generate meaning function genMeaning and 

the PTS meaning function 7,. Function .Fa traverses 0 until it finds a state whose 
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beh U Base 
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base types (unspecified) 
functions (unspecified) 

Figure 6.1 : Set-theoretic pTS Domain Specification. 

onmt is undefined. Such a state is the current state of S, denoted CJ,,,. Function 

F6 assigns to o,,,.o,,,t the result of applying the generate children function to  

o,,,. Function is shown separately in Figure 6.3. Applying .Fa to o elaborates 

the next computational state in the trace of S. 

The function genMeaning constructs one possible composite meaning that re- 

sults from multiple Linda processes making simultaneous computational progress 

within a shared tuple space. Function genMeaning utilizes the pTS meaning 

function 3,, which in turn calls the Linda meaning function Lm. Function Lm 

is shown separately in Figure 6.4. 



F6 : state + state --- 
&((A 7, p, Onezt)) = 

if undefined 
(2, T, 7, G ( (A T7 7, Onezt))) 

else 
--- 

(A, 7, p, 7 6  ( ~ n e x t ) )  

7' : tuple x int x meaning + meaning 
7, (tj  k, ( 2 7 7 )  Trd  7 T i n  T o u t  z e v a i ,  Tpass)) = 

p where 
- - 

E { ( Z , T , T ~ , 7 i n , 7 ' o u t , A f e v a ~ , T p a s s )  - I 
Lm (t j7 k, (2, T, Trd , Tin 7 T o u t  7 z e v a ~  7 TP~SS)  ) - 
yields (Z, T', 7&, T i n ,  T o u t ,  Z e v a l ,  7 'paes))  

genMeaning : LprocSet x meaning + meaning --- - 
genMeaning (Lprocs, (A, 7, T r d ,  T i n ,  T o u t ,  x e v a i ,  TPass)) = 

if Lprocs empty 
- 

(XT, Trd , T i n  , T o u t  Xevai, r p o s s )  

else 
let ( j ,  k) E Lprocs 

. . 

in genMeaning((Lprocs - (j, k)) ,  - 
F ,  (tj  , k ,  (2, 7 7  T r d  7 T i n  , T o u t  , z e v a i  , ?pass)) ) 

Figure 6.2: Transition and meaning functions. 

The generate children function G deserves closer attention, since it specifies 

the next state in o elaborated by transition function F6. The behavior of G 

describes event generation for PTS. First, G selects a random subset of active 

Linda processes to make computational progress. Next, G passes those Linda 

processes to genMeaning, which returns a composite meaning, in turn assigned 

to p. Finally, G uses the elements of p to construct its own return state tuple. 

Specifically, G adds to the 2 multiset the updated multiset of active tuples, and 

any new active tuples generated as a result of eval primitives. It adds to the 

7 multiset the updated multiset of passive tuples, and any new passive tuples 

generated as a result of out primitives. G builds the 7' multiset from the events 



: state --+ state 
G((x,T,P, - - -  gnext  )) = 

(A', T ,  P', oneztl) where 
let Lprocs = {(j, k) I (1 5 j 5 1x1) A t j  E Z A (I 5 k I Itjl) A 

t j  [k]  .type = 'A ')  
in let randsub Lprocs -- 
in let p = genMeaning(randsub, - - - (A, 7 ,0 ,0 ,0 ,0 ,0 ) )  - 

where P = (Ap , Tp , Tni T i n  , T o u t  , x e u a l ,  Tpass) 

in 
- 
A' = U XeVar - 
T' = 7, u Tout - 
P' = {( 'Ecreated, t)  I t E Tout) U 

{ ( '~cop i ed ,  t )  I t E Trd} U{('~consumed, t)  I t E Tin} U 
{( 'Egenerat ing, t) I t E xeual} U 
{('Egenerated, t )  I t E T,,,,) 

aneXt1 is undefined 

Figure 6.3: The generate children function. 

--I 
it discerns from the contents of meaning structure p. P is a 5-way union of 

multisets; one for each event type abstraction in PTS, and not coincidentally, 

each event type abstracted for pTS corresponds to its own element of p. The 

return state's a,,, is undefined at return time, indicating it has not yet been 

elaborated. Next, discussion of the Lm function reveals how the multisets of p 

are assigned their member tuples. 

The Linda meaning function Lm, shown in Figure 6.4, handles three gen- 

eral cases. Either process t j [ k ]  makes computational progress involving no Linda 

primitives, but still has remaining computation; process t , [k ]  makes computa- 

tional progress involving no Linda primitives, and replaces itself with a typed 

return value; or process t j [ k ]  makes computational progress, the last part of 

which is a Linda primitive. 



Lm : tuple x int x meaning + meaning --- - 
Lm ( t j  7 k, (A, 7, 'Jni 7 Tin , T o u t  9 Z e v a i  7 Tpass) ) = 

let ti = tupleUpdate(tj,  k ,  rand 0 Lm,,) 
in 

(2 - { t j ) )  U { t j l )  if 3[ ,  1 5 ! 5 Itj 1 ,  ~ . t .  t j l [ f ]  . type = 'A', 
otherwise. 

- 
- if 3 , l  5 f 5 I t j l ,  ~ . t .  tjl[l].type = 'A', TpaSs = {7pass 

Tpass U { t j l )  otherwise. 
in 

if (t: [k]  . t ype  = 'A') r\(neztcomp (t: [ k ] )  is a Linda primitive) 
/\ (randomly choose to proceed) 

let ty = tupleUpdate(ti,  k ,  nextcomp()), 
and LindaPrzm, template be from nextcomp(tjl[k]) 

in 
let 2'' = (2' - ($1) U {ty), 

tupleMatch(template, 7) if LindaPrim = rd V in, 
t = {  tcop ~ ( t e m p l a t e )  otherwise. 

in Cases for LindaPrim = - 
rd : if (t = Fail) (XI,  7, TTd, Ti,, Tout, Aevar, Tpass) - 

else (X", 7, ( T r d  U {t  }) , Ti,, T o u t ,  x e v a l ,  Tpss) 
if (t = Fail) (XI, T ,  Td, Tin, T o u t ,  A e u a i ,  T p a s s )  

- 
O U ~  : (XI', T ,  Td, Tin, ( T o u t  U {t  }) 7 x e v a l y  Tpass ) 
euaZ : (X", T,  Tni, Tin, T o u t ,  ( X e u a l  IJ { t} )  7 T p a s s )  

else 
- 

(XI,  T ,  Tni 7 Tin 7 T o u t  7 x e v a i  7 '?-'pass ) 

Figure 6.4: The Linda meaning function. 

Lm receives input parameters indicating t j  [k] as the tuple and field containing 

the Linda process to make computational progress, and a cumulative meaning 

structure reflecting the computations of Linda processes previously passed to Lm 

in the current pTS transition. First, tuple ti reflects the update of t j ,  with t i [ k ]  



assigned its new field value, randomly chosen from the set of all possible new field 

values. 

Next, if ti  is passive, t j  is removed from the multiset of active tuples and t i  

is added to the multiset of newly passive tuples. Otherwise t i  replaces t j  in the 

multiset of active tuples, and the multiset of newly passive tuples is unchanged. 

To this point, only internal computational progress is possible. Lm might choose 

at  random to  return a meaning structure reflecting the changes thus far, or be 

forced to do so if either ti is passive or ti's next computation is not a Linda 

primitive. 

If Lm proceeds, tuple t(: reflects the update of t i ,  with ty[k] assigned its new 

field value, which must be the result of the new continuation of its Linda process, 

since, by definition it computed no additional internal computation and precisely 

one Linda primitive since ti was produced. Then Lm replaces ti  with ty in the 

multiset of active tuples. If the Linda primitive is either rd or in, Lm attempts 

to find a matching tuple t for the operation; otherwise Lm copies the out or eval 

template to t. 

Finally, Lrn considers the cases for the Linda primitive to determine the return 

meaning structure. If a rd or in was attempted and the tuple match failed, a 

meaning structure is returned that reflects only t>'s impact on the multiset of 

active tasks (i.e. the next time this Linda process is chosen to make computational 

progress, it will retry the same rd or in operation). If the match was successful, 

in the case of a rd, t is added to the Td multiset; and in the case of in, t is both 

removed from the state's tuple space, 7, and added to T,,. If the Linda primitive 

was an out, t is added to the Tout multiset. Otherwise, the Linda primitive must 

have been an eval, in which case t is added to the multiset. 



Lrncomp : field ---t p(field) 

tupleMatch : tuple x tupleset + tuple U Fail 
tupleMatch(template, 7) = 

if 3tm E 7 s.t. match(template, tm) 
tm 

else 
Fail // (i.e. blocked ...) 

tupleUpdate : tuple x int x function + tuple 
tuple Update (tj, k, f ()) = 

ti, where 
Ye, 1 5 l 5 ltil 

f(tj[!]) if ! = k, 
t j  [el = 

t j  [l] ot henvise. 

tcopy : tuple + tuple 

t, where 
V k ,  1 5 k 5 Itemplatel 

'P' if template [k] passive, 
t[k].type = { 

'A' otherwise. 

Figure 6.5: Functions used by Lrn 

We show the functions invoked by Lm in Figure 6.5. Briefly, we assume the 

existence of function Lm ,, to handle the details of individual process com- 

putation. This is a reasonable assumption since the intent of Linda is to aug- 

ment existing programming languages with primitive tuple space operations. The 

meaning of an individual Linda process's computation, as conveyed by Lmcomp, 

derives from the well-understood semantics of its underlying programming lan- 

guage. Additionally, we define a tuple matching function, tupleMatch, to describe 

the behavior of the synchronous Linda coordination primitives. Furthermore, 

tupleMatch assumes the existence of a match() predicate. Finally, we define two 



additional helper functions, tupleupdate and tcopy, to handle the details of up- 

dating and copying tuples. 

Function Ln,,, may make computational progress on its input parameter, a 

tuple field. The computational progress may be up to, but not including, a Linda 

primitive function. Function Lm,, returns an updated tuple field containing a 

possibly updated continuation, and a possibly updated type indicator if the tuple 

field changed from active to passive as a result of its computational progress. 

Scheme-based Semantics for Linda 

The Scheme-based pTS model extends the syntax of the Linda primitives with 

a tuple space handle prefix. This handle can refer to the tuple space in which 

the issuing Linda process resides (i.e. "self"), or it can be a tuple space handle 

acquired by the issuing Linda process during the course of computation. The use 

of a tuple space handle is consistent with commercial implementations of tuple 

space. The existence of this handle is explained when we discuss tuple space 

composition in Section 8.3. Tuple space handles are nothing more than values, 

and may thus reside as fields within tuples in tuple space. In the absense of 

composition, acquiring a tuple space handle h reduces to matching and copying 

a tuple that contains h as one of its values. 

We present the Scheme-based semantics of pTS in detail in this section. Not 

all functions are discussed at the same level of detail. We give an overview of 

the transition function and the view function, focusing on important aspects of 

tuple space computation and view generation. Figure 6.6 contains the domain 

specification for the version of pTS described in this section. 
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Figure 6.6: pTS Domain Specification. 



Computation proceeds in PTS through invocation of the transition function 

F-delta. F-delta takes a pair of arguments, tree o and the set of communication 

closures K ,  and elaborates the next state in the trace of a. There are two phases in 

a pTs transition: the inter-process phase and the intra-process phase. The inter- 

process phase, or communication phase, specified by F-LambdaBar, concerns the 

computational progress of the Linda primitives in x. The intra-process phase, 

specified by G, concerns the computational progress of active Linda processes 

within a,,,. F-delta returns the pair containing the elaborated tree on,, and 

the resulting new set of communication closures A,, . 

During the first phase of a PTS transition, function F-LambdaBar chooses 

a random subset of communication closures from to attempt to reduce. In 

PTS, each communication closure represents the computational progress of an 

issued Linda primitive. The domain specification for the different closure forms 

is included in Figure 6.6. From the perspective external to F-LambdaBar, these 

closures make computational progress in parallel. Linda primitives are sched- 

uled via a randomly ordered list to model the nondeterminism of race conditions 

and the satisfaction of tuple matching operations among competing synchronous 

requests. F-LambdaBar returns a a-iZ pair representing one possible result of 

reducing the communication closures. 

To better understand the functions that reduce closures in K, we take a mo- 

ment to examine more closely the closure domain from Figure 6.6. The closure 

domains that form closure characterize the stages through which communication 

activity proceeds in tuple space. The form of closure domains asynchcl, synchC1, 

and sendCl specifies that a lambda expression X be sent to a designated set. 

Closures from domains asynchCl and synchCl explicitly delay the evaluation of 

A; domain sendCl explicitly forces the evaluation of A. The designation of the 



- 
A set is through a tuple space handle. The notion of sending a closure, and the 

notion of tuple space handles, both derive from our ongoing research in tuple 

space composition. The processing of the send closure results in the set union of 

the designated by handle and the singleton set containing element A. 

Functions reduce-out and reduce-eval both take an asynchronous com- 

munication closure and a 0-x pair as arguments, and return a 0-K pair. The 

reduce-out function adds a passive tuple to tuple space, and generates event 

'Ecreated. Similarly, reduce-eval adds an active tuple to tuple space, and 

generates event ' Egenerat ing. 

Function reduce-send returns an updated a-K pair. In the case of delayed 

evaluation, reduce-send adds the send argument of X to K. Otherwise, evalua- 

tion of the send argument of X is forced, and reduce-send attempts to reduce 

the let expression containing a synchronous Linda primitive. The let expression 

fails to reduce if there is no match in tuple space for the underlying rd( )or 

in( )operation's template. If the let expression can't be evaluated, reduce-send 

adds X back to x. Adding A back to permits future reduction attempts. Oth- 

erwise, the let expression reduces, reduce-send adds the new closure to K, and 

0, upon return, reflects the reduced let expression (for example, a tuple might 

have been removed from tuple space). 

Functions reduce-rd and reduce-in both take a synchronous communication 

closure and a a-K pair as arguments, and return either a tuple-state pair, or 

null. Both functions attempt to find a matching tuple in tuple space, and if 

unsuccessful, return null. If a match exists, reduce-rd returns a copy of the 

matching tuple, and generates event ' Ecopied. Similarly, reduce-in returns a 

copy of matching tuple t, but also removes t from tuple space, while generating 

event 'Econsumed. 



The reactivate form of a communication closure specifies which field of which 

tuple contains a pending Linda process that is to be reactivated. Specifically, the 

reduce-react function updates t sub j [k] to make it an active Linda process, and 

fills its evaluation context with redex t. reduce-react is applied to a closure 

and a 0-Ti pair, where the closure contains j , k, and t . The 0-;i pair returned 

by reduce-react contains the updated tuple. 

During the second phase of a pTS transition, function G chooses a random 

subset of active Linda processes to make computational progress. From the per- 

spective external to F-LambdaBar, these processes make computational progress 

in parallel. Internal to G, Linda processes are scheduled via the genMeaning 

function. The sequence doesn't matter, since during this intra-process phase of 

transition, no tuple space interactions occur. G returns a cr-A pair representing 

one possible cumulative meaning of the random subset of active Linda processes 

making computational progress. 

A closer look at  genMeaning is in order. Within a PDS, in general, it is 

possible for individual processes to make simultaneous computational progress at 

independent, variable rates. Thus, for PTS, it is incumbent upon genMeaning 

to be capable of reflecting all possible combinations of computational progress 

among a list of Linda processes in the a-x pair it returns. With the help of F-mu, 

genMeaning satisfies this requirement. For each Linda process, F-mu randomly 

chooses a meaning from the set of all possible meanings Lm could return; i. e .  each 

process proceeds for some random amount of its total potential computational 

progress. 

Function Lm is the high-level Linda meaning function for a process t j  [k] in CT-x. 
Lm handles three general cases. Either process t j  [k] makes computational progress 

involving no Linda primitives, but still has remaining computation; process t j  [k] 



makes computational progress involving no Linda primitives, and replaces itself 

with a typed return value; or process tj[k] makes computational progress, the last 

part of which is a Linda primitive. Lm assumes the existence of helper function 

Lm-comp to return all possible meanings of internal Linda process computation 

(that is, up to, but not including, a Linda primitive function). A random choice 

determines how tj[k] gets updated. In the case of the final active process within 

t j  becoming passive, Lm moves t j  from the set of active tuples to the set of passive 

tuples, and generates event ' Egenerated. 

In the case where tj[k]'s computational progress includes a Linda primitive, 

function Lm-prim finishes the work Lm started. The two main cases of Linda 

primitives are asynchronous and synchronous. In either case, Lm-prim constructs 

the appropriate closure forms and adds the closure containing the primitive re- 

quest to A. In the case of the synchronous primitive, Lm-prim also changes tj[k] 

from active to pending. 

The careful reader may question the need for a double choice of meanings 

among Lm and F-mu, for a given Linda process t j  [k]. Briefly, Lm selects a random 

meaning for tj[k]; F-mu constructs the set of all possible meanings that Lm could 

return for tj[k], only to select from this set a random meaning for tj[k]- Clearly, 

we could have structured a single random choice; but not doing so permits us 

to isolate and investigate different scheduling policies and protocols. For each 

transition, the number of possible next states is combinatorially large. Recall 

that Lm and F-mu are part of the function that generates children, one of which 

the transition function chooses to elaborate, in lazy tree o. Each random choice 

the transition function makes prunes subsets of possible next states, until one 

remaining state is finally elaborated. Since Lm-comp is a helper function, the 



double choice of meanings emphasizes the possibilities for a single Linda process, 

and is consistent with the other random choices made during transition. 

This concludes our description of the Scheme functions associated with tran- 

sition in pTS. The functional nature of Scheme gives a precise and elegant de- 

scription of the operational semantics for Linda and tuple space. Equally precise 

and elegant is the Scheme implementation of the PTS view relation. Functions 

F-view and more-ropes, are equivalent instantiations of the the view relation 

defined in Chapter 4. The transition and view relations together allow us to 

reason about all possible behaviors of a distributed system's computation, and 

all possible views of each of those behaviors. Thus we have a powerful tool for 

identifying and reasoning about properties of distributed computation. 

; Scheme function description of paraDOS instantiated for Linda 
; (with support for tuple space composition) 
¶ 

; Lambda closure forms: 

; Linda primitive cases: 

; where 
"handle" can be "self", "parent", or an acquired TS handle; J 

unqualified Linda primitives imply the handle "self"; and # 

handles other than imply composition 

; Cases 1 and 2: (synchronous primitives) 

lambda2 = send(self, force(lambda3)) 
lambda3 = (let t = force(lambda4) in delay(react(j,k,t))) 



¶ 

; Cases 3 and 4: (asynchronous primitives) 
I lambda1 = send(handle, delay(lambda2)) 
I lambda2 = out(template), o r  //case 3 
a eval (template) //case 4 
¶ 

; where 
¶ send(handle, lambda) is  defined a s  the  s e t  union of 
9 TS handle's LambdaBar s e t  with the  s ingleton s e t  

containing lambda. 

