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Hello, computer






We use computers every day as electronic black
boxes that do amazing things by

collecting,
storing,
retrieving, and

transforming data.



“Many people think of data as numbers alone, but
data can also consist of words or stories, colors or
sounds, or any type of information that is
systematically collected, organized, and analyzed...”

D'lgnazio & Klein, . 2020


https://data-feminism.mitpress.mit.edu

James Murray compiling
the Oxford English
Dictionary, c. 1928.



Computers only do very basic things.

Numerical calculations:

Add
Subtract

Symbolic manipulations
Compare two numbers

Substitute one string of letters and numbers for another



But when trillions of these simple operations are
arranged in the right order, amazing computations
can be carried out:

forecasting tomorrow’s weather
deciding where to drill for oil B
finding which places a person’s most likely to visit &8

fisuring out who would make a great couple (3 &
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From Wikipedia, the free encyclopedia

For other uses, see Computer science (disambiguation).

Computer science is the study of computation, information, and automation.!'[2I3]
Computer science spans theoretical disciplines (such as algorithms, theory of
computation, and information theory) to applied disciplines (including the design and
implementation of hardware and software).[I5I€]

Algorithms and data structures are central to computer science.l”! The theory of
computation concerns abstract models of computation and general classes of problems
that can be solved using them. The fields of cryptography and computer security involve
studying the means for secure communication and preventing security vulnerabilities.
Computer graphics and computational geometry address the generation of images.
Programming language theory considers different ways to describe computational
processes, and database theory concerns the management of repositories of data.
Human—computer interaction investigates the interfaces through which humans and
computers interact, and software engineering focuses on the design and principles
behind developing software. Areas such as operating systems, networks and embedded
systems investigate the principles and design behind complex systems. Computer
architecture describes the construction of computer components and computer-
operated equipment. Artificial intelligence and machine learning aim to synthesize goal-
orientated processes such as problem-solving, decision-making, environmental
adaptation, planning and learning found in humans and animals. Within artificial
intelligence, computer vision aims to understand and process image and video data,
while natural language processing aims to understand and process textual and linguistic
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The magic of a computer is its ability to become
almost anything you can imagine...



The magic of a computer is its ability to become
almost anything you can imagine...

...as long as you can explain exactly what that is.



When we program a computer to do something,
everything needs to be described precisely.
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When computers behave intelligently, it's because a
person used their intelligence to design an intelligent
program.



To tell the computer exactly how to behave, we give
it instructions using a programming language.
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There are many programming languages due to

intended use
history
habit

taste
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In this course, we'll be working in a slightly more
modern programming language.
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The traditional way of writing code is to use a text
editor and then run the code in a command-line

_e emacs: ~[test.py @ @ jgordon@jgordon: ~ [main]
is_prime(n): ; python3 test.py
i range(2, n): True
nY%i==0: False
; |

print(is_prime(5))
print(is_prime(104))

All  (10,0) (Python Fly/-- ElDoc)

Emacs, a popular text editor Command-line interface



While we could do everything in command-line
interfaces, they aren't the best suited for data
science work, which often requires visualizations and
written reports.



000 [+ < €O colab.research.google.com/drive/19Gsnq91zvEkZtZVt1kNxaNTwYblUad0: & ﬁ] +

cO & Example.ipynb Y& & = @ 2 share
File Edit View Insert Runtime Tools Help
Q Commands + Code + Text > Runall « v ﬁ‘:ﬁ: - A
~ ¥ 111 def is_prime(n):
Q for i in range(2, n):
if n % i == 0:
<> return False
return True
Ca
v [2]1 is_prime(5)
O —_
2v True
TNV oo B 272 WO
Here’s one of Emile-Antoine Bayard’s illustrations from Jules Verne’s Around the Moon (1870), just because we can:
{2} Variables Terminal v 10:25AM B Python 3

Jupyter notebooks allow us to write and run code in a single
document, together with accompanying text, tables, and images.



