CMPU 100

Programming with Data

Fall 2025

Hello, computer

We use computers every day as electronic black
boxes that do amazing things by

collecting,
storing,
retrieving, and

transforming data.

“Many people think of data as numbers alone, but
data can also consist of words or stories, colors or
sounds, or any type of information that is
systematically collected, organized, and analyzed...”

D'lgnazio & Klein, . 2020

https://data-feminism.mitpress.mit.edu

James Murray compiling
the Oxford English
Dictionary, c. 1928.

Computers only do very basic things.

Numerical calculations:

Add
Subtract

Symbolic manipulations
Compare two numbers

Substitute one string of letters and numbers for another

But when trillions of these simple operations are
arranged in the right order, amazing computations
can be carried out:

forecasting tomorrow’s weather
deciding where to drill for oil B
finding which places a person’s most likely to visit &8

fisuring out who would make a great couple (3 &

B Star Wars

D pR— « Pp » >

00:00:24 | 02:01:12

Compare Copy Paste Undo Redo View: 109% & (5

@ JU/A ’) Ju 'I

OSCILLATOR DRIVER O0SCILLATOR OSCILLATOR W voLTAce col TROLLED OSCILLATOR EN LOPE GENERA | R

Ty

< R & < S

ANIMOOG

- \ / =
L \ e o

RIBBON

HIGH PAS

100

YOLUME SLIDE

! bbb bk

A
i

.y J 10
Model 15

https://www.moogmusic.com/products/model-15-modular-synthesizer-app

o0 [J] v

0

M + O

W en.wikipedia.org/wiki/Computer_science

%« 3 WIKIPEDIA
“ #w o7 TheFree Encyclopedia

\:K.a—'

Q_ Search Wikipedia Search

00 Donate Create account Login eee

i= Computer science

XA 164 languages v

Article Talk

From Wikipedia, the free encyclopedia

For other uses, see Computer science (disambiguation).

Computer science is the study of computation, information, and automation.!'[2I3]
Computer science spans theoretical disciplines (such as algorithms, theory of
computation, and information theory) to applied disciplines (including the design and
implementation of hardware and software).[I5I€]

Algorithms and data structures are central to computer science.l”! The theory of
computation concerns abstract models of computation and general classes of problems
that can be solved using them. The fields of cryptography and computer security involve
studying the means for secure communication and preventing security vulnerabilities.
Computer graphics and computational geometry address the generation of images.
Programming language theory considers different ways to describe computational
processes, and database theory concerns the management of repositories of data.
Human—computer interaction investigates the interfaces through which humans and
computers interact, and software engineering focuses on the design and principles
behind developing software. Areas such as operating systems, networks and embedded
systems investigate the principles and design behind complex systems. Computer
architecture describes the construction of computer components and computer-
operated equipment. Artificial intelligence and machine learning aim to synthesize goal-
orientated processes such as problem-solving, decision-making, environmental
adaptation, planning and learning found in humans and animals. Within artificial
intelligence, computer vision aims to understand and process image and video data,
while natural language processing aims to understand and process textual and linguistic

Read View source View history Tools Vv

=

Fundamental areas of computer science
0 := Af.Ax.x Ao S

Be
1 := Af.Ax.f x }
C

2 = Af.Ax.f (f x)
Computer

Programming language
theory architecture

Hidden "
Input -
Output . -

Artificial intelligence Computational
complexity theory

Computer science

History
Outline
Glossary
Category

https://en.wikipedia.org/wiki/Computer_science

CORONC) Game 2 | Jonathan Gordon - Auto-Match Player (Black to Move)

The magic of a computer is its ability to become
almost anything you can imagine...

The magic of a computer is its ability to become
almost anything you can imagine...

...as long as you can explain exactly what that is.

When we program a computer to do something,
everything needs to be described precisely.

— " —— " ——

—

-

THIS NOTE IS NOT WORTH
THE PAPER IT'S PRINTED ON, NOHOW

'
:

D80285227C (|,

WEISSHAUPT, D.C. A\
Y

e

-

.......

R R R R et et e

4 Aof Nbte

T oo ped Ve Wonil of Siirs, =

MTTT RPN \N'.-fo'.l TSN .

' LT .\’i;q;‘.-g._t“r..c.g, o, “h‘_‘)'I ';p !
- A 'z& ﬁ - . \‘z""‘ ,‘ .1 : » % (&’
2 -

eblong.com/zarf/zero-bill.html

https://www.eblong.com/zarf/zero-bill.html

When computers behave intelligently, it's because a
person used their intelligence to design an intelligent
program.