; Transit ion Function 
; Summary: Returns a state-LBar pa i r  ( l i s t ) .  
; This i s  how computation proceeds. 
(define F-de l t a 

(lambda (state-LBar) 
( l e t  ((sigma (get-state state-LBar)) 

(LBar (get-LBar state-LBar))) 
( l e t  ( (sigmacur (get-cur-state sigma) ) ) 

( l e t  ( (new-state-LBar (G (F-LambdaBar 
( l is t  sigmacur LBar)))))  

( l e t  ( (newsigma (get-s ta te  new-state-LBar) ) 
(newLBar (get-LBar new-state-LBar))) 

( l i s t  (elaborate-sigma sigma newsigma) 
(newLBar) 1) 1) ) 

; get  current s t a t e  
; Summary: helper function cal led by F-delta; t raverses  
; computational h i s tory  t o  l a s t  elaborated s t a t e .  
(define get-cur-state 

(lambda (sigma) 
( l e t  ( (next-sigma (get-next-state sigma) ) ) 

( i f  (nul l?  next-sigma) 
sigma 
(get-cur-state next-sigma))))) 



; elaborate sigma 
; Summary: helper function called by F-delta; elaborates 
; next state in computational history with newsigma. 
(define elaborate-sigma 

(lambda (sigma newsigma) 
(let ( (Abar (get-Abar sigma)) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) 1 
(next-sigma (get-next-state sigma))) 

(if (null? next-sigma) 
(make-state Abar Tbar Pbar newsigma) 
(make-state Abar Tbar Pbar 

(elaborate-sigma 
next-sigma newsigma)))))) 

; F-LambdaBar 
; Summary: Returns a state-LBar pair. Selects random subset 
; of closures from LambdaBar set. Invokes reduce-all to do the 
; work, passing in a randomly-ordered list of closures from 
; subset selected, and an initialized state-LBar pair. The 
; state from state-LBar consists of the multisets of active 
; and passive tuples from input state sigma. The LBar element 
; of state-LBar is the set difference of itself and the random 
; subset of closures selected. 
(define F-LmbduBur 

(lambda (state-LBar) 
(let ( (sigma (get-state state-LBar) ) 

(LBar (get-LBar state-LBar) ) ) 
(let ( (Abar (get-Abar sigma) ) 

(Tbar (get -Tbar sigma) ) 
(randclosures 

(get-rand-subset LBar))) 
(reduce-all 

(as-list randclosures) 
(list (make-state Abar Tbar ' () ' 0) 

(set-diff LambdaBar randclosures))))))) 



; reduce-all 
; Summary: Returns a state-LBar p a i r .  Accumulates t h e  e f f e c t s  
; of applying the  closures t o  t he  s t a t e  i n  state-LBar. Closures 
; t h a t  couldn't reduce a re  added back t o  LBar i n  state-LBar. 
; This function farms out the  work, one closure a t  a t ime, t o  
; function reduce-1. 
(define reduce-al l 

(lambda (closures state-LBar) 
( i f  (nul l?  closures) 

( s t  a t  e-LBar) 
(reduce-all (cdr closures) 

(reduce-1 (car closures) state-LBar)))))  

; reduce-1 
; Summary: Returns a state-LBar p a i r .  The outer-most function 
; of closures i n  an LBar s e t  a re  one of s e n d o ,  r e a c t i v a t e ( ) ,  
; or  one of t he  asynchronous Linda pr imit ives ,  ou t ( )  and 
; e v a l ( ) .  This function farms out t h e  work accordingly. 
(define reduce-1 

(lambda (closure state-LBar) 
(cond 

( (out? closure) 
(reduce-out closure state-LBar) ) 

((eval? closure) 
(reduce-eval closure state-LBar)) 

( (send? closure) 
(reduce-send closure state-LBar)) 

( ( reac t?  closure) 
(reduce-react closure state-LBar) ) ) ) )  



; reduce-out 
; Summary: re turns  a new state-LBar p a i r .  The s t a t e  element 
; of state-LBar r e s u l t s  from applying the  Linda pr imit ive 
; out(temp1ate) t o  the  input s t a t e .  Spec i f ica l ly ,  a new 
; tup le  i s  added t o  the  new s t a t e ' s  Tbar s e t .  Also, t he  
; new event Ecreated f o r  the  new tuple  i s  added t o  the  PBar 
; s e t  of the  new s t a t e .  L B a r  is unchanged. 
(define reduce-out 

(lambda (closure state-LBar) 
( l e t  ((sigma (get-s ta te  state-LBar)) 

( t  (get-template c losure)))  
( l e t  ((Abar (get-Abar sigma)) 

(Tbar (get-Tbar sigma)) 
(Pbar (get-Pbar sigma) ) ) 

( l e t  ( (newTbar (union Tbar (singleton t )  ) ) 
(newPbar (union Pbar (singleton 

(make-event 'Ecreated t ) ) ) ) )  
( l ist  (make-state 

Abar newTbar newPbar '0) 
(get-LBar s ta te-LBar)))))))  

; reduce-eval 
; Summary: re turns  a new state-LBar p a i r .  Similar t o  reduce-out, 
; a new ac t ive  tup le  i s  added t o  the  new s t a t e ' s  Abar s e t .  The 
; corresponding event Egenerating f o r  t he  new tuple  i s  added t o  
; the  PBar s e t  of the  new s t a t e .  LBar is unchanged. 
(define reduce-evul 

(lambda (closure state-LBar) 
( l e t  ((sigma (get-state state-LBar)) 

( t  (get-template closure) ) ) 
( l e t  ( (Abar (get-Abar sigma) ) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

( l e t  ((newAbar (union Abar (singleton t ) ) )  
(newPbar (union Pbar (singleton 

(make-event 'Egenerating t))))) 
( l i s t  (make-state 

newAbar Tbar newPbar ' () ) 
(get-LBar s ta te-LBar)))))))  



; reduce-react 
; Summary: returns a new state-LBar pair. The reactivate closure 
; specifies that within the ABar set of the state contained 
; in the state-LBar pair, the k-th field of the j-th tuple 
; is the process to be made active. Part of the activation 
; of this process includes the binding of tuple t to the "rd" 
; or "in" call in the continuation: the point which the process 
; was originally suspended! 
(define reduce-react 

(lambda (closure state-LBar) 
(let ((sigma (get-state state-LBar)) 

(LBar (get-LBar state-LBar) ) ) 
(let ((Abar (get-Abar sigma)) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

(let ((tuple-j (get-tuple Abar 
(get-j closure)))) 

(let ((field-k (get-field tuple-j 
(get-k closure)))) 

(let ((new-field-k 
(set-f ield-type 
(bind f ield-k (get-t closure) ) 
'Active) ) ) 

(let ((new-tuple-j 
(add-field (remove-field 
tuple-j field-k) new-field-k))) 

(let ((newAbar (union 
(set-dif f Abar 
(singleton tuple- j) ) 
(singleton new-tuple-j)))) 

(list (make-state 
newAbar Tbar Pbar ' () ) 

LBar)))))))))) 



; reduce-send (without TS composition) 
; Summary: returns a new state-LBar pair. If the closure 
; expression to be sent is delayed, strip the delay() and "send" 
; by adding to LBar set. Otherwise, closure is a forced "letN 
; expression. Farm off to reduce-let function. If reduce-let 
; fails, then reduce-send fails, and the original closure is 
; added to returned state-LBar's set of closures (where 
; state-LBar's state is unchanged). If reduce-let was 
; successful, the let expression bound a tuple into it's 
; delayed subexpression (reactivate). reduce-send then returns 
; the new state-LBar pair, consisting of the subsequent new state 
; and the reduced closure in LBar. 
(define reduce-send 

(lambda (closure state-LBar) 
(let ( (send-arg (get-send-arg closure) ) ) 

(if (delayed? send-arg) 
(let ( (LBarl (union (cadr state-LBar) 

(singleton (strip-delay send-arg) ) ) ) ) 
(list (car state-LBar) LBarl) ) 

;else forced 
(let ((closure-state 

(reduce-let (strip-force send-arg) 
state-LBar) ) ) 

(if (null? closure-state) 
; reduce failed 
(list (car state-LBar) 

(union (cadr state-LBar) 
(singleton closure))) 

;else it reduced! 
(let ((LBarl (union (cadr state-LBar) 

(car closure-state) ) ) )  
(list (cadr closure-state) 

LBarl)))))))) 



; reduce-let 
; Summary: returns a closure-state pair. The closure part is a 
; possibly reduced let expression, and a possibly modified state. 
; Reduction depends on the success or failure of the forced 
; Linda primitives rd or in. A reduced closure consists of 
; binding the result of the rd or in to the delayed part of 
; the let closure. The work of reducing the rd or in is farmed 
; out to corresponding functions. 
(define r e d u c e - l e t  

(lambda (closure state-LBar) 
(let ((Lprim (get-forced closure)) 

(react (get-delayed closure))) 
(let ((tuple-state 

(if (rd? Lprim) 
(reduce-rd closure state-LBar) 
(reduce-in closure state-LBar)))) 

(if (null? tuple-state) 
' ) ;prim failed 
(let ((bound-closure 

(bind (car tuple-state) react)) 
(newstate (cadr tuple-state))) 

(list bound-closure newstate))))))) 



; reduce-rd 
; Summary: r e tu rns  a tup le -s ta te  p a i r .  Farms out matching work 
; t o  ex i s t s ?  funct ion.  I f  successful ,  t up l e  p a r t  of t up l e - s t a t e  
; contains matching t up l e  t ,  and s t a t e  p a r t  of t up l e - s t a t e  
; contains  new event 'Ecopied i n  i t s  Pbar s e t .  
(def ine  reduce-rd 

(lambda (closure state-LBar) 
( l e t  ((sigma (ge t - s ta te  state-LBar)) 

(template (get-template c lo su re ) ) )  
( l e t  ( (Abar (get-Abar sigma) ) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

( l e t  ((f ((lambda t) 
(match? template t ) ) ) )  

( l e t  ( ( t  ( ex i s t s ?  Tbar f))) 
( i f  (nu l l?  t )  
('0) 
( l e t  ((newPbar (union Pbar 

(make-event 'Ecopied t ) ) ) )  
( l e t  ( (newsigma (make-state 

Abar Tbar newPbar '0))) 
( l i s t  t newsigma) ) 1) 1) 1) 1) 



; reduce-in 
; Summary: returns a tuple-state pair. Similar to reduce-rd, 
; except if successful, also removes matching tuple t from 
; new state's Tbar set in tuple-state pair. 
(define reduce- in 

(lambda (closure state-LBar) 
(let ( (sigma (get-state state-LBar) ) 

(template (get-template closure) ) ) 
(let ( (Abar (get-Abar sigma) ) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) ) 

(let ((f ((lambda t) 
(match? template t)))) 

(let ((t (exists? Tbar f))) 
(if (null? t) 
('0) 
(let ( (newTbar (set-dif f 

Tbar (singleton t))) 
(newPbar (union Pbar 

(make-event 'Econsumed t)))) 
(let ( (newsigma (make-state 

Abar newTbar newPbar ' () ) ) ) 
(list t newsigma) 1) 1) 1)) 1) 

; exists? 
; Summary: returns a matching tuple from TBar if one is found 
; that satisfies the f function. The f function is bound by the 
; caller to check for a match with a particular template. 
(define e x i s t s ?  

(lambda (TBar f) 
(if (null? TBar) 
('0) 
(let ((tuple (car TBar) ) )  

(if (f tuple) 
(tuple) 
(exists? 

(set-diff TBar (singleton tuple)) 
f)))))) 



; Generate Children 
; Summary: Returns a state-LBar pa i r .  
(define G 

(lambda (state-LBar) 
( l e t  ((sigma (get-s ta te  state-LBar)) 

(LBar (get-LBar state-LBar) ) ) 
( l e t  ( (Abar (get-Abar sigma) ) 

(Tbar (get-Tbar sigma)) 
(Pbar (get-Pbar sigma) ) ) 

( l e t  ( (Lprocs (get-active-procs Abar) ) ) 
( l e t  ((randsub (get-rand-subset Lprocs))) 

(genMeaning ( a s - l i s t  randsub) 
( l i s t  (make-state 

Abar Tbar Pbar ' () ) 
LBar) ) ) ) ) ) ) )  

; Generate Meaning 
; Summary: Returns a state-LBar pa i r .  Applies meaning function 
; F-mu t o  a l l  members of Lprocs, accumulating the  e f f e c t s  of each 
; Linda process' computation i n  the  state-LBar p a i r  returned. 
(define genMeaning 

(lambda (Lprocs state-LBar) 
( i f  (nul l?  Lprocs) 

state-LBar 
( l e t  ( (  jk-pair (car Lprocs)) 

(sigma (get-state state-LBar))) 
( l e t  ( ( j  (get-j jk-pair))  

(k (get-k jk-pair)) 
(Abar (get-Abar sigma) ) ) 

( l e t  ( ( t sub j  (get-tuple j Abar))) 
(genMeaning (cdr Lprocs) 

(F-mu t subj  k s ta te-LBar))))))))  



; F-mu 
; Summary: Returns a state-LBar pair. The meaning of the 
; computation of single Linda process residing in tuple j, 
; field k, is reflected in the return value. The meaning is 
; a random selection from the set of possible meanings. 
(define F-mu 

(lambda (tsubj k state-LBar) 
(let ( (meanings-of -tsub j-k 

(gen-set Lm tsubj k state-LBar))) 
(car (as-list meanings-of-tsubj-k))))) 



; Lm 
; Summary: returns a state-LBar pair. High level Linda meaning 
; function. Computational progress of a Linda process, in 
; location k of tuple tsubj, is reflected in the state 
; returned by this function. Progress consists of internal 
; and/or external computation. In the case of the final 
; active process within tsubj going passive, in addition to 
; removing tsubj from Abar and adding to Tbar, an 'Egenerated 
; event is added to Pbar. If after making internal progress, 
; a Linda primitive immediately follows, Lm enlists Lm-prim 
; to do the rest. 
(define Lm 

(lambda (tsubj k state-LBar) 
(let ((sigma (get-state state-LBar)) 

(LBar (get -LBar state-LBar) ) ) 
(let ( (Abar (get-Abar sigma) ) 

(Tbar (get-Tbar sigma)) 
(Pbar (get-Pbar sigma) ) ) 

(let ( (tsubj 1 (tupleupdate tsubj k 
(composition rand Lm-comp)))) 

(if (exists-active-f ield? tsubj 1) 
(let ((Abarl (union 

(set-diff Abar (singleton tsubj)) 
(singleton tsubjl)))) 

(process-redex tsubjl k 
Abarl Tbar Pbar LBar)) 

(let ( (Abarl (set-dif f Abar 
(singleton tsubj))) 

(Tbarl (union Tbar 
(singleton tsubjl))) 

(Pbarl (union Pbar 
(singleton (make-event 

'Egenerated tsubjl))))) 
(process-redex tsubjl k 

Abarl Tbarl Pbarl LBar)))))))) 



; Process redex 
; Summary: re turns  a state-LBar p a i r .  Helper funct ion t o  
; complete t he  work of Lm. 
(define process-redex 

(lambda ( t sub j  k Abar Tbar Pbar LBar) 
( l e t  ((redex (get-redex t sub j  k ) ) )  

( i f  (linda-prim? redex) 
(Lm-prim t sub j  k 

( l i s t  (make-state Abar Tbar Pbar '0) 
LBar) ) 

( l i s t  (make-state Abar Tbar Pbar ' 0) 
LBar) 

; Lm-prim 
; Summary: re turns  a state-LBar p a i r .  High l e v e l  Linda meaning 
; funct ion f o r  external  computation. External  computation 
; cons i s t s  of a process issuing one of t h e  Linda pr imi t ives .  
; Depending on whether t he  Linda pr imit ive  i s  synchronous o r  
; asynchronous, t he  process w i l l  suspend, 'Pending completion of 
; t he  operation,  or  reduce t he  asynchronous pr imit ive ,  
; respec t ive ly .  
(define Lm-prim 

(lambda ( t sub j  k state-LBar) 
( l e t  ((sigma (get-s ta te  state-LBar)) 

(LBar (get-LBar state-LBar) ) ) 
( l e t  ((Abar (get-Abar sigma)) 

(Tbar (get-Tbar sigma) ) 
(Pbar (get-Pbar sigma) ) 
(redex (get-redex t s u b j  k ) ) )  

( l e t  ((handle (get-handle redex)) 
(lprim (get-Linda-prim redex)) 
(template (get-template redex)))  

( i f  (asynch-prim? lprim) 
;asynchronous pr imit ive  
( l e t  ((lambda3 ( l i s t  lprim template)))  

( l e t  ((lambda2 
( l ist  ' force  lambda31 ) )  

( l e t  ((lambda1 ( l i s t  
( 'send handle 

( l i s t  'delay lambda2))) ) )  



(let ((LBar1 (union LBar 
(singleton lambdal))) 

(tsub j 1 (tupleupdate 
tsubj k reduce-asynch))) 

(let ((Abarl (union 
(set-dif f Abar 
(singleton tsubj)) 

(singleton tsubjl)))) 
(list (make-state 

Abarl Tbar Pbar '0) 
LBari)))))) 

;synchronous primitive 
(let ( (lambda4 (list lprim template)) ) 

(let ((lambda3 (list 'let t 
(list 'force lambda41 
'in (list 'delay (list 

'react tsubj k t))))) 
(let ((lambda2 (list 'send 

(get-self-handle state-LBar) 
(list 'force lambda3)))) 

(let ( (lambdal 
(list 'send handle 
(list 'delay lambda2)))) 

(let ((LBar1 (union LBar 
(singleton lambdal) ) ) 

(tsub j 1 (tupleupdate 
tsubj k 
make-pending) ) ) 

(let ((Abarl (union 
(set-dif f 

Abar 
(singleton tsubj)) 

(singleton tsubjl)))) 
(list (make-state 

Abarl Tbar Pbar '0) 
LBarl))))))))))))) 



; View function 
; Summary: creates a new view, if upsilon is an empty list of 
; ROPEs; otherwise appends zero or more ROPEs to an existing 
; view of computation (from sigma). 
(define F-v iew 

(lambda (upsilon sigma) 
(if (null? upsilon) 

(more-ropes sigma) 
(append (list (car upsilon)) 

(F-view (cdr upsilon) 
(get-next-state sigma)))))) 

; more ropes 
; Summary: helper function called by F-view; returns a list of 
; zero or more ROPEs generated from the corresponding 
; parallel event sets of sigma's traversal. 
(define more-ropes 

(lambda (sigma) 
(if (null? sigma) 

' 0 
(let ( (Pbar (get-Pbar sigma) ) 

(next-sigma (get-next-state sigma) ) ) 
(let ((v-randsub (get-rand-subset Pbar))) 

(let ( (rho (as-list v-randsub) ) ) 
(random-choice (list rho) 

(append (list rho) 
(more-ropes next-sigma) ) ) ) ) ) ) ) ) 

6.4 Equivalence Proof 

This section discusses the operational semantics of previous work with which we 

will be comparing paraDOS for Linda. We present our plan of attack for the 

equivalence proof, based on the assumptions of the previous operational seman- 
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Figure 6.7: The TSspec match relation. 

tics. Finally, we discuss the contributions of paraDOS for Linda to the body of 

work in formal models of tuple space computation. 

6.4.1 The TSspec Model 

We establish the soundness of paraDOS for Linda by giving an equivalence proof 

of our operational semantics with the operational semantics for Linda's tuple 

space given in [C JY941 and also in Jensen's Ph.D. thesis [Jen94]. Jensen presents 

his semantics, TSspec, in section 3.2 of his thesis, pp. 48-51. For completeness, we 

present TSspec's match relation in Figure 6.7, domain specification in Figure 6.8, 

and operational semantics in Figure 6.9. 

The match relation specifies that templates and tuples match if their respec- 

tive values match. Two values match if they are of the same type, and exactly 

one value is formal; or if both values are actual and the identical. 

In Figure 6.9, the case for local evaluation consists of two inference rules. The 

second inference rule is a recursive specification for the TSspee transition relation, 

and defines how a tuple space (a multiset of tuples) can be partitioned into 

two multisets of tuples. The resulting multisets can then be further partitioned 

by recursively applying the second inference rule. Jensen's description of the 
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parallelism specified by TSspec includes more information than what is conveyed 

by the second inference rule (Jen94, CJY94, JenOO]. In particular, the TSspec 

operational semantics describes concurrency through an arbitrary interleaving of 

a set of atomic transitions. This set of transitions derives from the partitions 

of tuple space that result from the recursive applications of the second inference 

rule. Computation proceeds within each partition of tuple space via a single, 

independent transition. Each of these transitions corresponds to one of TSspec's 

non-recursive transition rules. Collectively, these transitions represent the set of 

atomic transitions to be interleaved. 

The TSspec approach, via the second inference rule, provides an elegant formal 

specificat ion of parallelism for tuple space computation. However, the instantia- 

tion of paraDOS for Linda does not use this approach. By avoiding partitioning, 

our approach is capable of modeling a higher degree of parallelism than that re- 



flected in TSspec's second inference rule. For example, consider Linda processes 

A and B, residing within different tuples, both about to issue a rd() primitive, 

where their respective templates both match tuple t. TSspec can partition a 

multiset for the tuple copying rule. Such a multiset contains the matching tuple 

t, and either the tuple containing Linda process A or the tuple containing the 

Linda process B. Once such a partition exists, a second partition to copy tuple 

t is no longer possible - even though it is theoretically possible for both Linda 

processes A and B to copy tuple t in parallel. ParaDOS for Linda permits this 

level of parallelism. 