For this class, we'll use Colab, Google’s version of
Jupyter notebooks, which let you log in with your
Vassar account and store the notebooks you write
in your Google Drive.



Let's go!
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See notebook for example.


https://drive.google.com/file/d/1X4w_iLtPnT8RdD2Tss1TkNqcWWhwRGTM/view?usp=sharing

What will we do in this course?



Data design

Computational

problem solving

Programming

lesting

|dentify and organize the data needed to solve a
problem

Break a problem down into subproblems that can
be solved with computations

Express computations over the data

Test those computations to make sure they're doing
what they're supposed to



0  Society Think about whether it's a good idea to solve the
problem — and how your solution might affect the
world around you.



You will leave this course with applicable skills that
you can use even if you don’t take any future
computer science or data science courses.
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CMPU 100 §1

Programming with Data

Fall 2025

Monday 10:30-11:45 a.m.
Wednesday 10:30-11:45 a.m.
Thursday 1:00— 3:00 p.m.

Sanders Classroom 006
Professor Gordon

csvassar.edu/~CSI00

Overview

Introduces fundamentals of computer programming and data anal-
ysis. Students learn to write programs to collect, clean, transform,
and visualize data from a variety of domains. Working on real-world
problems and data sets, students also consider social issues sur-
rounding data collection and analysis. This course is designed for
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CS Wiki Home
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Vassar CS Student Integrity Guide

This guide is designed to clarify & Vassar College’s academic integrity policy as it applies to the
Computer Science Department. Furthermore, it provides advice on how to best navigate integrity
issues in the context of the field, where source code authorship is a central issue.

The goal of our computer science courses is to promote understanding of the field, not competition
among students. As such, students are encouraged to discuss class material, ideas, sample exercises,
etc., with other students.

However, when it comes to graded work (e.g., programming assignments, programming labs, take-
home exams), it is important to know when to collaborate and when to work individually. Taking
shortcuts, while seemingly beneficial in the short term, will inevitably backfire later on. Conversely,
the challenges of working through a problem will pay off greatly in future courses and postgraduate
life, as they will enable students to be more independent in their work.

1. Policy

1.1. Guidelines for individual work

h + ©

Search n

<NV H

i= Table of Contents ~

Vassar CS Student Integrity
Guide

1. Policy

1.1. Guidelines for individual
work

1.2. Guidelines for
partnered/group work

2. Frequently Asked Questions
(FAQ)

3. Cautionary tales

3.1. Past examples of
academic integrity violations

3.2. Statistics

4. Other helpful resources

The goal of individual work is to assess the learning of each person in isolation. The guidelines are the following:

1. The work submitted should be solely authored by the person submitting it.

2. Help is to be provided, as needed, by the course’s staff (i.e., the instructor, coaches, or, in some cases, the department’s academic

intern).

3. Unless explicitly authorized by the course instructor, source code should not be shared with other people in any way. Note that
showing code on screen, paper, whiteboard, or any other medium, counts as sharing, as does publishing code on public websites or

cs.vassar.edu/integrity
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File Edit View Insert Runtime Tools Help

Q Commands + Code + Text > Runall = Copy to Drive Connect A

Start coding or generate with AI.
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“All through our education, we are being taught a kind of
reverse mindfulness. A kind of Future Studies where — via
the guise of mathematics, or literature, or history, or
computer programming, or French — we are being taught
to think of a time different to the time we are in. Exam
time. Job time. When-we-are-grown-up time.

“To see the act of learning as something not for its own
sake but because of what it will get you reduces the
wonder of humanity. We are thinking, feeling, art-making,
knowledge-hungry, marvelous animals, who understand
ourselves and our world through the act of learning. It is
an end in itself. It has far more to offer than the things it
lets us write on application forms. It is a way to love living
right now.”

Matt Haig, Notes on a Nervous Planet



We've got a big journey ahead of us. | hope you're
excited!
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