To tell the computer exactly how to behave, we give
it instructions using a programming language.

1957 Flow-matic Fortran [

1958 Algol 58 Fortran IT

1959 Lisp

1960 APL COBOL Algol 60

1961 CPL

1962 Fortran IV

1963 Simula I Snobol JOSS
1964 PL/1 Basic

1965

1966 ISWIM Algol W
Logo Simula 67 Snobol4 @@

Algol 68

Smalltalk BCPL @

Prolog B

/

1967

1968

COBOL-68

1969
1970
Pascal C

1971

1972 Smalltalk 72

1973

™ Smalltalk 74 CLU SEQUEL

1975 Scheme Modula

1976 Smalltalk 76 (Bew) SASL) SEQUEL/2
1977 ML Fortran 77 Modl? @d@ S0

1974

COBOL-74

—
1978) csh Scheme MIT Smalltalk 78 Hope csp awk C (K&R)
1979 Ada Ged) REXX
1980 Smalltalk 80 L | ABC
1981 tesh KRC
1982 REXX 3.0 @@
1983 (hsh) BETA Ada 83 @@ Pascal AFNOR Teon
1984 Scheme 84 Lazy ML SML Mumps 1984
1985 @ COBOL-85 Common Lisp CLIPS Miranda Lean Objective Pascal nawk C++
1986 Eiffel Objective-C
1987 Self Clean Caml Perl
1988 ksh8g Scheme R4RS Erlang T Oberon Tcl) < Object REXX
1989 bash Lambda Prolog CLOS Eiffel 2 Concurrent Clean Modula-3 C (ANSI) @
1990 Haskell SML 90 Ease) C_C++(ARM) Fortran 90

| -
1991 CLIPS 5.0 Sather 0.1 Gofer L Oak Perl 4 Oberon-2 > (Python
1992 Cecil Dylan SQL-92

l //
1993 @1@ NewtonScript AppleScript Mercury |

l —

Vo
1994 Sather 10 — L a Perl 5 < PowSerptevel 2
[E—

1995 Ruby @ Java) | PHP @ €95) (JavaScript

Squeak Eiffel 3 OCaml Pike Pizza @.

o SML97 > (J++ NetREXX ECMAScript

1998 @ @e RSRS REBOL Haskell 98 Java2 (v1.2) C++ (ISO) Perl 5.005

J++6.0 NET

IQL(, Comn 20>

1997

1999

ECMAScript rel3 Tel 8.1 (c99) CSQL-1999>

JavaScript 1.5 Quilt

2000 OCaml 3.0 Mondrian C# Lua 4.0 Perl 5.6.0

GHC 5.00 VB NET (XQuery >

2002 COBOL 2002 F# SML.NET I# Perl 5.8.0 @@ Cyclone
2003 To Ruby 1.8 Nice GHC 6.0 Nemerle Boo Fortran 2003 Lua5.0 SQL-2003

2004 Cbash 30 Groovy Java 2 (v1.5 beta) Scala PHPS @@
2005 C#20 | T Zonnon Cyclone 1.0 @

2006 CAL (Open Quark) Python 2.5 JavaScript 1.7
2007 Scheme R6RS Groovy 1 Fortress 1.0beta C#3.0 D10

github.com/stereobooster/programming-languages-genealogical-tree

PHP4

2001

https://github.com/stereobooster/programming-languages-genealogical-tree

1957 Flow-mati Fortran I
1958 Algol 58 Fortran IT
p L] 1959 Lisp
. - B B
i;, 1960 2L) (COBOL Algol 60
- \ B
B 1961 CPL
1962 Fortran IV
h 1963 Simula I Snobol JOSS
1964 PL/1 Basic
|

1965

A 1966 ISWIM Algol W

(K : 1967 Logo Simu’la? Snobol4 @n@
(]
\
2 3 " 1968 COBOL-68 Algol 68
[' 1969 Smalltalk BCPL (Forth)
\) 1970 Prolog B
\

1971 sh Pascal C
1972 Smalltalk 72
1973
1974 COBOL-74 I Smalltalk 74 CLU SEQUEL
1975 Scheme Modula