This equivalence proof focuses on individual computational steps, not degrees 

of parallelism, between TSspec and paraDOS for Linda. The reason for this 

focus is because the two models represent parallelism a t  different levels of ab- 

straction: TSspec via interleaving events (transitions) from the second inference 

rule, paraDOS for Linda via parallel events. When reasoning about a TSspec 

trace, one cannot distinguish, in general, whether some sequence of events in the 

trace occurred sequentially, or resulted from interleaving two or more simultane- 

ous, partitioned transitions. Thus, we restrict our attention to the only remaining 

case for a transition within a tuple space partition: the first inference rule for in- 

dividual local computations. The first rule describes how a Linda process makes 

local computational progress while residing within a field of some tuple in tuple 

space. 

Several assumptions of TSspec influence the framework of this equivalence 

proof. First, TSspec specifies the coordination of Linda processes via tuple space. 

Second, TSspec does not specify exactly what a Linda program is: TSspec is not 

a terminal transition system. Finally, concurrency is described by an arbitrary 

interleaving of a set of atomic transitions performed by the active processes. 
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Thus, in this equivalence proof, we are not concerned with initial or final con- 

figurations of Linda programs, but rather the states of individual Linda processes 

and tuple space, and the subsequent states of these processes and tuple space af- 

ter a transition. Moreover, since TSspec represents parallelism via an arbitrary 



interleaving of sequential computations, we will consider a restricted version of 

paraDOS for Linda, capable of computational progress by a single Linda process 

in each transition. This should not bother us going from TSspec to paraDOS, 

since this restriction is indeed one of the possibilities for any given transition. In 

the other direction, the restriction of paraDOS to single-process transitions will 

be sufficient to show equivalence with TSspec. 

This equivalence proof will not be in the form of induction on the number of 

transitions. The proof is nontraditional because TSspec is defined in terms of a 

process's individual transitions. First, we define equivalence relations between the 

two models' configurations, tuples, and tuple fields. Next, we demonstrate that 

the transitions possible in one semantics are possible in the other semantics (i.e. 

what one can do, the other can do, and vice versa). In all cases, we must show 

that the equivalence relation on configurations holds between the two models' 

states before and after their respective transitions. 

6.4.2 Definitions and Assumptions 

Before we can state (and prove) our theorem, we must define our equivalence 

relations and state our assumptions. We define three equivalence relations, among 

state configurations (I-+), tuples (w), and tuple fields ( H ) .  Our assumptions 
cf9 tpl Pd 

concern notation, fonts, and the existence of helper functions. 

We use different fonts to distinguish tuples from each of the two computational 

models. In particular, t refers to a tuple from the Linda instantiation of paraDOS, 

and t refers to a tuple from TSspec. In both cases, we use standard subscript 

notation to project individual tuple fields. Further, t[l] refers to the first field of 



tuple t from TSspec, where fields are numbered from 1 to #t (similarly for t and 

paraDOS instantiated for Linda). 

Note that H applies to tuple templates as well as tuples. X is a closure con- 
tpl 

taining a Linda primitive. Where convenient, we indicate the type of Linda prim- 

itive a closure contains with a subscript, e.g. Ad.  Helper function l indapr  im(X) 

extracts the Linda primitive operation from A. Helper function asynchsub(X) 

returns the subset of closures in containing asynchronous Linda primitive op- 

erations. 

The operational semantics of the synchronous Linda primitives within TSspec 

are guarded by the predicate match, which returns true for pairs of tuples that 

match. paraDOS for Linda assumes the existence of predicate match? for the 

same purpose. 

We now define the equivalence relations. One way to describe a Linda program 

is as a collection of tuples. This description captures not only the passive tuples, 

but the Linda processes, which reside within the active tuples in tuple space. 

Thus, configurations between PTS and TSspec are equivalent if all the tuples in 

pTS have counterparts in TSspec, and all tuples in TSspec have counterparts in 

pTs. Two tuples are equivalent if their respective fields are equivalent. Two tuple 

fields are semantically equivalent if their respective contents are syntactically 

equivalent; syntactic equality implies semantic equality. The definitions of 
tp l  

and H are straightforward. 
fld 

The definition of ++ merits further explanation. There are two main expres- 
cfg 

sions, the first evaluating equivalence from TSspec to pTS, the second evaluating 

equivalence from pTS to TSspec. The first condition is met if, for all tuples in 

TSspec's tuple space, there is an equivalent tuple in either pTS's set of active 

tuples or set of passive tuples, or that the matching tuple in pTS resides within 



a communication closure yet to be reduced. In the case that the matching PTS 

tuple resides within a closure, there are two possibilities. The first possibility is 

that the matched tuple t belongs to the blocked process residing in the k-th field 

of the m-th tuple in tuple space. The second possibility is that the tuple t is to 

be placed in tuple space by an out() or eval()  operation. 

The second main condition is the conjunction of three sub-conditions. First, 

for all tuples in PTS's sets of active and passive tuples, there must be an equivalent 

tuple in TSspec's tuple space. Second, for all PTS closures A that are in the 

reactCl domain, there must be a tuple in TSspec's tuple space that is equivalent 

to the tuple t contained in A. Third, for all closures A in pTS that contain the 

nonblocking Linda primitive operation ou t ( t )  or eval( t ) ,  there must be a tuple 

in TSspec's tuple space that is equivalent to the tuple t contained in A. 

--- 
Definition 20 (I-+) Let K,TS = tsi, K P ~  = (a,, Xj), and aj = (A, 7, P, one,t), 

cf9 

where tsi E TS, and (aj, Kj) E SCSPair. Then K:' H K : ~  iff 
cfg 

(3 E L j  . 3t E tuple. 3m,k 1 ( A =  "react(m,k,t)"  V 

lindaprim(A) t {out ( t ) ,  eva l ( t ) ) )  /\ t H t) 
tpl 

(VX E K j  n reactC1 . 3t E tsi . 3t E tuple . 3 m ,  k I 
= "react(m,k,t)"  A t H t) /\ 

tp l  

(VX E asynchsub(Kj) . 3t E tuple . 3t E tsi I 

Definition 21 (ct) 
tp l  



Definition 22 (-) t[k] c--t t [k]  iff 
J d  J d  

t [k] = t [k] .contents (syntactic equality implies semantic equality) 

6.4.3 Theorem and Proof 

Theorem 2 states that we can model the computations of all Linda processes 

equivalently in both TSspec and PTs. Specifically, if Linda process p is contained 

in equivalent configurations from TSspec and pTS then, for all possible transitions 

in TSspec involving p, there exists zero or more transitions to an equivalent state 

in PTs. Similarly, for all possible transitions in PTS, there exists zero or more 

transitions to an equivalent state in TSspec. The proof considers all possible 

cases of transitions from TSspec to PTS, and from PTS to TSspec. 

Theorem 2 For all Linda processes, p ,  let K? be a configuration of KTS con- 
taining p ,  and K T ~  be a configuration of KpL containing p ,  s.t. K y  - KjpL. 

cf9 
Then 

1. K y  + t s  K g  SI 372 2 0 s.t. KTL +FL K g n  A KI'+'' 2 K$,, 

and 

2. KPL t p L  K g 1  4 3n 2 0 s.t. KTs -+y8 KG", /\ KZSn H K$. 
cf9 

Proof: 

Part 1: Consider each case of tuple space transitions in TSspec. For each case, 
demonstrate the equivalent transition in paraDOS for Linda. 

Process Creation: Vt' E Tuple, : 4 t [eval(t l) .p : T ]  -+,, (I t[p : r] ,  t' D 
1. Let K? > {I t[eval(tl) . p  : T ]  and K:~' > {I t[p : r] ,  t' D ,  where 

K,TS + t s  KZs1. 
Let tl denote tuple t before, and tr denote tuple t after, 
transition + t s .  



2. Given K y  H K ; ~ ,  by definition of H ,  3t E oj .x I tl H t ,  
cfg cf9 tpl 

and by definition of ++, 3e 1 tl [eval(tl) .p : T ]  t [l], 
tpl 

and by definition of H, tl[l] = t[e].contents. 
fid 

3. By definition of +ts, 

the meaning of tl [eval(tf) .p : r] yields { I  t z [ p  : r ]  , t' D . 
By definition of Lm-prim(), 

3t1' E tuple I tl'[l].contents = t2[!] A 
V1 5 k # e  5 #t. t N [ k ]  = t [ k ] ,  

and 3X E asynchCZ 3t' E tuple 1 
lindaprim(X) = eval(t l)  /\ t' H t ' .  

tpl 

4. By definition of ct and tl'[l], tz[l] H tl '[e],  and 
Pd fld 

By definition of H and t", tz I-+ t" .  
tpl tpl 

5. By definition of G applied to aj and Kj j ,  and by definition of t ,  t", and 
A, 

--- 
3aj+1 E state I oj+l = (A, 7, P,  ane,t) where 

- 
gj+l .A = (9.2 - { t ) )  U {t"), 

- - 
.7 = aj.7- 
- 

aj+l -P = 0, 
uj+l .anezt is initially undefined, and 

- 
3Kj+l E c los~rese t  1 Kj+1 = Aj U { A ) .  

6. By definition of + p ~ ,  and by steps 3 and 5, where aj .anezt = aj+l 
- 

and ~ $ 1  = (aj+l,Aj+l),  
KPL + p ~  K!fl is one legal transition. 

7. By definition of reduce-send applied to A, 
3X' E asynchLPr2m I A' =reduce-send(X) A lindaprim(X1) = 

eval (t'). 

8. By definition of F-LambdaBar applied to Oj+l and Kj+l , and by defi- 
nition of X and A', 

3CTj+2 E state ( Oj+z = Oj+l ,  

3Kj+4 E cZosureSet I Kj+2  = (Kj+1 - { A ) )  U {A'). 

9. By definition of + p ~ ,  and by steps 7 and 8, where aj+l .o,,,t = aj+2 
- 

and ~ : f 2  = (aj+2, Aj+2), 
KT:, + p ~  K ~ P + L ~  is one legal transition. 



10. By definition of reduce-eval applied to A', and by definition of t ' ,  

t' = reduce-eval (A'). 

11. By definition of F-LambdaBar applied to o,+z and Kjf2, and by defi- 
nition of t ' ,  and A', 

--- 
3oj+3 E state ( oj+3 = (A, 7, P, oneXt) where 

- - 
oj+3 .A = oj+z -A U {t'), 

- - 
oj+3.T = oj+2.7, 

- 
O ~ + ~ . P  = {('Egenerating, t')}, 

~j + 3. Onext is initially undefined, and 
- 

3Kj+3 E closureset 1 Kj+3 = Aj+2 - {A'} 

12. By definition of t,~, and by steps 10 and 11, where oj+z .o,,,t = oj+3 - 
and = (Oj+37 Aj+3) 

K$, _ t p ~  K;f3 is one legal transition. 

13. By definition of ++ and 0j+3, and by steps 3, 4, 5, and 11, where 
cf9 - - 

respectively, t' +-+ t', tz +-+ t", t" E o j+~  .A, and t' E ~ j + ~ . d ,  
tpl tpl 

14. From the transitions in steps 6, 9, and 12, and by the configuration 
equivalence in step 13, we demonstrated the ability of paraDOS for 
Linda to perform in n = 3 transitions the TSspec computational step 
of Process Creation. 

Tuple Creation: Vt' E Tuple, : {I t[out (t') . p  : r] Jts {I f [p : 71, t' b 

1. Let Krs  > {I t[out (tl).p : r] b and Ki'is1 > 4 t[p : T], t' b, where 
K F  _tts Kzsl. 
Let tl denote tuple t before, and tz denote tuple t after, 
transition -+ ts. 

2. Given K? H K P ~ ,  by definition of H, 3t E 0 j .Z  I tl H t, 
cf9 cf9 tpl 

and by definition of H, 3 t  1 tl [out (t' ) .p : r] H t [el, 
tpl Pd 

and by definition of H, tl [l] = t [[].contents. 
fld 



3. By definition of -+ t a ,  

the meaning of tl [out (t') .p : r] yields {I t2 [p : r] , t' b. 
By definition of Lm-prim() , 

3t1' E tuple I tU[l].contents = tz[p : r] A 
vi 5 k + e 5 #t. t y k ]  = tp], 

and 3 A  E asynchCl 3t' E tuple 1 
lindaprim(A) = out( t l )  /\ t' H t ' . 

tpl 

4. By definition of H and t"[e], t2[e] H t"[l], and 
fid Pd 

By definition of H and t", t2 I---+ 
tpl tp l  

t". 

5 .  By definition of G applied to oj and Tj , and by definition of t ,  t", and 
A , --- 

3oj+1 E state I oj+l = (A, 7, P ,  ~ n e x t )  where 
- - 

oj+1 -A = (oj -A - {t)) IJ {t"), 

oj+l . 7  = 0j.7, 
- 

oj+l -P = 0, 
oj+ 1 .o,,,t is initially undefined, and 

- 
3Xj+l E elosureSet 1 Tj+l = Aj U {(X). 

6. By definition of + p ~ ,  and by steps 3 and 5, where oj.onext = Oj+l 

and = (oj+i r Aj+l)r 

K ! ~  + p ~  K $ ~  is one legal transition. 

7. By definition of reduce-send applied to A, 
3A' E asynchLPrzm I 

A' =reduce-send@) A 1 indapr im(A1) = out (t') . 
8. By definition of F-LambdaBar applied to Oj+l and Tj+1, and by defi- 

nition of X and A', 

9. By definition of +pL, and by steps 7 and 8, where Oj+l .on,,t = Oj+2, 
- 

and = (oj+2, Aj+2). 

KT!, + p ~  ~2~ is one legal transition. 

10. By definition of reduce-out applied to A', and by definition of t', 

t' =reduce-out (A'). 



11. By definition of F-LambdaBar applied to o j + 2  and Kj+2, and by defi- 
nition of t', and A', 

--- 
30j+~ E state I oj+3 = (A, 7, P, oneXt) where 

- - 
uj+3 -A = oj+2 .A 

- - 
q + s . T  = o ~ + ~ . T  U {ti), 

- 
O ~ + ~ . P  = {(  'Ecreated, t')}, 

0j+3 .onezt is initially undefined, and 
- 

3Kj+3 E closureSet I Kj+3 = Aj+2 - {A') 

12. By definition of tp~, and by steps 10 and 11, where oj+2 .onext = 0j+3 
- 

and ~ $ 3  = (o~ .+Q 1 Aj+3), 

K c z  + p ~  ~2~ is one legal transition. 

13. By definition of H and 0j+3, and by steps 3, 4, 5, and 11, where 
cfg - - 

respectively, t' H t', t z  * t", t" E oj+1 .A, and t' E oj+3 .T, 
tpl tpl 

14. From the transitions in steps 6, 9, and 12, and by the configuration 
equivalence in step 13, we demonstrated the ability of paraDOS for 
Linda to perform in n = 3 tranitions the TSspec computational step 
of Tuple Creation. 

Tuple Copying: V(s, t') E match  : 

{I t [rd(s) .p : 71, t' D +ts {I t [p( t l )  : 71, t' D 

1. Let K y  > 4 t[rd(s).p : r ] ,  t' D and Kzs1 S, {I t [p(t l)  : r] ,  t' b, 
where K? _tta K g .  
Let tl denote tuple t before, and t2 denote tuple t after, 
transition --t t,. 

2. Given K y  t---+ K3PL, by definition of H ,  
cfg cfg 

3t E oj.Z 3t' E 0 j . 7  I tl H t /\ t' H t', 
tpl  PI 

and by definition of H, 3e 1 tl [rd(s) .p : r] t [el, 
tpl ftd 

and by definition of H, tl [el = t [[].content s, 
fId 

3s E tuple I s H s, and 
tpl 

C[  ] is the evaluation context of t[t].contents with redex rd(s). 



3. Given (s, t') E match, and from step 2, s H s and t' H t', 
tpl tpl 

(match? s t') evaluates true. 

4. By definition of the meaning of {I tl [rd(s) . p  : r] ,  t' D yields 
{I t2[p(t1) : 71, t' D. 

By definition of Lm-prim(), 

3t" E tuple I tN[l].type = 'Pending' /\ 
tl '[l].contents = t [ l] .contents A 
V1 5 k # l  5 #t.  tl'[k] = t[k], and 

3A E synchCl I lindaprim(A) = rd(s) .  

5 .  By definition of G applied to oj and dj , and by definition of t, t", and 
A, 

--- 
3oj+1 E state I oj+l = (A, 7, P, onext) where 

- 
~ j + ~ . d =  (0j.X- {t)) U {t"), - 
o ~ + ~  -7 = oj.T, 

- 
Uj+l  .P = 0, 
oj+l .on,t is intially undefined, and 

- 
3Kj+1 E cZosureSet I = Aj U {A). 

6. By definition of + p ~ ,  and by steps 4 and 5, where oj .one,t = oj+l, - 
and = (oj+l Aj+l), 

K P ~  --tp~ K;& is one legal transition. 

7. By definition of reduce-send applied to A, 

8. By definition of F-LambdaBar applied to oj+l and Kj+l, and by defi- 
nition of A and A', 

E state I oj+2 = Uj+l .  

3Tij+, E closureSet I Kj+2 = (Kj+l - {A)) U {A'). 

9. By definition of and by steps 7 and 8, where oj+l .oneXt = Oj+2, - 
and ~ $ 2  = (q+2 ,  Aj+2)r 

KT:, + p ~  K T ' ~  is one legal transition. 

10. By definition of reduce-rd, 

rd(s)  matches t', since from step 3, (match? s t') evaluates true. 

11. By definition of reduce-let,  
3A" E matchCl I binding t' within A' yields A". 



12. By definition of F-LambdaBar applied to o,+2 and Kj+2, and by defi- 
nition of t', A', and A", 

--- 
3oj+3 I 0j+3 = - (A, - 7, p, g n a t )  7 where 

0j+3 .A = oj+2 .A, - - 
ojC3 -7 = oj+2 - 7 7  

- 
O ~ + ~ . P  = {( 'Ecopied, t')}, and 
oj+ 3 .onext is initially undefined. 

- 
3Kj+3 I xj+3 = (Aj+2 - {A'}) U {A"}. 

13. By definition of tp~, and by steps 10, 11, and 12, where oj+z.Onezt = 
- 

Oj+3, and ~ $ 3  = (o j+g ,  Aj+3)7 

K$, + p ~  K!:~ is one legal transition. 

14. By definition of reduce-react and A", 
3t1" E tuple I ttN[l].type = 'Active' tl"[e].contents = C[tl] A 

V1 5 k # l <  #t.  tm[k] = tn[k]. 

15. By definition of and tl"[t] in step 14, t2[t] H tl"[l], and 
fld fld 

By definition of ++ and t"', tz ct t'". 
tpl tpl 

16. By definition of F-LambdaBar applied to 0j+3 and Kj+3, and by defi- 
nition of t", tl", and A", 

--- 
3Oj +4 I Oj+d = (A7 7, p7 ~next) 7 where - 

Oj+4 .A = ( O ~ + ~ . A  - {t")) U {tt")7 
- - 

Oj+d . T  = o ~ + ~ - T -  
- 

g j + 4  -P = 0, 
o,+4 .one,t is initially undefined. 

- 
3Kj+r 1 Kj+4 = Aj+3 - {A"} 

17. By definition  oft,^, and by steps 14 and 16, where ~ ~ j + 3 . 0 ~ ~ ~ t  = o j + d  
- 

and ~ : t ~  = (Oj+d, Aj+d). 

K Z 3  + p ~  K$ is one legal transition. 

18. By definition of H and oj+d, and by steps 2, 15, and 16, where 
cfg - 

respectively, (t' E oj .T A t' H t'), t 2  H t"', and t' E Oj+d .A, 
tpl tpl 

19. From the transitions in steps 6, 9, 13, and 17, and by the configuration 
equivalence in step 18, we demonstrated the ability of paraDOS for 
Linda to perform in n = 4 tranitions the TSspec computational step 
of Tuple Copying. 



Tuple Removal: V(s, t') E match : {I t [ in(s) .p : TI, t' D tts Q t [p( t f )  : r] b 

1. Let KTs > a t [ in(s) .p : r], t' and KZS1 > (I t [p ( t f )  : T] 0, 
where K y  + t s  K;;. 
Let tl denote tuple t before, and t z  denote tuple t after, 
transition + t , .  

2. Given K y  t--+ KPL, by definition of ++, 
cf9 cf9 

3t E 0j.2 3t' E 0j.T I tl H t A t' H t', 
tp l  tp l  

and by definition of H, 36 1 tl [in(s).p : r] H t [ l] ,  
tpl  fld 

and by definition of I-+, tl [el = t [el. cont en t  s, 
J d  

3s E tuple 1 s ++ s, and 
tp l  

C[ ] is the evaluation context of t[t].contents with redex in (s ) .  

3. Given (s, t') E match, and from step 2, s H s and t' H t', 
tpl  tp l  

(match? s t') evaluates true. 

4. By definition of -+,, the meaning of {I tl [in(s)  . p  : r] ,  t' yields 

{I t2 [P (t') : rl O. 
By definition of Lm-prim(), 

3t1' E tuple 1 tN[6].type = 'Pending' A 
tN[6].contents = t [ t] .contents /\ 
V1 5 k # 6 5  #t .  t"[k] = t[k], and 

3A E synchCl I lindaprim(A) = in(s). 

5. By definition of G applied to oj and xj, and by definition of t, t", and 
A 7 --- 

30j+~ E state I oj+l = (A, T , P ,  onext) where - - 
oj+l.A = (0j.A - {t))  U {t"), 

- - 
oj+1.T = 0j.7, 

- 
oj+l .P = 8,  
oj+l .onmt is intially undefined, and 

- 
3Xj+1 E closureset I Xj+1 = Aj U {(X. 

6. By definition of +,L,  and by steps 4 and 5, where oj .onest = oj+i , - 
and ~ $ 1  = (oj+l 7 Aj+1) 7 

K P ~  + p ~  K$ is one legal transition. 

7. By definition of reduce-send applied to A, 
3A' E sendCl ( A' =reduce-send(X) /\ l indapr im(x)  = in ( t f ) .  



8 .  By definition of F-LambdaBar applied to Oj+l and Kj+l ,  and by defi- 
nition of A and A', 

30j+2 E state I Oj+2 = Oj+l .  

3Kj+2 E clos~reset I Tj+2 = (Kj+l - { A ) )  U {A ' ) .  

9. By definition of J ~ L ,  and by steps 7 and 8 ,  where Oj+l .Onext = Oj+2, - 
and KT. ,  = ( o j + e ,  A j + 2 ) ,  

KZ, _ t p ~  is one legal transition. 

10 .  By definition of r e d u c e - i n ,  
r d ( s )  matches t', since from step 3, ( m a t c h ?  s t') evaluates true. 

11.  By definition of r e d u c e - l e t ,  
3A" E matchCl I binding t' within A' yields A". 

12. By definition of F-LambdaBar applied to Oj+z and and by defi- 
nition of t ' ,  A', and A", 

--- 
3oj+3 I Oj+3 = - 

(A, 7, p, g n e x t )  where 
O ~ + ~ . A  = Oj+2.A,  

- - 
O ~ + ~ . T  = 0j+2.T - { t ' ) ,  - 
o ~ + ~ . P  = { ( J E c o n s u m e d ,  t ' ) ) ,  and 
~ j +  3 .anext is initially undefined. 

3Aj+3 I Kj+3 = (7i j+2 - { A ' ) )  U {AN). 
13.  By definition of +,L, and by steps 1 0 ,  1 1 ,  and 12, where Oj+2.0nezt = 

- 
Oj+3, and ~ $ 3  = (Oj+3, Aj+3)r 

K$, + p ~  K g 3  is one legal transition. 

14 .  By definition of r e d u c e - r e a c t  and AN, 
3t"' E tuple I t l " [ l ] . t y p e  = 'Active' A t " ' [ l ] . c o n t e n t s  = C[t l ]  A 

V 1  5 k # l  5 #t. t W [ k ]  = t l ' [ k ] .  

15.  By definition of I-+ and tN'[l] in step 1 4 ,  t2[l] I--+ tl"[l], and 
fId fId 

By definition of I--+ and t"', tz I-+ t'". 
tpl  tp l  

16.  By definition of F-LambdaBar applied to 0j+3 and Kj+s, and by defi- 
nition of t", t"', and A", 

--- 
3Oj+4 1 - Oj+4 = (A, - T ,  pr ~ n e x t )  where 

oj +4 .A - = ( ~ j + ~ . d  - - { t " ) )  (J { t ' " ) ,  
0.i +4 -7 - = O j + 3 . 7 ,  

oj+4 -P = 0, 
~j +4 .Onezt is initially undefined. 

- 
3Kj+4 1 Kj+4 = Aj+3 - { A " )  



17. By definition of tp~,  and by steps 14 and 16, where oj+3.gnGt = aj+4 
- 

and ~ : f ~  = (0j+4, Aj+4). 

K Z 3  _ t p ~  K& is one legal transition. 

18. By definition of H and Oj+4, and by steps 15, and 16, where respec- 
cf9 - 

tively, t2 c+ t'", and t' E o ~ + ~ . A ,  
tpl  

19. From the transitions in steps 6, 9, 13, and 17, and by the configuration 
equivalence in step 18, we demonstrated the ability of paraDOS for 
Linda to perform in n = 4 tranitions the TSspec computational step 
of Tuple Removal. 

Local Evaluation: 

1. Let KTs > {I t[pl : r] and KI'+~' > 4 t[pn : 71 0 ,  
where K? + ts  Kzs'. 
Let tl denote tuple t before, and t 2  denote tuple t after, transition 
+ t s .  

2. Given K y  H KTL, by definition of I-+, 
cf9 cf9 

and by definition of H, 3 l  1 tl [p' : r] 7 t [l], 
tpl  

and by definition of H, tl [l] = t [l].contents. 
Pd 

3. By definition of t the meaning of {I tl [p' : r] yields {I t2[p1' : r] b. 
By definition of ~m-camp(), 3t' E tuple ( tl[l] .contents = t2[l] A 

V1 5 k # l 5 #t. tl[k] = 

4. By definition of H and tl[l], t2[l] H tl[l], and 
f ld fld 

By definition of ct and t', t2  H t'. 
tp l  tp l  



5. By definition of G applied to aj and K j ,  and by definition of t and t', 
--- 

30j+~ E state I q+l = (A, 7, P, aneXt) where 
- 

~ j + ~ . d  = (0jj.2 - {t}) U {t'), 
- - 

gj+l -7 = 0j.7, - 
oj+l .P = 8, 
oj+l .a,,,t is initially undefined, and 

- 
3Kj+1 E closureSet I = Aj. 

6. By definition of -+,L, and by steps 3 and 5 ,  where oj .onext = oj+l 

and 
- 

~ $ 1  = (aj+l 7 Aj+i ), 
K,pL - + p ~  K$~ is one legal transition. 

7. By definition of H and oj+l,  and by steps 4 and 5 ,  where respectively, 
cf9 - 

t2  I-+ t' and t' E aj+l .A, 
tpl 

Kt',", H K1P+L3. 
cf9 

8. From the transition in step 6, and by the configuration equivalence in 
step 7, we demonstrated the ability of paraDOS for Linda to perform in 
n = 1 transition the TSspec computational step of Local Evaluation. 

.*. Statement 1. of theorem is true. 

Part 2: Consider each case of transitions in a restricted paraDOS for Linda, 
i.e. transition density parameter set to one. For each case, demonstrate the 
equivalent transition in TSspec. 

A Creation: Communication closure creation 

- 
1. Let KpL, K$~ E SCSPair I K P ~  = (oj, Kj) /\ KjP,L1 = Aj+l), 

where ~ j p ~  + p L  KP+L~. 

2. By definition of communication closure creation and +,L, 

3A E asynchCl (J synchCl 1 X 6 Kj /\ X E Kj+1, and 
3t E tuple.3k I t E 0 j . 2  /\ 

C[  ] is the evaluation context of t[k].contents with 

(linda-prim? r) is true. 



3. Given K P ~  H KTs, by definition of H, t ,  and K?, 
cfg cf9 

3t E Tuple, I t +-+ t A t E Krs.  
tpl 

4. By definition of +,L, depending on the domain of r, Lm-prim applied 
to t, k, Oj, and Kj results in one of the following cases: 

v 

(a) Asynchronous ( r E asynchLPrzrn ) 
i. Let tl denote t from K T  (we define t r  later in step 4.a). 

ii. By definition of r ,  we know X E asynchC1. 
iii. By definition of H, 

tpl 
and by steps 2 and 3, tl[k] H t[k]; and 

fid 
by definition of ++, tl [k] = t [k].contents; and 

Ad 
by definition of &ynchronous Linda primitive and A, 

3tt E Tuple, U Tuple,.3tt  E tuple 1 t1 H t' A 
tpl 

tl [eval(tl) .p : T] if lindaprim(A) = e v a l ( t t )  
tl [k] = 

tl [out (tl).p : T] if lindaprim(X) = out  (t ') 

iv. Let v be the result of reducing r in C [  1. 
v. By definition of Lm-prim and v, 

3tN E tuple I tH[k].type = t[k].type /\ 
tl1[k].contents = C[v] /\ 
v i  5 e # k  5 # t .  tye]  =t ie] .  --- 

vi. By definition of +,L and Lm-prim, oj+l = (A, 7, P, onest) 
where - 

o ~ + ~  -A  = (, -2 - {t)) U {t"), - 
Oj+l.T - = gj.7, 
oj+l .P = 8, 
Oj+ 1 . onest is initially undefined. 

vii. Let tz denote t from K;~', then by definition of --tt8, K y ,  
tl [k], and tl, one possible transition for K:' to KzS1 is 

{I tl[k] +t6 {I t 2 [ ~  : r]rtl 
viii. By definition of -+ts,  the transition in step 4.a.vi, and the 

meaning of t2[k], 
t2[k] = t"[k].contents. 

ix. By definition of ++, t z ,  and t I t ,  
Pd 

V l  5 e 5 #tll.tll[l] ++ t2[e]; and thus 
fid 

by definition of c-t, tz ,  and t", 
tpl 

t" H t2. 
tpl 



x. By definition of H, KT:, , K:;, and by steps 2, 4.a.ii, 4.a.v, 
cf9 

4.a.vi, and 4.a.vii, where respectively, A E Kj+l, tr t', 

t2 E KZ, and t" H tz, 
tpl  

K g ,  H ~ 2 5 .  
ch 

xi. From the transition in step 4.a.vi, and by the configuration 
equivalence in step 4.a.viii, we demonstrated the ability of 
TSspec to perform in n = 1 transition the paraDOS for Linda 
computational step of asynchronous communication closure 
creation. 

(b) Synchronous ( r E synchLPrzm ) 
i. By definition of r, we know X E synchC1. 

ii. By definition of H, and by steps 2 and 3, t[k] t [k]; and 
tpl fid 

by definition of I-+, t[k] = t [k] .contents; and 
fld 

by definition of synchronous Linda primitive and A, 
3s E Tuple,.3s E tuple I s H s r\ 

tvl 

iii. By definition of Lm-prim, 
3t1' E tuple I tM[k].type = 'Pending A 

tl'[k].contents = t[k].contents /\ 
VI 5 e # k 5 #t. tu[el = t[e]. 

--- 
iv. By definition of +,, and Lm-prim, oj+1 = (A, 7, P, onezt) 

where - 
oj+l -A - = (oj -2 - {t)) U {t"), 
oj+1 .T = aj.T, - 
,j+, -P = 0, 
oj+l .anezt is initially undefined. 

v. By definition of +, , since no transition is a legitimate next 
step, 

KTS +, KTS 
vi. By definition of c+, step 4.b.ii, and the transition in step 

fid 



vii. By definition of H, t, t", and step 4.b.vi, 
fld 

V 1  5 t 5 #tll.t"[t] H t[e]; and thus 
fid 

by definition of H, t, a i d  t", 
tp l  

viii. By definition of H, KE,, K y  , and by steps 2, 4.b.ii, 4.b.iv, 
cfg 

3, and 4.b.vii, where respectively, X E Kj+1, s H S, 
tp l  - 

t" E ai+l .A, t E KTs, and t" H t. 
tpl  

ix. From the transition in step 4.b.v, and by the configuration 
equivalence in step 4.b.viii, we demonstrated the ability of 
TSspec to perform in n = 0 transitions the paraDOS for 
Linda computational step of synchronous communication clo- 
sure creation. 

5. From steps 4.a.xi and 4. b.ix, we demonstrated, for the case of commu- 
nication closure creation, that 

+ p ~  K ~ P + L ~  
3n > O s.t. K,TS +-Ys Kzsn /\ KCSn M K~P+L~. 

cfs 

A Reduction: Consider closure reductions according to whether the closure con- 
tains asynchronous or synchronous Linda primitives. 

Asynchronous Linda primitives: Closures containing asynchronous 
Linda primitives reduce in two steps. 

A Reduction I: 

1. Let KpL, K::, E SCSPair I 
- 

KjPL = (aj,Kj) A = (aj+l,Aj+l), 
where KjPL + p ~  K;:~. 

2. By definition of + p ~ ,  and reduce-send, 
oj+l = aj, 

3X E asynchCl I X E Kj /\ A $ xj+l, and 
3 X 1  E asynchLPrzm 1 A' 6 Kj /\ A' € xj+17 

where 
lindaprim(A) = l indapr  im(X1) .  



3. Given K:' K,pL, 
cfg 

3 t  E Tuple, U Tuple, . 3t E tuple I 

lindaprim(A) E {eva l ( t ) ,  out ( t ) )  
4. By definition of ct, t, t, and step 3, where 

tpl 
t ++ t , a n d  

tpl 
by definition of A, A', and step 2, where 

A' E Kj+1 A lindaprim(A) = lindaprim(A1), 
then by definition of H, K y  , and K$, , 

cf9 

5. By definition of --t ls, since no transition is a legitimate next 

6. By the configuration equivalence in step 4, and from the tran- 
sition in step 5, we demonstrated, for the case of A Reduction 
1, that 

where n = 0. 

A Reduction 2: 

1. Let KjpL, E SCSPair I 
- 

KPL j = (aj, Kj) A = (oj+1 Aj+1), 
where KPL + p ~  K$~. 

2. By definition of --tp~, reduce-eval, and reduce-out, 
3A E asynchLPrim . 3t E tuple I 

A E &  ~ @ K j + l  A 
lindaprim(A) --- E {eval(t) ,  out (t)), 

and aj+l = (A, 7, P, onezt), where 
aj+l .ane,t is initially undefined, and 

. indapr - i m ( A )  

- .  - 
oj+1 .P =  gen gene rating, t)), 

else // - lindaprim(A) - = out ( t )  
aj+l .A = oj.A, - 

.T - = 4.7 U {t), 
oj+1 . P  = { ( ' ~ c r e a t e d ,  t)), 



3. Given K T  K:~, 
cf9 

3 t ~ T u p l e , U T u p l e ,  ( t~ K? A t - t 
tpl 

4. By definition of H ,  t, t, K?, and step 3, where 
t p l  

t H t / \ tEK,TS ,  
tpl 

and by definition of aj+l from step 2,  where 
- 

o,+l .A if lindaprim(A) = eva l ( t )  
- 

j otherwise 

then by definition of H, K:', and KT:, , 
cf9 

5. By definition of --tt,, since no transition is a legitimate next 
step , 

K,TS +!, K? 
6. By the configuration equivalence in step 4, and from the tran- 

sition in step 5, we demonstrated, for the case of X Reduction 
2, that 

where n = 0. 

Synchronous Linda primitives: Closures containing synchronous Linda 
primitives reduce in three steps. 

X Reduction 1: (similar to A reduction 1 for asynchronous Linda 
primitives) 

1. Let K!~, K$ E SCSPair ( - 
KPL = (oj,Kj) /\ ~ $ 1  = (oj+l r Aj+l)r 
where K ; ~  + p ~  Kjfl . 

2. By definition of +,L, and reduce-send, 
aj+l = aj, 

3X E synchC1 I X E Kj A A $Kj+l ,  and 
3X' E sendC1 I A' $ K j  A A' € Kj+l, 

where 
lindaprim(X) = lindaprim(X) . 

3. Given K y  H K P ~ ,  
cf9 

3t E Tuple, . 3t E tuple I t E K,TS /\ t H t /\ 
tpl 



4. By definition of H, t, t, and step 3, where t c-t t, 
tpl tpl 

and by definition of A, A', and step 2, where 
A' E Kj+l /\ lindaprim(A) = l indapr im(x)  , 

then by definition of H, K?, and Kg1 , 
cfg 

5. By definition of + t s ,  since no transition is a legitimate next 

6. By the configuration equivalence in step 4, and from the tran- 
sition in step 5, we demonstrated, for the case of the first 
synchronous communication closure reduction, that 

K ; ~  -+pL K P + L ~  + 
372 2 O s.t. K,TS +yS KZSn /\ KzSn H K P + L ~ ,  

cfg  
where n = 0. 

X Reduction 2: 

1. Let K;~, K Z I  E SCSPair I 
- 

KPL 3 = (aj, Kj) /\ K!:, = ( ~ j + ~ ,  Aj+1), 
where ~ j ! ~  - + p ~  K$. 

2. By definition of + p ~ ,  reduce-rd, and reduce-in, 
3 A  E sendCl . 3A'  E reactCl . 38, t E tuple I 

A € K j  /\ A $Kj+l A 
lindaprim(A) E {rd(s), in ( s ) )  A 
A' $ K j  /\ A' E /\ A' = "react(m,k,t)"  /\ 
(match? s t) is true /\ t E 0j .7,  --- 

and a ,+~ = (A, 7, P, onezt), where 
Oj+l .onezt is initially undefined, and 
if lindaprim(A) = rd(s) - 

Oj+l .A = 0j.2,  
oj+1 .T = 0jj.7, - 
Oj+l .P = {('Ecopied, t ) ) ,  

else // lindaprim(A) = in ( s )  - - 
oj+ 1 .A = oj .A, - 
o ~ + ~ . T  = o j . T -  {t), 
oj+l .P = { ( ' E c o ~ s u ~ ~ ~ ,  t)}, 

3. Given K y  ++ ~ j ! ~ ,  
cf.9 

3s, t E ~uple, I t E KT /\ match(s, t) is true 



4. By definition of H, t, t, K y ,  and step 3, where 
tpl 

t t+ t ~ E K ? ,  
tpl 

and by definition of oj+l from step 2, where - 
t E aj+l-T, 

then by definition of H, K:s, and K$, , 
cf9 

5. By definition of +,, since no transition is a legitimate next 

6. By the configuration equivalence in step 4, and from the tran- 
sition in step 5 ,  we demonstrated, for the case of X Reduc- 
tion 2, that 

where n = 0. 



A Reduction 3: 

I. Let KTL, K;& E SCSPair I 
- 

K'pL = (oj,Kj) A ~ $ 1  = (oj+l ,Aj+1), 
where KTL --tph K T ' ~ .  

2. By definition of -tp~, reduce-react,  and synchronous Linda 
primitives, 

3 X  E reactCl . 3t E tuple . 3m, k 1 
€ + /\ = 'Lreact (m,k, t )"  I\ . . 

Itmy s E tuple I 
tm E o j . Z  A tm[k].type = 'Pending 
C [  ] is the evaluation context of t,[k].contents 
with redex r, where 

r E {rd(s),  in(s) )  A 
( ( t  E oj .T /\ r = rd(s) )  V 

( t  6 Oj.7 A r = in ( s ) ) )  A 
3t: E tuple I 

tk[k].type = 'Active /\ 
t:[k].contents = C[t] A 
vi I e #  k 5 # t .  t;[el = tm[el A - --  
0j+1 = (A, 7, P, ~next),  where 

aj+l .anext is initially undefined. 

3. Given KjpL H K?, by definition of I-+, t., t, and K?, 
cf9 cf9 

It, E Tuple, . 3t E Tuple, I 
tm H t. A t H t A {tm,t) K,TS- 

tpl tpl 

4. By definition of I-+, t,, and t, from step 3, and the definition 
tpl 

of k from step 2, 
L[k] tm[k]; and 

by definition of H, and redex r and tuple s from step 2, 
Ad 

~ [ k ]  = t,[k].contents; where 
3s E Tuple, I 

s H s Amatch(s , t )  is true A 
tp 1 

t,[rd(s).p : r] if r = rd ( s )  
L[k] = 

t ,[in(s) . p  : r] otherwise // r = in(s)  



5. By definition of -+t,, and h[k] from step 4, one possible 
transition for KTs -t ts K;", is either 

(I L [ ~ ~ ( s ) . P  : 71, t o jts a t;[p(t) : TI, t D,  Or 
4 h [ i n ( s ) . ~  : 71, t D +ts 4 t'.[~(t) : r] D. 