4 1976 Smalltalk 76 (Bew) SASL) SEQUEL/2

- . -

: 1977 ML Fortran 77 Modula-2 @@ SQL
[
1978 FP csh Scheme MIT Smalltalk 78 Hope CSP awk C (K&R)
o 1979 Ada Ged) REXX
, a ‘ e O P P e , Smalltalk 80 ABC
1981 tesh KRC
1982 REXX 3.0 @@
1983 ksh BETA Ada 83 @@ Pascal AFNOR Teon
1984 Scheme 84 Lazy ML SML Mumps 1984
1985 FL COBOL-85 Common Lisp CLIPS Miranda Lean Objective Pascal nawk C++
1986 Scheme R3RS Eiffel Objective-C
1987 Self Clean Caml Perl
| i
1988 ksh8g Scheme R4RS Erlang] Oberon Tcl) < Object REXX
1989 bash Lambda Prolog CLOS Eiffel 2 Concurrent Clean Modula-3 C (ANSI) @
1990 Haskell SML 90 Ease) (__C++ (ARM) Fortran 90
| e
1991 CLIPS 5.0 Sather 0.1 Gofer | Oak — Perl 4 Oberon-2 Python
/
1992 Cecil Dylan SQL-92
//
1993 @1@ NewtonScript AppleScript Mercury |
/
1994 Common Lisp (ANSI) Sather 1.0 L — | — Lua Perl 5 PostScript level 2
[

1995 Ruby Ada 95 Java | PHP Delphi Cc95 JavaScript
199 @@ Squeak Eiffel 3 OCaml pike) (Pizza @.
1997 | — SML 97 J++ NetREXX ECMAScript
1998 ksh98 Scheme RSRS REBOL Haskell 98 Java2 (v1.2) C++ (ISO) Perl 5.005
1999 3++69> (NET ECMAScript rel3 Tel 8.1 D) 5QL-1999
2000 OCaml 3.0 Mondrian C# Lua4.0 Perl 5.6.0 PHP4 JavaScript 1.5 Quilt
2001 GHC 5.00 VB.NET (XQuery >
2002 COBOL 2002 F# SML.NET D> (J# Perl 5.8.0 @@ Cyclone
2003 To Ruby 1.8 Nice GHC 6.0 Nemerle Boo Fortran 2003 Lua5.0 SQL-2003
2004 Cbash 30 Groovy Java 2 (v1.5 beta) Scala PHPS @@
2005 C#20 Zonnon Cyclone 1.0 @
2006 CAL (Open Quark) Python 2.5 JavaScript 1.7
2007 Scheme R6RS Groovy 1 Fortress 1.0beta C#3.0 D10

github.com/stereobooster/programming-languages-genealogical-tree

https://github.com/stereobooster/programming-languages-genealogical-tree

A

n 1957

1958

- 1959

|
ARg | W -

1962

1963

1964

1965

1966

)i 1967
i

1968
L\ i 3 1969
B .
9 7
v 1970
1971

1972

1973

e 1976
1977
0 1978

1979

1981

1982

1991
1992

1993
1994
1995
1996
1997
1998
1999
2000

2001
2002

2003
2004
2005

2006

2007

github.com/stereobooster/programming-languages-genealogica

bash

COBOL-68
COBOL-74
FP
ksh
FL COBOL-85
ksh88

ksh98

COBOL 2002

sh

Flow-matic

COBOL

csh

Prolog

Scheme

Scheme MIT

Scheme 84

Scheme R3RS

Scheme R4RS

Erlang

Scheme R6RS

Common Lisp

NewtonScript

Common Lisp (ANSI)

Lisp
r P L
|
i |
Logo Simu'm !
Smalltalk
Smalltalk 72 (‘ |2 ‘ s (t]? 13 B/I [] l)\ l)\1 LXr
¥ _l . !
— Smalltalk 74 I %1() ¥ ‘t grt} t
. ; .) . \' \’ &5 JLN v ; ‘
| . -
' » v G
Smalltalk 76 (Bew) sast N CW Y ()rl\ C 1 t V ;
o
ML
Smalltalk 78 Hope |
|
Smalltalk 80 L {
KRC !
!
Lazy ML SML Mumps 1984
CLIPS Miranda Lean Objective Pascal nawk C++
Eiffel Objective-C @
Self Clean Caml Perl 1SO SQL
| —
[Oberon Tcl Object REXX
Lambda Prolog CLOS Eiffel 2 Concurrent Clean Modula-3 C (ANSI) @
Haskell SML 90 Ease) (__C++ (ARM) Fortran 90
P
CLIPS 5.0 Sather 0.1 Gofer | Oak P Perl 4 Oberon-2 Python
L —
Cecil Dylan @-92
//
AppleScript Mercury
/
e | ua Perl 5 ostScript leve
[—
Ruby @ Java y [| PHP @ C95 JavaScript
Squeak Eiffel 3 OCaml Pike Pizza @,
o SML 97 > (J++ NetREXX ECMAScript
REBOL Haskell 98 Java 2 (v1.2) C++ (ISO) Perl 5.005
1++60> (NET ECMAScript rel3 Tel 8.1 D) SQL-1999
OCaml 3.0 Mondrian C# Lua 4.0 Perl 5.6.0 JavaScript 1.5 Quilt
GHC 5.00 VB NET (XQuery >
F# SMLNET > (J# Perl 5.8.0 @@ Cyclone
Nice) (_GHC 6.0 Nemerle Boo Fortran 2003 Lua50 SQL-2003
Groovy Java 2 (v1.5 beta) Scala PHPS @@
C#20 Zonnon Cyclone 1.0 @
Groovy 1 Fortress 1.0beta C#3.0 D10