6. By definition of tL[k].content s and tk[k], from steps 2 and 5. 
where 

tL[k].contents = C[t] A 
tk[kl = ~ ( t )  A 
C[tl = ~ ( t ) ,  

then by definition of H, since tk[k].contents = t',[k], 
Ad 

t'.[kl th[kl 

7. By definition of ++, t k ,  t:, and by steps 5 and 6, 
Pd 

V l  5 e 5 #t;. t k [ l ]  ++ t;[t]; and thus 
fld 

by definition of H, t;, t k ,  
tp 1 

t; --t t'.. 
t p l  

8. By definition of H, K!:, , K:", , and by steps 2, 5, and 7. 
cfg - 

where respectively, t; E uj+l .A, t k  E K:;, and t; ++ t'.; 
t p l  - 

and by step 2, where t E gj+1.T iff r = rd(s) ,  otherwise - 
t @ 0j+1 .T ,  and by step 3, where t H t ,  

tp l  

K$, H K G .  
cf9 

9. From the transition in step 5 ,  and by the configuration equiva- 
lence in step 8, we demonstrated, for the case of X Reduction 
3, that 

K ; ~  _tPL KP+L~ + 
372 2 O s.t. K,TS +Ys Kzsn A KzSn 2 KKP+L1, 

where n = 1. 

Internal Computation: (involves no communication closures) 

- 
1. Let KTL, Kp,Ll E SCSPair I K : ~  = (oj, K j )  A K;fl = (aj+,, Aj+l), 

where K ; ~  + p ~  KE1.  



2. By definition of -tp~, Lm, and Lm-comp, 
- - 
Aj+l = Aj A 
3t E tuple . 3k 1 

t E 0 j . 2  A t[k].type = 'Active A 
3t' E tuple 1 

t' [k] .type E { 'Active, 'Passive ) A 
v1 5 e # k 5 #t. tf[!] = t[e] 

- - A  

oj+ I = (A 7, p, anezt  ) where 
aj+l .a,,,t is initially undefined, and 
if 3e 1 tl[l].type = 'Active 

- - 
ojtl -A = aj.A - {t}) U {t') - - 
0j+1.7 = 0 j .7  

- 
o ~ + ~  -7' = 0 

else 
- - 

aj+l .A = o ~ . A  - {t) 
- 

aj+1.7 = 0 j .7  U {t') 
- 

0j+1 -7' = {( 'Egenerated, t')} 

3. Given K P ~  ++ K?, by definition of H, t, and K?, 
cfs  c f s  

4. By definition of H, and by steps 2 and 3, t[k] H t [k]; and 
tpl P d  

by definition of ++, t[k] = t [k] .contents; and 
Pd 

by definition of internal computation, 
t[k] = t[p' : T] 

5. By definition of -+,,, K?, t[k], and t', one possible transition for 
K,TS to K:sl is 

6. By definition of -+t,, the transition in step 5, and the meaning of 
t' [kl , 

tl[k] = tl[k] .content s. 

7. By definition of I-+, t', and t', 
Pd 

V l  5 l 5 #tl.  tl[l] H t1[!]; and thus 
Pd 

by definition of I--+, t', and t', 
tpl 



8. By definition of H ,  K g , ,  Kcs', and by steps 2, 5, and 7, where 
cf9 - - 

respectively, t' E oj+l .A U oj+l.7, t' E K Z ,  and t' H t', 
tpl 

9. From the transition in step 5, and by the configuration equivalence in 
step 8, we demonstrated, for the case of internal computation, that 

K ! ~  + p ~  + 
3n > O s.t. K,TS +ys Kcsn A KZSn ++ KT,",, 

cf9 

where n = 1. 

:. Statement 2. of theorem is true. 

Since Statement 1 and Statement 2 of the theorem are both true for all re- 
spective cases, we conclude Theorem 2 is true. 

6.4.4 Beyond the Equivalence 

An operational semantics describes how computation proceeds, a t  a level of ab- 

straction appropriate for reasoning about that computation. Our goals for devel- 

oping paraDOS for Linda are different from those of Jensen, so it is not surprising 

that our models are at different levels of abstraction. In particular, Jensen points 

out that TSspec does not specify precisely what constitutes a Linda program, 

and thus it is not a terminal transition system. We would like to reason about 

notions such as computation begins, computation ends, and computational qui- 

escence with paraDOS for Linda, and therefore the notion of what constitutes a 

Linda program is an integral part of our level of abstraction. 

Jensen's view of the Linda concept, subtley different from that of Carriero 

and Gelernter [CG89], is that it extends a host language with Linda primitives, 

resulting in a model for parallelism through the notion of tuple space. The ref- 

erence to host language intentionally does not preclude the existence of other 



native interprocess communication capability, enabling processes to interact in 

ways other than via Linda primitives. But we know from Gelernter [Gel851 that 

a Linda program is a collection of ordered tuples, and from Carriero and Gel- 

ernter [CG89], that if two processes need to communicate, they don't exchange 

messages or share a variable, they communicate via tuple space. Thus, while the 

goals of paraDOS for Linda differ from the goals of TSspec, the assumptions of 

our operational semantics, in particular our notion of what is a Linda program, 

are consistent with the original Linda concept. The semantics of paraDOS for 

Linda are at  a level of abstraction not limited to reasoning about the transitions 

of individual Linda processes, but about entire Linda programs. 



CHAPTER 7 

Parameters of paraDOS 

One of the most important aspects of paraDOS is that it is a general, parameter- 

ized model; but what may not be clear yet is the nature of paraDOS parameters. 

Almost every element in paraDOS is a parameter. This is not to imply that para- 

DOS can become any existing model of computation, simply by specifying the 

right combination of parameter values. We designed paraDOS to support view- 

centric reasoning about properties of concurrent computation. Details of views of 

computation can differ from one system to another, but the approach to reason- 

ing about computation through the multiple perspectives of possibly imperfect 

observers is the essence of paraDOS. The parameters provide the structure and 

rules that define the properties for each paraDOS instantiation. 

If one wishes to reason about a particular concurrent system using paraDOS, 

the first step is to determine the appropriate level of abstraction; that is, de- 

ciding what observable events are possible. For example, events possible for the 

Actors model include messages sent and delivered; for Linda, events include tu- 

ple creation, consumption, etc. Even though the set of observable events is a 

parameter, and can vary widely, we do restrict internal computational events 

from eligibility. Internal computation is too granular, and thus not an appro- 

priate level of abstraction for the computational properties about which we wish 

to reason with paraDOS. Interprocess communication and coordination are the 



broad criteria from which observable events may be chosen. This is consistent 

with computability theory, where only input/output behavior is observable; com- 

munication is one instance of input/output behavior. 

7.1 The Model System 

With one small syntactic change, we tranform the definition of our model system 
- 
S from a tuple to a grammar, and with the grammar for s, we propose a general 

model for composition. Recall from Chapter 4 the original definition of S is a 
- - 

3-tuple (a, A, T). Now suppose we define a parameterized grammar with nonter- 

minals {S, a ,  xi;, T), terminals {'(I,' )I), and the production S + ( S *o, K ,  F ) , 

where nonterminals a, K, and F are parameters that depend on the instance of 

paraDOS. This production generates strings that can be represented as composi- 

tion trees. Tuples contained in generated strings are delimited by '(I and ')I. The 

recursive production permits zero or more tuples to be nested within any such 

tuple. 

The specification of our model system S is, in fact, a parameter. For instances 

of paraDOS without composition, the 3-tuple specification of S suffices. For in- 

stances of paraDOS that support composition, we propose a grammar consisting 

of just one production; other grammars with more complex productions are pos- 
- - 

sible. Our production, -+ ( S*o, A, 'Y ), generates strings that represent 

n-ary trees, but more and less restrictive representations of composition are pos- 

sible. The degenerate case of our production reduces to the 3-tuple specification 

of S; the simplest form of composition is no composition. Composition is such 



an important parameter and broad topic that we devote an entire chapter - 

Chapter 8 - to this topic. 

Configurations and Computation Space 

Defining any operational semantics requires defining what a computational state 

looks like, and defining a transition relation. Defining paraDOS is no exception. 

We gave definitions for state a for the Actors and Linda instances of paraDOS; 

other instances will require new definitions. The elements of a should represent 

the individual computational processes, abstracting away details of their internal 

computations; their interprocess communications, at  an appropriate level of ab- 

straction, from which the set of parallel events can be derived; the set of parallel 

events P; and the recursive next state a, to be lazily evaluated. Again, even 

though the computation space a is a parameter, it is restricted to be in the form 

of a lazy, n-ary tree. At each level of tree 0, the recursive next state a to be 

elaborated represents the child node, chosen by the transition relation, to which 

computation proceeds. 

Communication Closures 

ParaDOS parameterizes communication through its set of communication clo- 

sures, x. In general, closures within represent instances of communication or 

coordination necessary for a concurrent system to accomplish its computation. 

Each time a closure is reduced, as part the transition relation's activity, it is one 

discrete step closer to completion. The nature of each reduction, and the total 



number of reductions, for a closure to reduce fully depends on the system we wish 

to model. For example, actors and Linda processes communicate and coordinate 

according to very different paradigms, yet the abstraction of a communication 

closure is capable of modeling both forms of communication. In fact, we focused 

on message passing models first, then turned to generative communication. We 

didn't consider shared memory models because of known scalability issues. How- 

ever, communication closures can be instantiated to model shared memory reads 

and writes, if we desire to reason about such systems. This capability of paraDOS 

revealed itself only after we identified communication closures as a parameter. 

One approach to model a shared memory system is to map the shared memory 

to a tuple space. Briefly, the state contains a set of processes (continuations), 

a set of communication closures (reads and writes), a set of passive tuples, a 

parallel event set, and a next state. A shared memory system, unlike a tuple 

space, has a common memory model. To accommodate this, our tuple contains 

two fields: address and contents. The address field of a tuple is the address of 

its corresponding block of memory. The contents field is an array of bytes, of 

size corresponding to the blocksize of the shared memory. All tuple matching 

is explicit on tuple address fields. The closure for a memory read corresponds 

to that of a Linda rd() primitive. The closure for a memory write corresponds 

to that of the sequential composition of two Linda primitives, in() and out() ,  

where in()  and out() remove and replace tuples with identical address fields. 

Issues relating to mutual exclusion and race conditions are well-represented with 

such an instantiation of paraDOS. This approach also reflects writes taking more 

time than reads to complete, due to the number of reductions required by the 

respective communication closures. There is an implicit transaction semantics 

on the low-level Linda in()/out() operations relative to the high-level shared 



memory "read" and "write" operations. Further ideas on modeling transactions 

are discussed in Section 10.2, Future Work. 

7.4 Transition Relation 

The transition relation is a parameter. Actually, the transition relation represents 

the composition of several parameters. It relies on the meaning function@) of 

native language(s), definitions of (T and A, system feature specifications, and 

scheduling policies. Together, the parameters of the transition relation describe 

behavior we wish to model in an instance of paraDOS. 

For example, scheduling policies influence the choice of a next computational 

state within a, by encapsulating nondeterministic behavior among processes and 

communication closures. Other parameters, such as transition density, bound 

levels of parallelism. Transition density could specify a threshold for the number 

of parallel events permitted in a single transition, or even specify choosing a 

transition with the maximum number of parallel events from all possible states. 

For the remainder of this section, we focus on native features of distributed 

systems about which we wish to reason. The first interesting feature is trans- 

actions. For our purposes, a transaction is the composition of more than one 

event into a single, atomic event. The semantics of a transaction prescribe that 

a transaction occurs only when all the individual events that comprise it oc- 

cur; there are no partial transactions. The implication for distributed systems 

that endeavor to implement transactions as a native feature is that some sort 

of rollback-commit or replication strategy is required. Transactions are either 

supported or not supported by a distributed system. 



The next interesting native feature we consider is messaging type: either 

asynchronous or synchronous, or both. The mechanics of asynchronous and syn- 

chronous messages are different, but both are computationally equivalent since 

each can simulate the other. In the case of asynchronous messages, the sender 

of a message may immediately resume further processing, regardless of whether 

the receiver has received the message. In the case of synchronous messages, the 

sender of a message must wait until the receiver receives (or receives and pro- 

cesses, as is the case for Java RMI) the message before the sender may resume 

processing. 

Another important characterization of a distributed system is whether it em- 

ploys a messaging intermediary, and if so, what kind of role the intermediary 

plays: active or passive. In a distributed framework that does not use interme- 

diaries, processes exchange handles with each other to facilitate direct commu- 

nication. An active intermediary assumes the role of a process in its own right, 

is generally known to all other executing processes that have a need to com- 

municate, and is often responsible for a sent message's routing and delivery. A 

passive intermediary usually takes the form of a common, shared memory space 

accessible by the system's executing processes, according to some agreed-upon 

protocol. 

There are three types of message destination characteristics we wish to reason 

about in distributed systems: one-to-one, one-to-any, and one-to-many. We do 

not consider broadcast messages because they are not scalable in the broadest 

sense, but more importantly because they can be modeled computationally by 

one-to-any messages. In distributed systems that support one-to-one messages, 

the sender knows the handle of its message's intended recipient, and has the 

capability to invoke a send command passing some message specifically to that 



recipient. One-to-any messages can be viewed like a blackboard architecture, 

where the sender writes a message on the blackboard (some shared memory), 

and zero or more receivers may read the message from the board if interested. 

One of these receivers may even erase the board, thus preventing further receipt 

of that message. With one-to-many messages, the sender need not have any 

knowledge of the receivers. One-to-many messages are messages that are sent 

by a designated sender to a group of designated receivers. In the case of an 

active message intermediary, the sender need not know who the receivers are, 

but someone - the intermediary -- must keep track of who the receivers are for 

a message to be considered one-to-many. 

Some distributed systems (e.g., HLA's RTI) provide a native publish-subscribe 

service for interprocess communication. Under this approach, a process assumes 

the role of publisher or subscriber of an event; a process can assume different 

roles for different events. This is another form of anonymous messaging, since 

a publisher need not know its subscribers, nor a subscriber know who is the 

publisher. 

Finally, we are interested in aspects of message delivery, including guaranteed 

and order-preserving. The guarantee of message delivery is self-explanatory. The 

order-preserving feature also has a straight-forward meaning, relative to each 

sender: the order messages are received is the same as the order in which they 

are sent. 



7.5 Views 

The set of views is not a parameter per se, but subject to other paraDOS 

parameters. Specifically, each view is a list of ROPES, so the choice of observ- 

able events for an instance of paraDOS ultimately affects the base elements of 

views. The view function, however, is a parameter. We previously describe the 

view function as capable of generating all possible views of a computation, but it 

could be more restrictive. Reasons for restricting possible views depend on what 

we wish to model. For example, we may wish to reason about security or filtering, 

and restrict views of certain events. We may wish to reason about network relia- 

bility, and set some threshold or probability for communication failures. Despite 

simultaneity of occurrence in a parallel event set, we may wish to impose on the 

views of computation different orderings of events, for example, causal only, or 

total and causal. Similar to but separate from the transition function, the view 

function in general represents the composition of possibly many policies. 



CHAPTER 8 

Composition within paraDOS 

This chapter addresses composition, an essential element of distributed computa- 

tion. Section 8.2 discusses composition briefly, then extends paraDOS with gen- 

eral support for composition. Sections 8.3 and 8.4 describe composition within 

the Linda and Actors instances of paraDOS, respectively. 

Evolution 

There is no mention of communication closures in our presentation of the Actors 

instantiation of paraDOS in Chapter 5 .  Actor machines influence other actor 

machines' behaviors by sending tasks. The notion of incoming and outgoing 

messages exists, dependent upon whether the recipient of a task existed in the 

set of local actor mail queues. We introduce functions 3,n and FO,, to route 

incoming and outgoing tasks to and from the environment, respectively. Refer- 

ences to the environment are the only mention of the composition possible for 

the Actors instance of paraDOS. Our approach is legitimate, as further revealed 

by Theorem 1 and the accompanying equivalence proof. 

The Pact approach to handling incoming and outgoing tasks through func- 

tions Fi, and FOut is decidedly focused on point to point communication. We 



abandoned this level of abstraction entirely in the next instance of paraDOS - 

for Linda. One reason for abandoning 3,, and FOut is the nature of a single, 

global tuple space; a passive container through which all distributed processes 

can communicate. The notion of incoming and outgoing tasks, or more generally, 

messages, no longer applies, since tuples have no intended recipients, but rat her 

are placed into tuple space. Further, tuples are not delivered to recipients, but 

rather are matched to a template within tuple space. Finally, the nature of a 

global tuple space precludes any concept of external messaging. Thus, in the set 

theoretic semantics for PTS presented in Section 6.2, there is no analog to &, 

and Fout. 

Next, we sought to model composition in paraDOS, and could choose from 

two existing instances as a starting point, Pact or PTS, or begin from a new 

instance. Another decision was to consider homogeneous composition first, before 

attempting to model heterogeneous composition. We decided to model tuple 

space composition, largely because commercial tuple space implementations were 

growing in popularity, and these implementations were based on multiple tuple 

spaces. 

We made another important decision at  this time to reexpress the pTS se- 

mantics in the functional language Scheme. This decision was not motivated 

by any limitations in the set theoretic semantics, but rather a desire to gain a 

stronger intuition into how PTS could be implemented. Also, operational seman- 

tics permits the choice of level of abstraction, which includes the expression of the 

semantics itself. Among the benefits of using Scheme was the language's support 

for closures. 

The semantics of Linda primitives with explicit tuple space handles led to 

wrapping the primitive expressions in closures, along with their corresponding 



Figure 8.1: Example derivation for S 

handles. Each closure explicated the routing requirements for a Linda primitive 

based on the primitive's tuple space handle and the handle of the tuple space 

from which the primitive was issued. Since paraDOS is a model for parallel and 

distributed computation, we needed an abstraction to  support the evaluation 

of multiple simultaneous Linda primitives, or in general, multiple simultaneous 

communications. This need evolved into the introduction of the set of message 

closures A in paraDOS. 

8.2 A Composition Grammar 

Consider the derivation in Figure 8.1. Each nonterminal S is labeled with unique 

numeric subscripts corresponding to the tuples they derive. The order of deriva- 

tion is according to the subscripts of the nonterminals. The final string of Fig- 

ure 8.1 corresponds to the composition tree of Figure 8.2. 

The grammar produces two kinds of nodes: leaf nodes and composition (inte- 
- - 

rior) nodes. Leaf nodes look like the old definition of S, ( 0, A, 'Y ); composition 
- - 

nodes are instances of ( S+ 0, A,  Y ). Technically, composition nodes contain 

their children nodes. By extension, the root node r of a composition tree con- 

tains the entire tree rooted by r. Thus, representation of r as a tree is really an 



expansion of root node r ,  whose origin is one possible string generated by our 

grammar. 

Trees are a meaningful abstraction for reasoning about composition. Consider 

a node Si within a composition tree. Node Si is a tuple containing a computation 

space a, a set of message closures x, and a set of views T. The scope of and 
- 
Y is the subtree with root node Si. Now consider a composition tree in its 

entirety. Since a, K ,  and are parameters, paraDOS can model composition of 

heterogeneous distributed systems. That is, different leaves of the composition 

tree may represent different PDS instances, as specified by their respective o, A, 

and parameter values. 

One of the advantages of event-based reasoning is the ability - through pa- 

rameterization - to define common events across heterogeneous systems. Within 

each leaf node, multiple simultaneous views of its respective local computation 

are possible, just as is possible in paraDOS without composition. Taking the leaf 

nodes as an aggregate, though, composition in paraDOS now supports a natural 

partitioning of parallel event traces, and their respective views. There is not 

necessarily a temporal relationship between corresponding elements of the com- 

putational traces of a composition tree's leaf nodes. Such temporal relationships 

must be reasoned about using a common composition node. 

5 4  = ( 0, A, r )4 S5 = ( a ,  K, f )5 

Figure 8.2: Example composition tree from derivation of S 



Finally, consider the composition nodes. A composition node, like a leaf node, 

represents the possibility for multiple simultaneous views of its own local com- 

putation. Further, since the scope of a composition node c represents that of the 

entire subtree rooted at  c, a subset of events present in c's parallel event trace, and 

corresponding views, may represent some subset of the aggregate events found 

in the subtrees of c's children. The extent to which events from the subtrees of 

node c7s children occur in c is itself a parameter. For example, one may wish 

to compose two or more systems according to certain security policies. Alterna- 

tively, or additionally, one may wish to compose systems in a way that allows for 

relevance filtering to promote greater scalability. In both of these examples, the 

ability to limit event occurrence in composition nodes through parameterization 

supports modeling composition at a desirable level of abstraction. 

It  is difficult to introduce composition without any mention of paraDOS pa- 

rameters. Similarly, it is difficult to motivate certain para eters without prior T 
mention of composition. We discussed parameters previous1 in Chapter 7. The 4 
remaining sections of the current chapter discuss aspects of c 

to the tuple space and actors instantiations of paraDOS. 

8.3 Tuple space composition 

Section 6.3 presents the Scheme-based operational semantics of paraDOS instan- 

tiated for Linda and tuple space. We developed the Scheme-based semantics with 

tuple space composition in mind, and thus extended the Linda syntax to support 

a tuple space handle prefix for the Linda primitives. Prior to introducing tuple 

space handles, the Linda primitives assumed a global tuple space. With the intro- 



duction of tuple space handles, explicit tuple space references are possible. Two 

predefined tuple space handles exist, s e l f  and parent, which refer to a process's 

own tuple space and that of its parent. The parent handle is a direct reference 

to the structure of the paraDOS composition tree, where each node in the tree 

represents a distinct tuple space. 

I t  is possible for processes to communicate either through common ancestor 

tuple spaces, or through explicitly referenced tuple spaces. Consider processes p 

and q that reside in separate tuple spaces within a paraDOS composition tree, 

such that p and q share a common ancestor tuple space. Process p is able to 

create a tuple containing its own tuple space handle, and place it directly into 

its parent tuple space. A process r within p's parent tuple space can then place 

a tuple containing p's tuple space handle into r 's parent tuple space, and so on. 

Similarly, a process s residing in a common ancestor tuple space to both p and 

q, can pass down to s's children, and so on, s's tuple space handle. In this way, 

process q can obtain the handle of ancestor tuple space s, which it shares with 

process p, and match the tuple directly in s's tuple space that contains p's tuple 

space handle. 

We redefine pTS with support for tuple space composition as  follows: 

- 
S + ( S'a, A, T ) 
a -+ (Si,T,F,a) - 
A + as before 
- 
Y -+ as before 

Tuple space composition requires a change to reduce-send, the part of the 

transition relation that reduces message closures in x. The new version of 

reduce-send differs from the noncompositional version mainly in how and where 

reduced closures are added to the set. We assume the existence of helper 



function incorp-closure that, given a tuple space handle and a reduced clo- 

sure, incorporates the reduced closure into the appropriate tuple space handle's 
- 
A set. The transition function remains otherwise unchanged. The view func- 

tion remains completely unchanged, due to paraDOS's separation of computation 

from the multiple possible views of computation. Figure 8.3 contains the revised 

reduce-send function. 

Linda primitives with implicit tuple space references (2. e., no handle prefix) 

are equivalent to primitives prefixed with self .  Originally specified Linda pro- 

grams consist of processes that interact through creating, copying, and removing 

tuples from a global, shared tuple space via the four Linda primitives. By inter- 

preting these primitives as if they were prefixed with tuple space handle prefix 

se l f ,  pTS with composition preserves program meaning. This means we don't 

need to define two versions of reduce-send; the version defined in this section 

works for Linda with or without tuple space composition. We presented the non- 

compositional version of reduce-send with the original pTS semantics to reflect 

Gelernter's definition of a single, shared tuple space [Ge185]. 

The matter of tuple space composition is of practical importance. Commer- 

cial tuple space implementations encourage development of distributed applica- 

tions that rely on the notion of one or more tuple space servers and tuple space 

handles. For example, the names of Sun's JavaSpaces [FHA991 and IBM's T 

Spaces [WML98] are both conspicuously plural. Furthermore, both implemen- 

tations employ handles for tuple space reference, and provide discovery services 

to promote handle propogation among distributed processes. The instance of 

paraDOS for Linda with tuple space composition is a first step toward the abil- 

ity to reason formally about applications developed with commercial tuple space 

implement at  ions. 



; reduce-send (with support for TS composition) 
; Summary: returns a new state-LBar pair. If the closure 
; expression to be sent is delayed, strip the delay() and 
; by adding to handle's LambdaBar set, using incorp-closure. 
; Otherwise, closure is a forced 'lletH expression. Farm off to 
; reduce-let function. If reduce-let fails, then reduce-send 
; fails, and the original closure is added to returned 
; state-LBar's set of closures (where state-LBar's state is 
; unchanged). If reduce-let was successful, the let expression 
; bound a tuple into it's delayed subexpression (reactivate). 
; reduce-send then "sends" the result to handle's LambdaBar set, 
; in the process of returning a new state-LBar pair consisting of 
; the subsequent new state and the original LBar. 
(define reduce-send 

(lambda (closure state-LBar) 
(let ((send-arg (get-send-arg closure))) 

(handle (get-handle closure) ) 
(if (delayed? send-arg) 

(let ( (x  (incorp-closure handle 
(strip-delay send-arg)))) 

state-LBar) 
;else forced 
(let ((closure-state 

(reduce-let (strip-force send-arg) 
state-LBar) ) ) 

(if (null? closure-state) 
; reduce failed 
(list (car state-LBar) 

(union (cadr state-LBar) 
(singleton closure))) 

;else it reduced! 
(let ( (X (incorp-closure handle 

(car closure-state)) ) ) 
(list (cadr closure-state) 

(cadr state-LBar))))))))) 

Figure 8.3: Revised reduce-send function to support tuple space composition 



Actors composition discussion 

Applying the message closure abstraction to Pact, we recognize from composit ion 

in PTs that routing handle-prefixed Linda primitives between distributed tuple 

spaces is indeed a form of point to point communication, even though the Linda 

primitives themselves do not constitute point to point communication between 

distributed processes. Similarly, in Pact, when actor machines create new tasks, 

they are in fact initiating point to point communication. Thus, the same abstrac- 

tion we used for pTS, the message closures set K, is meaningful to use for Pact, 

and composition of actor systems. The environment to which F,,, and FOut refer, 

allowing for wrapping tasks in closures, is the closure set for an actor system's 

corresponding node in the paraDOS for Actors composition tree. The metaphor 

for reducing individual message closures represents discrete stages of interpro- 

cess communication modeled by paraDOS. For Actors, these stages include the 

events Es (task sent) and ED (task delivered), and possibly other intermediate 

(non-event ) reductions. 

We redefine Pact with support for composition as follows: 

- 
S -+ (S 'o ,  K, T )  
0 + ( ~ , Z , T , F , D )  - 
A -+ to be defined, dependent on discrete stages of task delivery - 
Y + as before for actors 



CHAPTER 9 

Reasoning 

The greatest problem with communication is the illusion it has been 
accomplished - George Bernard Shaw 

This chapter discusses how to use paraDOS to reason about the behaviors 

of distributed systems. Previously, we identified the need for appropriate levels 

of abstraction, and introduced concepts important to paraDOS, like observable 

events, and traces and views of computation. Earlier chapters discuss paraDOS 

from many different perspectives: paraDOS as a general model of computation, 

paraDOS instantiated for Actors, paraDOS instantiated for Linda (twice), para- 

DOS composition trees, and the parameters of paraDOS. 

One of the goals of paraDOS is to be able to reason formally about distributed 

computation, that is, to characterize possible behaviors that result from different 

approaches to distributed computation. The nondeterminism of multiple com- 

municating distributed processes leads to a potentially intractable combinatorial 

explosion of possible behaviors. The sources of nondeterminism in a distributed 

system, and the corresponding policies and protocols in effect, impact the process 

by which paraDOS constructs traces and views of computation. By considering 

the sources of nondeterminism in a distributed system, the policies and protocols 

that govern choice, and the possible traces and views that result, one can utilize 

paraDOS as a framework to reason about the behavior of instances of distributed 

computation. 



This chapter includes a review of some of the background material already 

presented in Chapter 2, but with an emphasis on using models to reason about 

distributed systems. We have attempted to make this presentation self-contained, 

since reasoning is the primiary purpose of paraDOS. Section 9.1 discusses the 

early history of formal event-based reasoning, leading up to the study of corn- 

put ability theory. Sect ion 9.2 continues our discussion of computation with the 

progression of computational models, from sequential to parallel and distributed, 

and issues important to concurrency. We discuss the CSP approach to repre- 

senting concurrency in Section 9.3, then introduce properties of computation in 

Section 9.4. Having provided background for concurrency, CSP, and computa- 

tional properties, Section 9.5 presents trace-based reasoning about properties of 

computation with CSP, and motivates the need for paraDOS. Section 9.6 contin- 

ues the topic of trace-based reasoning with a focus on paraDOS, its abstractions, 

its extensions to classic CSP, and its focus on scheduling policies and proper- 

ties of computation for which reasoning with CSP is less well-suited or capable. 

This chapter concludes in Section 9.7 with a compelling demonstration of the 

usefulness of paraDOS. 

9.1 Early Event-based Reasoning 

Theoretical computer science is the formal study of computational models, in- 

cluding, through abstraction, the development of new models and metamodels of 

computation. Abstraction is the intellectual mechanism for cognitive progression. 

The inherent need for humans to communicate is manifest throughout our his- 

tory, from cave drawings and ancient writings to stories and art and music. Each 

step of our evolution represents an abstraction from one or more steps before. 



The development of words and language arose from the need to represent and 

communicate concepts to one another. The ability to record words, first through 

drawings and symbols, then alphabets, is a written abstraction of language itself. 

Early writings, in one sense, reduce to sequences of events, or traces, ordered in 

time. These event traces help preserve the original meanings of stories, enabling 

humans to understand stories passed down from previous generations. In fact, 

event-based reasoning is used to understand the past, even that which occurred 

before recorded history. 

Returning to the importance of abstraction, Euclid designed some of the first 

known numeric algorithms over 2300 years ago. Euclid used the abstraction of a 

recurrence relation to describe his algorithm to find the greatest common divisor 

of two integers. Euclid's algorithm is not only an example of a computational ab- 

straction, but its use results in an event trace of sorts. Such a trace is formed from 

the history of evaluations, a trace of the intermediate, recursive expressions lead- 

ing to the final solution. The expression corresponding to the initial invocation of 

the recurrence represents the first event of such an evaluation trace, followed by 

subsequent expressions (events), each corresponding to the subsequent recurrence 

invocations, until the base condition of the recurrence is satisfied, resulting in the 

greatest common divisor itself corresponding to the final event in the trace. An 

event trace that results from applying Euclid's algorithm represents a computa- 

tional history. The events abstracted for this example consist of input-output 

behavior as follows: expressions corresponding to recurrence invocations repre- 

sent input behavior, the expressions that result from such recurrence invocations 

represent output behavior, and the intermediate expressions of a recurrence eval- 

uation represent both input and output behavior, since the output expression 

from the i th recurrence invocation is also the input expression to the (i + l )s t  re- 



currence invocation. This abstraction of using input-output behavior to represent 

computational events emerges again within the study of computability theory. 

In the 1930's, the research of logicians Church, Godel, Kleene, Post, and n r -  

ing formed the basis for modern theoretical computer science. Computability 

theory permits us to distinguish formally between problems for which there are 

algorithms and those for which there are none [DSW94]. In other words, com- 

putability theory is the study of language properties, undecidability, and what 

problems can and cannot be solved algorithmically. Computability theory pro- 

motes its own versions of event-based reasoning. For example, the input-output 

behavior of Turing machines, with specific instances of output behavior including 

halting, acceptance, and rejection, is an event-based means of reasoning. Two 

characteristics of Turing- based computability theory are implicit: computation 

is sequential and reasoning about computation is based on observable events. 

Turing-based computability theory does not preclude reasoning about concur- 

rency, but its level of abstraction most naturally focuses on sequential computa- 

tion. 

Beyond Sequential Computation 

New computational paradigms give rise to new classes of models. Without par- 

allel or distributed computation, there is no need to distinguish computation as 

sequential. Classifications of sequential and concurrent computation do not repre- 

sent a partitioning of computation; rather, there exists a relationship between the 

two classifications such that concurrent computation subsumes sequential compu- 

tation. Within the paradigm of event-based reasoning, we can define sequential 



computation as being restricted to proceeding at  most one event at  a time, and 

concurrent computation as permitting zero or more events at  a time. Multiple 

concurrent events suggest multiple concurrent processes, and with concurrency 

comes the need for communication and coordination among those processes. 

A thread of execution refers to the individual path of a computational process. 

Single-t hreaded (i.e., sequential) computation consists of an individual computa- 

tional process. Multi-threaded (i.e., concurrent) computation consists of multiple 

computational processes. In this sense, sequential computation is the degenerate 

case of concurrency, where multi-threaded reduces to single-threaded computa- 

tion. 

The concepts of interprocess communication and coordination do not exist 

when reasoning about sequential computation. These concepts require new, 

meaningful abstractions to create useful parallel and distributed models of com- 

putation. One of these abstractions is that of communication coupling, a term 

that refers to levels of speed and reliability of communication among threads of 

execution. Tightly-coupled processes exhibit properties of fast, reliable, inter- 

process communication behavior. Loosely-couple processes exhibit properties of 

slower, less reliable, interprocess communication behavior. Parallel computation 

and distributed computation are special cases of concurrency, each represent- 

ing opposite ends of a concurrency continuum with respect to their degrees of 

communication coupling. Parallel computation is composed of tightly-coupled 

processes; distributed computation is composed of loosely-coupled processes. 

Interest in reasoning about concurrency ranges from the desire to take com- 

putational advantage of available computer network infrastructures, such as the 

Internet, to the need for modeling concurrent phenomena in the real world. When 



Table 9.1 : Examples requiring parallel events - - 

Example Instance Description 
Digit a1 media Digital media requires the synchronization of video and 

sound. 

Olympic race 

Articulated 
animation 

Nuclear missile 
launcher 

Player piano 

Push-button 
combination lock 

Olympic race competitions require detecting false starts 
(athletes who anticipate the starter's gun), and the final 
outcome, including the possibility of ties. 

Articulated animation requires concurrent, coordinated 
movements of arms and legs. 

A nuclear launch system may require two keys to be 
turned simultaneously to initiate a launch sequence. 

A player piano must allow keys to be pressed simultane- 
ously as well as in sequence, to support both chords and 
musical runs. 

A push-button combination may require two buttons be 
pushed simultaneously as part of its combination. 

Troupe movement Many venues involving coordinated troupe movement ex- 
ist, including dance productions, military simulations, 
and gaming environments. 

Baseball game If the runner reaches first base before the ball, he's safe. 
If the throw to first beats the runner, he's out. In the 
case of a tie, the runner is safe. 

reasoning about events, many real world systems or human endeavors require par- 

allel events. For some examples, see Table 9.1. 



9.3 Representing Concurrency 

How do we represent concurrency in models of computation? Currently the dom- 

inant approach is one developed by C.A.R. Hoare [Hoa85] that treats concurrency 

as a group of communicating sequential processes. In CSP, an individual process 

is defined by one or more possible sequences of observable events. CSP repre- 

sents concurrency via an interleaving of event traces from two or more sequential 

processes. An idealized observer of computation records the events that occur, 

one after another, as computation proceeds. It is possible for two or more events 

to occur simultaneously, in which case the observer records the events in some 

arbitrary order. Hoare's approach is to ignore simultaneity in this case, since the 

events must be recorded in some order, and any such order represents a correct 

partial ordering of computational history. CSP thus employs nondeterministic 

interleaving to represent the different possibilities introduced by concurrency. 

9.4 Properties of Computation 

The questions we ask when we reason about computation concern properties of 

computation. A property of a program is an attribute that is true of every possi- 

ble history of that program and hence of all executions of the program [AndOO]. 

Many interesting program properties fall under the categories of safety, liveness, 

or some combination of both safety and liveness. A safety property of a program 

is one in which the program never enters a bad state; nothing bad happens during 

computation. A liveness property of a program is one in which the program even- 

tually enters a good state; something good eventually happens. Table 9.2 contains 

some example properties, and their corresponding categories and descriptions. 



Table 9.2: Example properties of computation 
Property Category Description 
partial correctness safety A program is partially correct if the final state 

is correct, assuming the program terminates. 

terminat ion 

total correctness 

mutual exclusion 

finite 
postponement 

liveness 

both 

safety 

liveness 

A program terminates if every loop and pro- 
cedure call terminates; that is, the length of 
every history is finite. 

Total correctness is a property that combines 
partial correctness and termination. A pro- 
gram is totally correct if it always terminates 
with the correct answer. 

Mutual exclusion is an example of a safety 
property in a concurrent program. The "bad" 
state in this case would be one in which two 
or more processes are executing simultaneous 
actions within a shared resource's critical sec- 
tion. 
Finite postponement, or eventual entry to 
a critical section, is an example of a live- 
ness property in a concurrent program. The 
"good" state for each process is one in which 
it is executing within its critical section. 

Questions arise when reasoning about concurrency that do not otherwise arise 

in sequential computation. Sequential computation has no notion of critical sec- 

tions, since a process need not worry about competing for resources with other 

processes within a given environment. Since critical sections do not exist in se- 

quential computation, there is no need for mutual exclusion, nor any concern for 

race conditions, deadlock, or infinite postponement. The two properties from Ta- 

ble 9.2 that pertain solely to concurrent systems are mutual exclusion and finite 

postponement. 



The increasingly pervasive Internet, and subsequent demand for Internet ap- 

plications, appliances, resources, and services, compels us to reason about prop- 

erties of decentralized, loosely-coupled systems. In this context, loosely-coupled 

refers to more than communication, it refers more generally to the interoperability 

of open systems. We are in an age of open systems development. Distributed ob- 

jects provide protocols, and middleware provides both frameworks and protocols, 

for heterogeneous n-tier and peer-to-peer application development. 

The need to manage shared resources and maintain system integrity in the 

decentralized environment of Internet applications emphasizes the importance of 

formal reasoning to describe and verify such complex systems. Indeed, we are 

concerned with safety and liveness properties of distributed systems. Schedul- 

ing policies prescribe how access among competing processes to shared system 

resources proceeds, based on some criteria. To this end, we are interested in 

modeling scheduling policies of processes and their respective communications to 

determine their effect on system properties. Furthermore, given a set of prop- 

erties that hold for a system, we wish to identify and model varying notions of 

fairness. 

9.5 Reasoning with Traces 

Event traces are one possible framework from which to reason about properties 

of computation. Since a trace of events represents a history of computation, and 

a property must be true for every possible history of a computational system, 

a property of a computational system must hold for all possible traces of that 

system. In Section 9.5.1 we discuss how to reason about computation with CSP 



traces, then in Section 9.5.2 we discuss limitations of CSP, and motivate the 

extensions to CSP that paraDOS provides. 

Reasoning with CSP 

Table 9.3 exhibits some notation for reasoning about properties of computation 

using CSP. For a complete presentation of this topic, see Hoare [Hoa85]. For the 

purpose of this discussion, it suffices to elaborate a few points from Table 9.3, and 

give some examples. Process P is nondeterministic, due to the possible existence 

of a refusals set (i.e., environments in which P can deadlock). Nondeterminism 

in this sense represents the ability of a process to exhibit a range of possible 

bahaviors, with no way to predict these behaviors based on the external environ- 

ment alone. This form of nondeterminism encourages developing higher levels of 

abstraction for describing physical behavior. Returning to Table 9.3, predicate S 

represents a property of computation, which may or may not be true for process 

P. Instances of predicate S are expressions that may include tr and ref. The 

meaning of a relation denoted sat is that P satisfies S (P sat S) if S is true for 

all possible traces tr and refusals ref of P. 

Some examples describing computational properties within CSP are in order. 

Consider two safety properties: deadlock-free and divergent-free. The property of 

a process being deadlock-free specifies that a process with alphabet A (an event 

alphabet) will never stop, thus NONSTOP = (ref # A).  If P sat NONSTOP, 

and if P has an environment that permits all events in A, P must choose to 

perform one of them. To prove a process does not diverge, we proceed as follows. 

The CSP definition of a divergent process is one that can do anything and refuse 



Table 9.3: Some CSP notation for reasoning about traces 
Notation Meaning 
P A process. 
tr  
P/ tr  
traces (P )  
X 

ref 
refusals (P) 
P sat S(t r ,  ref) 

An arbitrary trace of process P. 
P after (engaging in events of trace) tr. 
The set of all traces of a process, P .  
A set of events which are offered initially by the 
environment of P. X is a refusal of P if it is possible for 
P to deadlock on its first step when placed in this 
environment. 
An arbitrary refusal set of process P. 
The set of all refusals of a process, P .  
Vtr, ref. tr  E traces(P) /\ ref E refusals(P/tr) + 
S(tr ,  ref) 

anything [Hoa85]. Following this definition, if there exists a set that cannot be 

refused, then the process is not divergent. We define predicate NONDIV = 

(ref # A).  Notice NONSTOP z NONDIV! This demontrates proving the 

property absence of divergence requires no more work than proving the absense 

of deadlock property. 

9.5.2 Why paraDOS? 

With all the benefits that CSP provides for reasoning about concurrency, in- 

cluding event abstraction and event traces, what motivated the development of 

paraDOS? For all its elegance, CSP has limitations. In general, the CSP model 

does not directly represent event simultaneity (i.e., event aggregation). Two ex- 

ceptions are synchronized events common to two or more interleaved processes, or 

abstracting a new event to represent the simultaneous occurrence of two or more 

designated atomic events. CSP does not provide extensive support for imper- 



fect observation; CSP supports event hiding, or concealment, but this approach 

is event specific and all-or-nothing, which amounts to filtering. Since CSP rep- 

resents concurrency through an arbitrary interleaving of events, it provides no 

support for multiple simultaneous views of an instance of computation. 

To overcome the limitations to CSP just mentioned, paraDOS extends CSP 

with the notion of parallel events. Parallel event traces don't require interleaving 

to represent concurrency. Also, paraDOS replaces CSP's idealized observer with 

the notion of multiple, possibly imperfect observers. Multiple observers inspire 

the existence of views of computation. Thus, paraDOS distinguishes a computa- 

tion's history - its trace - from the multiple possible views of a computation. 

ParaDOS differs from CSP in other important ways. CSP is an algebraic 

model; paraDOS is a parameterized, operational semantics. As an operational 

semantics, instances of paraDOS require definition of a transition relation to 

describe how computation proceeds from one state to the next. The notion of 

state in paraDOS, across instantiations, is essentially composed of processes and 

communication closures - a potentially unifying characterization of concurrency. 

Finally, paraDOS introduces, as one of its parameters, the notion of a composi- 

tion grammar, which may be represented as a tree. The composition grammar 

is an elegant mechanism for specifying rules of composition across instances of 

paraDOS. 

9.6 Reasoning with paraDOS 

This section discusses reasoning about properties of computation with paraDOS. 

We begin with a review of paraDOS constructs in Section 9.6.1, then discuss 



features of our model that distinguish it from CSP in Section 9.6.2. Section 9.6.3 

discusses the role of policies in the paraDOS transition relation, and gives some 

examples from Linda. Finally, Section 9.6.4 discusses paraDOS approaches to 

reasoning about system properties. 

9.6.1 ParaDOS Basics 

The primitive element for reasoning in paraDOS is the observable event, or just 

event. An event is a discrete instance of observable behavior at a desired level 

of abstraction. Briefly, we review the definitions of paraDOS structures built up 

from these events. A set of events is a parallel event. A list of events selected 

from a parallel event is a ROPE. A list of parallel events is a trace. A list of 

ROPEs is a view. Each element of a view of computation, a ROPE, corresponds 

positionally to a parallel event in that computation's trace. For a given trace, 

in general, multiple views are possible. The choice of observable events for an 

instance of paraDOS does not change the definition of parallel event, ROPE, 

trace, or view. 

ParaDOS is an operational semantics whose computation space is a lazy tree 

from which it is possible to construct parallel event traces from respective in- 

stances of computation. For a given trace of computation, paraDOS is capable 

of generating all possible corresponding views of that computation. A view is 

a sequentialized partial ordering of an instance of concurrent computation. The 

structure of a view is that of a list of ROPEs, which is by definition a list of lists 

of sequential events. Thus, a single perfect view of computation in paraDOS is 

analogous to a CSP trace; the transformation of a paraDOS view to the form of 



a CSP trace is straightforward, and described by the Scheme function flatten. 

Given this correspondence of views to CSP traces, it is possible to  reason about 

properties of computation in paraDOS using the same tools and techniques as 

those from CSP. 

Beyond CSP 

ParaDOS is not restricted to standard CSP abstractions for reasoning about 

computation, though we certainly can instantiate paraDOS to be capable of gen- 

erating event traces like those of CSP, and restrict reasoning about traces to  a 

single view. ParaDOS is capable of generating parallel-event traces and multiple 

views of a given parallel-event trace, abstractions that don't exist in standard 

CSP. Multiple views permit reasoning about multiple perspectives of a computa- 

tion, such as those of users of distributed systems (e.g., discrete event simulations, 

virtual worlds). Multiple perspectives of a system's computational trace includes 

the possibility for imperfect observation by design. 

The purpose of paraDOS is to provide an overall higher level of abstraction 

for reasoning about distributed computation, a model that more closely approx- 

imates the reality of concurrency. ParaDOS differs in two significant ways from 

CSP: its traces preserve the concurrency inherent in the history of computation, 

and its semantics are operational rather than algebraic. CSP imposes the restric- 

tion that an idealized observer record arbitrary, sequential partial orderings of 

simultaneously occurring events, and in so doing, does not preserve event simul- 

taneity. These differences impact reasoning about properties of computation in 

important ways, as will be demonstrated in Section 9.7. 



We introduce one last paraDOS notion for reasoning about properties of com- 

putation, the unsuccessful event, or un-event. There are two categories of events 

in paraDOS: successful and unsuccessful. By default, events refer to successful 

events. The definition of un-event that we are using is, "an attempted computa- 

tion or communication activity, associated with an event, that fails to succeed." 

The ability to observe successful and unsuccessful events within the context of 

parallel events and views permits us to reason directly about nondeterminism 

and its consequences. Parallel events that include un-events allows us to reason 

not only about what happened, but also about what might have happened. 

CSP has a notion similar to paraDOS un-events that it calls refusal sets. 

Recall from Table 9.3, that refusal sets represent environments in which a CSP 

process might immediately deadlock. The notion of refusal sets is from a passive 

perspective of event observation. Since paraDOS is an operational semantics, our 

model employs the active notion of event occurrence, where designated compu- 

tational progress corresponds to the events abstracted. The purpose of refusal 

sets in CSP and un-events in paraDOS is the same, to support reasoning about 

properties of concurrent computation. 

9.6.3 Policies 

We now discuss the implications of parameterized policies as they concern rea- 

soning about properties of concurrent computation. Policies dictate the selection 

of processes to make computational progress during a transition, and the se- 

lection of message closures to be reduced during a transition. Policies are also 

parameters within a paraDOS transition relation. These parameters specify the 



sequence in which chosen processes attempt to make computational progress, and 

the sequence in which selected communication closure reductions attempt to  re- 

duce. When we choose policies for the transition relation, we can reason about 

resulting system behavior, and use paraDOS to prove properties of distributed 

systems with those policies. 

Policies may determine access to critical regions, or specifiy the resolution of 

race conditions. The outcome of such shared resource scenarios, and the policies 

that lead to that outcome, influence what views are possible, and meaningful. 

In determining process and message closure selection, one policy could be pure 

randomness, and another policy could prioritize according to a particular scheme. 

The choice of a selection policy impacts the nature of nondeterminism in a con- 

current system. 

For the Linda instance of paraDOS, transitions from one state of computa- 

tion to the next consist of individual processes making internal computational 

progress, or communication closure reductions that lead to instances of tuple 

space interaction. During each transition, the set of possible next states depends 

on the current state and the policies of the transition relation. 

Consider policies that effect the level of parallelism in a tuple space, including 

maximal parallelism, minimal parallelism, and levels somewhere in between. A 

policy of selecting only one Linda process per transition to make computational 

progress, or one communication closure per transition to reduce, results in sin- 

gular transition density, or sequential computation. In contrast, a policy that 

requires selecting every eligible Linda process and every communication closure 

is part of a set of policies needed to model maximal parallelism. The ability 

to model all possible transitions in a distributed system requires a policy that 

selects a random subset of Linda processes and communication closures. Other 



properties of distributed systems we wish to reason about may limit or bound 

the level of parallelism possible, for example, based on the number of processors 

available. ParaDOS permits the specification of appropriate policies for all the 

levels of parallelism discussed herein. 

An important set of policies in tuple space systems concerns different protocols 

for matching tuples. Tuple matching is a significant source of nondeterminism 

in Linda programs, and it comes in two varieties. First, two or more matching 

operations, at least one of which is an in() ,  compete for a single, matching tuple. 

The second kind of nondeterminism involves just one synchronous primitive, but 

its template matches two or more tuples. In both cases, the outcome of the sub- 

sequent tuple space interactions is nondeterministic, but tuple matching policies 

can influence system properties. For example, a policy that attempts to match 

operations with the most specific templates first, and saves matching the most 

general templates for last, is likely to match more tuples than if the sequence of 

attempted matches is reversed. Another example of maximizing tuple space in- 

teractions would prioritize out() operations before any rd()  and in() operations, 

and then attempt to match the rd() operations before any in()%. 

9.6.4 Properties 

Depending on the presence or absence of mutual exclusion in a distributed system, 

and the policies in effect, we can use paraDOS to reason about a variety of safety 

and liveness properties. The following is a brief discussion of how elements of 

paraDOS contribute to new and meaningful approaches to reasoning about such 

systems. 



Important safety properties - that bad states are never reached - include 

whether or not a system is deadlock free, whether or not race conditions ex- 

ist, and whether or not transition density remains within a desired threshold. 

Consider the problem of deadlock, and the canonical dining philosophers exam- 

ple. An instantiation of paraDOS very naturally represents a trace where all five 

philosophers pick up their left forks in one parallel event - including all 120 (5!) 

possible views (ROPES) of that event. In the next transition, paraDOS demon- 

strates very elegantly the un-events of five (or fewer) philosophers attempting to 

pick up their right forks. Reasoning about the trace of this history, or any of the 

views, a condition exists where after a certain transition, only un-events are pos- 

sible. ParaDOS7s decoupling of distributed processes' internal computations from 

their communication behavior, using the abstraction of communication closures, 

helps us reason that the dining philosophers are deadlocked. 

Liveness properties - that good states are eventually reached -- are also 

important. Some examples of particular interest when using paraDOS to reason 

about these properties include true concurrency of desired events, eventual entry 

into a critical section, guarantee of message delivery, and eventual honoring of 

requests for service. Liveness properties are especially affected by system policies, 

such as those discussed in the previous section. Instances of paraDOS, with their 

parallel events and ROPEs, readily handle properties of true concurrency, such as 

those examples in Table 9.1. The un-events of paraDOS also facilitate reasoning 

with traces about properties of message delivery and eventual entry as follows. 

Guarantee of message delivery is the property that, for all traces where a delivery 

un-event occurs, a corresponding (successful) delivery event eventually occurs. 

Similar descriptions exist for entry into critical sections, requests for service, etc. 

Of course, beyond these formulations, traces in paraDOS are subject to the same 



restrictions as in CSP. In cases where infinite observation is possible, or required, 

undecidability results similar to those from the Halting problem apply. 

Properties that are both safety and liveness, such as levels of parallelism, 

including maximal and minimal, are particularly well suited for paraDOS. The 

magnitude of parallel events in traces of computation can be transformed to 

our notion of transition density, a measurable quantity. Once we have done 

this, we can reason about possible traces, and ask whether, for each transition, 

all communication closures are chosen to be reduced, and whether this ensures 

that these closures all reduce successfully (i-e., no inappropriate un-events). The 

existence of un-events in a trace does not necessarily preclude the possibility of 

maximal parallelism, since un-events can be due to system resource unavailability. 

The absence of un-events from a trace is not sufficient to conclude the property 

of maximal parallelism, either. As just discussed, all communication closures 

must be chosen for possible reduction, and all eligible processes must be chosen 

to make internal computational progress. The latter condition requires that we 

abstract non-communication behavior as observable events. 

Demonstration of Reasoning with ParaDOS 

To demonstrate the utility of reasoning with parallel events and views, we present 

a case study of two primitive operations from an early definition of Linda. In 

addition to the four primitives rd(), in() ,  out (), and eval(), the Linda definition 

once included predicate versions of rd()  and in() .  Unlike the rd() and in() prim- 

itives, predicate operations rdp() and inp() were nonblocking primitives. The 

goal was to provide tuple matching capabilities without the possibility of block- 



ing. The Linda predicate operations seemed like a useful idea, but their meaning 

proved to be semantically ambiguous, and they were subsequently removed from 

the formal Linda definition. 

First, we demonstrate the ambiguity of the Linda predicate operations when 

restricted to reasoning with an interleaved sequential event trace semantics like 

that provided by CSP. The ambiguity is subtle and, in general, not well described 

in the literature. Next, we demonstrate how reasoning about the same computa- 

tion with an appropriate instance of paraDOS disambiguates the meaning of the 

Linda predicate operations. The instance of paraDOS for Linda presented earlier 

in this dissertation did not include the predicate operat ions. We discuss attributes 

required by a new instance for this purpose. Finally, we discuss the importance 

of this model for reasoning about these extended tuple space computations. 

9.7.1 Ambiguity 

Predicate operations rdp() and inp() attempt to match tuples for copy or re- 

moval from tuple space. A successful operation returns the value one (1) and the 

matched tuple in the form of a template. A failure, rather than blocking, returns 

the value zero (0) with no changes to the template. When a match is successful, 

no ambiguity exists. It is not clear, however, what it means when a predicate 

operation returns a zero. 

The ambiguity of the Linda predicate operations is a consequence of modeling 

concurrency through an arbitrary interleaving of tuple space interactions. Jensen 

noted that when a predicate operation returns zero, "only if every existing pro- 

cess is captured in an interaction point does the operation make sense." [Jen94]. 



Figure 9.1: Case Study for Linda predicate ambiguity: an interaction point in 

tuple space involving three processes. 

Suppose three Linda processes, pl, pz, and p3, are executing concurrently in tuple 

space. Further suppose that each of these processes simultaneously issues a Linda 

primitive as depicted in Figure 9.1. 

Assume no tuples in tuple space exist that match template t', except for the 

tuple t being placed in tuple space by process p3. Together, processes pl , pz, and 

p3 constitute an interaction point, as referred to by Jensen. There are several 

examples of ambiguity, but discussing one possibility will suffice. First consider 

that events are instantaneous, even though time is continuous. The outcome of 

the predicate operations is nondeterministic; either or both of the rdp(tr) and 

inp(t l)  primitives may succeed or fail as they occur instantaneously with the 

o u t  (t) primitive. 

For this case study, let the observable events be the Linda primitive operations 

themselves. For example, o u t ( t )  is itself an event, representing a tuple placed 

in tuple space. The predicate operations require additional decoration to convey 



success or failure. Let bar notation denote failure for a predicate operation. For 

example, inp(t') represents the event of a successful predicate, returning value 

1, in addition to the tuple successfully matched and removed from tuple space; 

rdp(ti) represents the event of a failed predicate, returning value 0. 

The events of this interaction point occur in parallel, and an idealized ob- 

server keeping a trace of these events must record them in some arbitrary order. 

Assuming perfect observation, there are six possible correct partial orderings. 

Reasoning about the computation from any one of these traces, what can we say 

about the state of the system after a predicate operation fails? The unfortunate 

answer is "nothing." More specifically, upon failure of a predicate operation, does 

a tuple exist in tuple space that matches the predicate operation's template? The 

answer is, it may or it may not. 

This case study involves two distinct levels of nondeterminism, one dependent 

upon the other. Since what happens is nondeterministic, then the representation 

of what happened is nondeterministic. The first level concerns computational 

history; the second level concerns the arbitrary interleaving of events. Once we 

fix the outcome of the first level of nondeterminism, that is, determine the events 

that actually occurred, we may proceed to choose one possible interleaving of 

those events for the idealized observer to record in the event trace. The choice of 

interleaving is the second level of nondeterminism. 

Suppose in the interaction point of our case study, process pl and pz's pred- 

icate operations fail. In this case, the six possible partial orderings an idealized 

observer can record are the following: 



1. rdp(tf) -+ inp(tf) -+ out (t) 

2. rdp(tl) -+ out (t) --+ inp(tt) 
3. inp(tf) -+ rdp(tf) .t out(t) 
4. inp(tl) -+ out (t) ---t rdp(tf) 
5. out (t) --+ rdp(tf) --+ inp(tf) 
6. out(t)  + inp(tf) + rdp(tl) 

The idealized observer may choose to record any one of the six possible inter- 

leavings in the trace. All but the first and the third interleavings make no sense 

when reasoning about the trace of computation. Depending on the context of 

the trace, the first and third interleavings could also lead to ambiguous mean- 

ings of failed predicate operations. In cases 2, 4, 5, and 6, an out(t)  operation 

occurs just before one or both predicate operations, yet the events corresponding 

to the outcome of those predicates indicate failure. It is natural to ask the ques- 

tion: "This predicate just failed, but is there a tuple in tuple space that matches 

the predicate's template?" According to these interleavings, a matching tuple t 

existed in tuple space; the predicates shouldn't have failed according to  the defi- 

nition of a failed predicate operation. The meaning of a failed predicate operation 

breaks down in the presence of concurrency expressed as an arbitrary interleav- 

ing of atomic events. This breakdown in meaning is due to the restriction of 

representing the history of a computation as a partial ordering of atomic events. 

Reasoning about computation with a sequential event trace leads to ambiguity 

for failed Linda predicate operations rdp(tf) and inp(tl).  



9.7.2 Clarity 

Recording a parallel event sequentially does not preserve information regarding 

event simultaneity. With no semantic information about event simultaneity, the 

meaning of a failed predicate operation is ambiguous. The transformation from 

a parallel event to a partial ordering of that parallel event is one-way. Given an 

interleaved trace - that is, a partial ordering of events, some of which may have 

occurred simultaneously - we cannot in general recover the concurrent events 

from which that interleaved trace was generated. 

A fundamental principle underlies the problem of representing the concur- 

rency of multiple processes by interleaving their respective traces of computation: 

entropy. In this context, entropy is a measure of the lack of order in a system; or 

alternatively, a measure of disorder in a system. The system, for our purposes, 

refers to models of computation. There is an inverse relationship between the 

level of order represented by a model's computation, and its level of entropy. 

When a model's computation has the property of being in a state of order, it has 

low entropy. Conversely, when a model's computation has the property of being 

in a state of maximum disorder, it has high entropy. We state the loss of entropy 

property for interleaved traces. 

Property: (Loss of Entropy) Given a concurrent computation c, let 
trace tr be an arbitrary interleaving of atomic events from c, and let 
el and ez be two events within t r ,  such that el precedes ez. A loss 
of entropy due to tr  precludes identifying whether el and e* occurred 
sequentially or concurrently in c 

By interleaving concurrent events to form a sequential event trace, a model 

(e.g., CSP) loses concurrency information about its computation. Interleaving 



results in a partial ordering of the events of a concurrent computation, an over- 

specification of the order in which events actually occurred. Concurrent models 

of computation that proceed in this fashion accept an inherent loss of entropy. 

A loss of entropy is not always a bad thing; CSP has certainly demonstrated its 

utility for reasoning about concurrency for a long time. But loss of entropy does 

limit reasoning about certain computational properties, and leads to problems 

such as the ambiguity of the Linda predicate operations in our case study. 

The relationship between the trace of a computation and the multiple views of 

that computation's history reflects the approach of paraDOS to maintain multi- 

ple possible losses of entropy (i-e., views) from a single high level of entropy (i.e., 

parallel event trace). Furthermore, paraDOS views differ from CSP trace inter- 

leavings in two important ways. First, paraDOS distinguishes a computation's 

history from its views, and directly supports reasoning about multiple views of 

the same computation. Second, addressing the issue from the loss of entropy 

property, a view is a list of ROPES, not a list of interleaved atomic events. The 

observer corresponding to a view of computation understands implicitly that an 

event within a ROPE occurred concurrently with the other events of that ROPE, 

after any events in a preceding ROPE, and before any events in a successive 

ROPE. 

The parallel events feature of paraDOS makes it possible to reason about 

predicate tuple copy and removal operations found in commercial tuple space 

systems. A parallel event is capable of capturing the corresponding events of 

every process involved in an interaction point in tuple space. This capability 

disambiguates the meaning of a failed predicate operation, which makes it possible 

to reintroduce predicate operations to the Linda definition without recreating the 

semantic conflicts that led to their removal. 



The additional structure within a view of computation, compared to that of an 

interleaved trace, permits an unambiguous answer to the question raised earlier 

in this section: "This predicate just failed, but is there a tuple in tuple space 

that matches the predicate's template?" By considering all the events within 

the ROPE of the failed predicate operation, we can answer yes or no, without 

ambiguity or apparent contradiction. In our case study from Figure 9.1, given 

both predicate operations nondeterministically failed within a ROPE containing 

the out  (t) and no other events, we know that tuple t exists in tuple space. The 

transition to the next state doesn't occur between each event, it occurs from 

one parallel event to the next. For this purpose, order of events within a ROPE 

doesn't matter; it is the scope of concurrency that is important. 

Importance 

Our case study of the Linda predicate operations is important for several reasons. 

First, we demonstrated the power and utility of view-centric reasoning. Second, 

we provided a framework that disambiguates the meaning of the Linda predicate 

operations rdp() and inp(), making a case for their reintroduction into the Linda 

definition. Third, despite the removal of predicate operations from the formal 

Linda definition, several tuple space implementations, including Sun's JavaSpaces 

and IBM's T Spaces, provide predicate tuple matching primitives. ParaDOS 

improves the ability to reason formally about systems developed with commercial 

tuple space implementations by providing a framework capable of modeling the 

Linda predicate operations. 



CHAPTER 10 

Conclusions 

We have presented a new parameterized model of parallel and distributed com- 

putation, paraDOS, and instantiations of two very different approaches to con- 

currency, the Actors model and the Linda communication language for tuple 

space. Our goals were to motivate the importance of views in reasoning about 

parallel and distributed computation, reveal useful abstractions for representing 

concurrency, and demonstrate the utility of operational semantics as an effective 

framework to model this computation. 

We conclude this dissertation, beginning with a list of the primary contribu- 

tions this research has made to the discipline of computer science. Section 10.1 

reviews the state of reasoning about properties of concurrent systems - before 

paraDOS - as a basis for expounding upon each of our research contributions. 

and Section 10.2 discusses future work. 

Contributions 

Section 10.1.1 contains concise statements of our research contributions. The 

remaining sections discuss each of our contributions in more detail. 



10.1.1 Concise Contributions 

This research led to six major contributions: 

1. Identification of the loss of entropy property for interleaved traces. 

2. Introduction of two entropy-preserving abstractions - ordered and un- 

ordered parallel events - for representing event simultaneity within Hoare's 

CSP model. 

3. Differentiation of a computation's history from its views, and direct support 

for reasoning about multiple, simultaneous views of a computation. 

4. Creation of a general, composable model of computation - parameterized 

and capable of individual instantiation - for reasoning about properties of 

parallel and distributed systems. 

5 .  Abstraction of a concurrent system's state, whose general definition includes 

process continuations, communication closures, parallel events, and a next 

state. 

6. Utilization of view-centric reasoning to disambiguate the meaning, upon 

failure, of Gelernter's Linda predicate operations rdp() and inp(), in tuple 

space. 

10.1.2 Loss of Entropy Property 

Building on Hoare's seminal research that resulted in CSP, paraDOS has a proven 

model of concurrency from which to proceed. CSP provides the metaphor of an 



idealized observer recording the observable events of a concurrent computation, 

where concurrency is realized by communicating sequential processes. An event 

trace of an individual sequential process represents the history of that process's 

computation. Thus, in CSP, a history of a concurrent system is not a collection of 

individual event traces, but is rather a single trace that results from a sequential 

interleaving of those individual event traces. 

In the case where the events from two or more processes occur simultaneously, 

CSP's observer interleaves those events in some sequential order. There is no 

incorrect order, since in a sequential event trace, the events must be recorded in 

some order. But once such an interleaving occurs, some potentially important 

information about the computation is lost, since the event trace represents a 

partial ordering, or overspecification, of the sequence of events in a computation's 

history. 

Something apparently contradictory occurs when simultaneous events are in- 

terleaved in a trace. By specifying more information about event order, inter- 

leaving causes a loss of information concerning event simultaneity. This is a case 

where "more is less." The challenge is to identify a property for this phenomenon 

that does not confuse the issue further. Entropy is the measure of disorder in 

a system. A system with high entropy has a high level of disorder; low entropy 

corresponds to low disorder, or in the extreme, order. 

An interleaved trace represents information from a system whose events may 

have occurred at  a high level of disorder, but by interleaving simultaneous events, 

the CSP observer effects a loss of entropy for reasoning about the system. The 

characterization of loss of entropy is counter to what occurs in nature, where sys- 

tems tend, over time, to increase thek levels of entropy. For many computations, 

a loss of entropy is inconsequential; but for some computations, and more specif- 



ically for some reasonings about properties of computations, we need to model 

concurrency using an abstraction that preserves entropy. 

10.1.3 Parallel Events and ROPEs 

The challenge faced in this research is to preserve the usefulness of event traces as 

provided by CSP's process algebra, while extending the notion of event traces in 

a way that preserves entropy. To meet this challenge, paraDOS introduces new 

event abstractions, parallel events and ROPEs. A parallel event is an event ag- 

gregate, representing events of a computation observed to occur instantaneously 

in parallel. Parallel events serve as the primitives that form event traces in para- 

DOS. ROPEs are another event aggregate, denoting randomly ordered parallel 

events. A ROPE corresponds to some parallel event, and specifies a (possibly 

incomplete) partial ordering. In general, a parallel event has many possible corre- 

sponding ROPEs. ROPEs serve as the primitives that form views of computation 

in paraDOS. 

Parallel events and ROPEs reveal the nondeterminism that results from a 

concurrent computation. By preserving entropy, parallel events convey levels of 

concurrency and provide intuition into other possible outcomes of nondetermin- 

ism. ROPEs provide intuition into the many possible perspectives (views) of a 

parallel event. 



10.1.4 One History, Multiple Views 

The paraDOS abstractions of parallel events and ROPEs permit us to distinguish 

a computation's history from possible views of that computation. We extend the 

notion of a CSP trace with parallel event primitives. In paraDOS, a trace is 

a sequence of parallel events - a parallel event trace. A parallel event trace 

corresponds to a computation's history. 

ParaDOS introduces the notion of views. A view of computation refers to 

any (possibly incomplete) partial ordering of events from a computation's history. 

A view is constructed from a parallel event trace, built up from a sequence of 

ROPEs. Given a view of computation, each ROPE in the view corresponds 

positionally to its respective parallel event from the computation's trace. In 

general, for a given history of computation, multiple corresponding views of that 

computation's history are possible. 

10.1.5 General Model for Reasoning 

Many approaches to concurrent computation exist, and many models have been 

developed to reason about properties of such computation. When we wish to 

reason about different approaches to concurrency, it is useful to proceed from 

a common framework, rather than utilize separate computational models, with 

different abstractions. Our model is general enough to reason about many diverse 

approaches to concurrent computation, two of which are considered here, Actors 

and Linda. ParaDOS is an operational semantics, most of whose elements are 

parameterized; it establishes a framework of observable events, traces, views, 



and compositions. Based on CSP, paraDOS supports reasoning about properties 

of concurrent systems, such as deadlock and divergence. With its extensions, 

paraDOS provides abstractions for reasoning directly about properties related to 

event simultaneity and multiple views of computation. 

Concurrent State Abstractions 

One of the benefits of building a general model for reasoning about concurrency is 

the development of abstractions for representing the state of a concurrent system, 

independant of a system's approach to concurrency. Concurrent systems consist 

of a collection of processes capable of some form of interprocess communication. 

ParaDOS represents processes by their continuations, and instances of interpr* 

cess communication by bound expressions we call communication closures. Com- 

munication closures prove to be a unifying abstraction capable of representing 

a variety of communication paradigms. We abstract observable events from the 

communication behavior of a concurrent system. Generally, events arise from 

reductions of communication closures by the paraDOS transition relation. The 

collection of all such events that result from one state's closure reductions com- 

prise the next state's parallel events. The transition relation chooses the next 

state to which computation proceeds. 

10.1.7 Example of View-centric Reasoning 

View-centric reasoning proves to be useful for describing the behavior and ca- 

pabilities of concurrent systems. ParaDOS's parallel events and views provide a 



framework for reasoning about the predicate tuple space operations rdp() and 

inp() that Gelernter removed from Linda. Previous attempts to formally define 

these operations resulted in ambiguous meanings for some cases in which these 

predicates fail to match a tuple in tuple space. In Section 9.7.2 we demonstrate 

the problem and use view-centric reasoning to disambiguate the meaning of these 

failed predicate operations. 

10.2 Future Work 

There are several areas of future work that we plan to pursue. First, since com- 

mercial tuple space implementations support transaction semantics, we need to 

consider how paraDOS can be used to reason ablout such systems. Section 10.2.1 

presents some initial thoughts on modeling transactions within the paraDOS 

framework, and Sect ion 10.2.2 discusses two commercial tuple space implemen- 

tations that are candidates for paraDOS instantiation. Finally, Section 10.2.3 

presents other potential future work. 

10.2.1 Transactions 

For some systems we modeled (see Section 7.3), transactions were implicit, but 

this is not always the case. The approach to composition within paraDOS pro- 

vides some clues toward an abstraction for transactions in distributed systems. 

The composition we presented in Chapter 8 may suggest an a priori (static) 

approach - indeed, this may have been true during the time we developed com- 

position as a paraDOS parameter - but this need not be the case. If paraDOS 



utilizes composition to model transactions, we must accommodate the need to 

compose a system with existing system(s) dynamically, that is, at  run time. 

Transactions are initiated and then either committed or rolled-back at  run 

time. One way to view a transaction is as a subprocess with the special quality 

that it only modifies its environment if it commits (success); in the case of roll- 

back, the environment reflects the state that would have existed had the trans- 

action never been attempted. This all-or-nothing quality of transactions also 

suggests a natural filtering of observable events within transactions. It is also 

possible that views could play a role in modeling transactions within paraDOS 

(i.e., we can limit the observers of a transaction to be only those participating in 

the transaction). 

Models of Commercial Systems 

Relative to pTS, we are investigating two major commercial tuple space imple- 

mentations, JavaSpaces [FHA991 from Sun Microsystems and T Spaces [WML98] 

from IBM. Both JavaSpaces and T Spaces evolved from Gelernter's original work 

in Linda, but they evolved differently. We are in the process of using PTS to 

analyze both these implementations, and reason about their respective computa- 

tional properties. This analysis could lead to the identification of new parameters 

for paraDOS. The paraDOS model might eventually be used as a tool to com- 

pare commercial tuple space implementations for the purpose of selecting the 

most appropriate system for different application needs. 

For example, JavaSpaces and T Spaces both provide predicate, or asyn- 

chronous versions of Linda's rd and in operations, even though Gelernter re- 



moved both primitives from Linda due to semantic ambiguity (see Jensen [Jengl] 

for further discussion on asynchronous matching operations). The ambiguity is 

subtle, and elusive to understand, but view-centric reasoning demonstrates and 

disambiguates this problem. Similar issues with event notification primitives and 

other Linda extensions could possibly be exposed and formally understood. 

Until recently, lack of efficient tuple space implementations limited reasoning 

about tuple spaces to academic pursuits. The ubiquity of the Internet and Java 

programming language, and the endorsement of companies like Sun Microsystems 

and IBM, have propelled Linda's popularity much closer to the forefront of dis- 

tributed computing. continued development of our paraDOS for Linda instanti- 

ation, toward a paraDOS for JavaSpaces or paraDOS for T Spaces instantiation, 

could provide an important framework for proving soundness properties about 

space based distributed protocols and systems. 

10.2.3 Other Future Work 

Other important areas of potential future work include modeling composition of 

heterogeneous systems, including the challenges associated with gateways and 

middleware in n-tier Internet applications. A first step toward modeling hetero- 

geneous composition in paraDOS would probably consider how to represent a 

gateway between Actors and Linda programs. 

We discussed one approach to modeling filtering with transactions and touched 

on the possible role views could play in this area. Regardless of how we model 

filtering, paraDOS7s ability to filter events is important with respect to modeling 

security and scalability within distributed systems. In the case of security, we 



wish to intentionally filter certain events from certain observers. In the case of 

scalability, systems we model may have thresholds for maximum number of events 

before degrading performance, or in the case of relevance filtering, different ob- 

servers may require the ability to observe different kinds or different numbers of 

events. 

We just mentioned system performance as a scalability issue. In the back- 

ground chapter of this dissertation (Chapter 2), we discussed the different pur- 

poses for models - prediction, description, or reasoning. While our research 

in developing paraDOS has focused on a model for reasoning about properties 

of concurrency, the process algebra paraDOS inherits from CSP may provide a 

bridge to performance modeling. This avenue of research became apparent to 

us during a presentation at the 2000 Future of Information Processing Sympo- 

sium, in which Harrison [HarOO] discussed current research investigating the use 

of stochastic process algebras (SPAS) to model systems composed of concurrently 

active cooperating components. What we believe makes paraDOS relevant to this 

is its view-centric approach, which can model probabilistic events. It is this con- 

nection which we intend to pursue to investigate the use of paraDOS as a tool to 

study both behavioral and performance properties. 



APPENDIX A 

Scheme Implementation of SECD Machine 



This appendix contains my Scheme implementation of the SECD machine. 

; * 
; * transform: Transi t ion function f o r  t h e  SECD machine 
; * 
(define transform 

(lambda ( s  e c d) 
(cond 

; Case 7: i f  C = [I 
; -- Must be f i r s t .  I f  c is n u l l ,  can ' t  check 
; anything e l s e !  
( (nu l l ?  c) 

; I f  d is a l so  empty s tack ,  then f in i shed ,  
; re turn  top of s tack s 
( i f  (nu l l?  d) (car s )  
; e l s e  continue by popping saved environment 
; from dump s tack d ,  and pushing r e s u l t  
; current ly  on s on top  of res tored  s 
(transform (cons (car  s )  (caar d ) )  ; - the new s 

(cadar d) (caddar d) (cadddar d ) ) ) )  

; Case 0: i f  head(C) is  a func 
((func? (car c ) )  

(transform (cons (car  c) s )  e (cdr c) d ) )  

; Case 1: i f  head(C) is  a constant 
( (const? (car c ) )  

(transform (cons (cadar c) s )  e (cdr c) d ) )  

; Case 2:  if head(C) is  a var iab le  
( ( iden t?  (car  c ) )  

(transform (cons (lookup e (cadar c ) )  s )  
e (cdr c) d))  

; Case 3: i f  head(C) is  an appl icat ion (Rator Rand) 
((app? (car  c ) )  

(transform s e 
(cons (cadar c) (cons (caddar c)  

(cons (cons 'eval  '0) (cdr c ) ) ) )  d ) )  



; Case 4:  i f  head(C) i s  a lambda abs t r ac t i on  
j lambda (V) . B 
((lambda-ab? (car  c ) )  

(transform 
(cons (cons 'c losure  

(cons (cadar c) (cons (caddar c) 
(cons e '0)))) s )  

e (cdr c) d ) )  

; Case 5 :  i f  head(C) = Q and head ( t a i l (S ) )  i s  a 
s predef .  funct ion f 
((and (eval? (car c ) )  (func? (cadr s ) ) )  

(transform (cons (eval  (cadadr s )  (ca r  s ) )  
(cddr s ) )  

e (cdr c) d ) )  

; Case 6 :  i f  head(C) = Q and 
3 head( ta i1  (S) ) = closure  (V ,B ,El) 
((and (eval? (car  c ) )  (closure? (cadr s ) ) )  

(transform 
(mk-empty) 

; which i s  t he  new s - empty 
(cons (cons (cadadr s )  

(cons (car  s )  (mk-empty))) 
(cadddadr s ) )  

; which is  t h e  new e ,  with V-->B added t o  
; El from closure  

(cons (caddadr s )  (mk-empty)) 
; which i s  t h e  new c - i n i t i a l i z e d  t o  B 
s from closure  

(cons 
(cons (cddr s )  

(cons e 
(cons (cdr c)  

(cons d 
(mk-empty) ) ) ) ) d) ) ) 

; which is t he  new d - t h i s  saves t h e  
; current  c fg  a f t e r  eval  

; close  t he  cond, lambda, and def ine  . . .  
1)) 



; * 
; * addl: A "predefined function" which does what it says . . .  
; * 
(define addl 

(lambda (n) (+ n 1))) 

; * 
; * app?: Boolean test which returns true when e an "application" 
; * of form ('app e e) 
; * 
(define app? 

(lambda (e) 
(eq? (car e) 'app))) 

; * 
; * closure?: Boolean test which returns true when e is a 
; * "closure11 of form ('closure v b e) 
; * 
(define closure? 

(lambda (e) 
(eq? (car e) ' closure) ) ) 

; * 
; * const?: Boolean test which returns true when e is a "const" 
; * of form ( 'const n) 
; * 
(define const? 

(lambda (e) 
(eq? (car e) 'const) ) )  

; * 
; * func?: Boolean test which returns true when e is a 
; * "predefined function" of form ('func n), where n 
; * is the name of the function 
; * 
(define func? 

(lambda (e) 
(eq? (car e) 'func))) 



; * 
; * iden t? :  Boolean t e s t  which r e tu rns  t r u e  when e is  an 
; * " i d e n t i f i e r "  of form ( ' iden t  x) 
; * 
(define ident?  

(lambda (e) 
(eq? (car  e)  ' i d en t ) ) )  

; * 
; * lambda-ab?: Boolean t e s t  which r e tu rns  t r u e  when e i s  a 
; * "lambda abs t rac t ionM of form ('lambda x e )  
; * 
(define lambda-ab? 

(lambda (e) 
(eq? (car  e )  'lambda) ) ) 

; * 
; * eval? :  Boolean t e s t  which r e tu rns  t r u e  when e is a t h e  
; * "eval" symbol (Q) of form ( ' eva l )  
; * 
(define eval?  

(lambda (e) 
(eq? (car  e)  J e v a l ) ) )  

; * 
; * eval :  Function which assoc ia tes  t h e  symbol f with a 
; * predefined funct ion of t he  same name, then r e tu rns  
; * t he  r e s u l t  of applying a t o  f .  
; * 
(define eval  

(lambda (f a) 
( i f  (eq? f 'addl) 

(add1 a)  
(display (cons f (cons a '0)))))) 
; ' e r r o r ) ) )  

; * 
; * mk-empty: Returns an empty l is t  
; * 
(define mk-empty 

(lambda 0 ' 0 1) 



; * 
; * lookup: Checks environment env f o r  var iab le  name, and i f  
; * found re turns  i ts  bound value 
; * 
(define lookup 

(lambda (env name) 
(cond 

( (nu l l?  env) ' e r ror )  
((eq? name (caar env)) (cadar env)) 
(#t  (lookup (cdr env) name) 1))) 

; * 
; * update-env: Adds the  binding of name t o  va l  t o  t he  
; * environment env 
; * 
(define update-env 

(lambda (env name val)  
(cons ( l i s t  name va l )  env)))  

; * 
; * caddadr: Apparently I reached a l i m i t ?  
; * 
(define caddadr 

(lambda (s) 
(car  (cdr (cdr (car (cdr s ) ) ) ) ) ) )  

; * 
; * cadddadr: Apparently I reached a l im i t ?  
; * 
(def ine  cadddadr 

(lambda ( s )  
(car  (cdr (cdr (cdr (car  (cdr s ) ) ) ) ) ) ) )  

; * 
; * cadddar: Apparently I reached a l im i t ?  
; * 
(define cadddar 

(lambda (s)  
(car (cdr (cdr (cdr (car s )  ) ) ) ) ) ) 



The following are three test functions for the SECD transform function. 

(define t e s t 1  
(lambda () 

(transform ' 0 ' 0 
' ( (app (f unc addl) (const 6) ) ) ' () ) ) ) 

(define t e s t 2  
(lambda () 

(transform ' () ' (1 
' ( (app (lambda x (app (func addl) ( ident x) ) )  

(const 6))) '0)))  
(define t e s t 3  

(lambda () 
(transform ' () ' 0 

'((app (lambda x (ident x ) )  (const 4 2 ) ) )  '0))) 

Thus, in the Scheme Read-Eval-Print loop, the following transactions occur: 

1 ]=> (test11 
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