l-tree

https://github.com/stereobooster/programming-languages-genealogical-tree

1957 Flow-matic Fortran [

1958 Algol 58 Fortran IT

1959 Lisp

1960 APL COBOL Algol 60

1961 CPL

1962 Fortran IV

1963 Simula I Snobol JOSS
1964 PL/1 Basic

1965

1966 ISWIM Algol W
Logo Simula 67 Snobol4 @@

Algol 68

Smalltalk BCPL @

Prolog B

/

1967

1968

COBOL-68

1969
1970
Pascal C

1971

1972 Smalltalk 72

1973

™ Smalltalk 74 CLU SEQUEL

1975 Scheme Modula

1976 Smalltalk 76 (Bew) SASL) SEQUEL/2
1977 ML Fortran 77 Modl? @d@ S0

1974

COBOL-74

—
1978) csh Scheme MIT Smalltalk 78 Hope csp awk C (K&R)
1979 Ada Ged) REXX
1980 Smalltalk 80 L | ABC
1981 tesh KRC
1982 REXX 3.0 @@
1983 (hsh) BETA Ada 83 @@ Pascal AFNOR Teon
1984 Scheme 84 Lazy ML SML Mumps 1984
1985 @ COBOL-85 Common Lisp CLIPS Miranda Lean Objective Pascal nawk C++
1986 Eiffel Objective-C
1987 Self Clean Caml Perl
1988 ksh8g Scheme R4RS Erlang T Oberon Tcl) < Object REXX
1989 bash Lambda Prolog CLOS Eiffel 2 Concurrent Clean Modula-3 C (ANSI) @
1990 Haskell SML 90 Ease) C_C++(ARM) Fortran 90

| -
1991 CLIPS 5.0 Sather 0.1 Gofer L Oak Perl 4 Oberon-2 > (Python
1992 Cecil Dylan SQL-92

l //
1993 @1@ NewtonScript AppleScript Mercury |

l —

Vo
1994 Sather 10 — L a Perl 5 < PowSerptevel 2
[E—

1995 Ruby @ Java) | PHP @ €95) (JavaScript

Squeak Eiffel 3 OCaml Pike Pizza @.

o SML97 > (J++ NetREXX ECMAScript

1998 @ @e RSRS REBOL Haskell 98 Java2 (v1.2) C++ (ISO) Perl 5.005

J++6.0 NET

IQL(, Comn 20>

1997

1999

ECMAScript rel3 Tel 8.1 (c99) CSQL-1999>

JavaScript 1.5 Quilt

2000 OCaml 3.0 Mondrian C# Lua 4.0 Perl 5.6.0

GHC 5.00 VB NET (XQuery >

2002 COBOL 2002 F# SML.NET I# Perl 5.8.0 @@ Cyclone
2003 To Ruby 1.8 Nice GHC 6.0 Nemerle Boo Fortran 2003 Lua5.0 SQL-2003

2004 Cbash 30 Groovy Java 2 (v1.5 beta) Scala PHPS @@
2005 C#20 | T Zonnon Cyclone 1.0 @

2006 CAL (Open Quark) Python 2.5 JavaScript 1.7
2007 Scheme R6RS Groovy 1 Fortress 1.0beta C#3.0 D10

github.com/stereobooster/programming-languages-genealogical-tree

PHP4

2001

https://github.com/stereobooster/programming-languages-genealogical-tree

There are many programming languages due to

intended use
history
habit

taste

Ancient history (my childhood)

Kolcle

57.//////|

An Educational Product from LCS5I]

) Logo Computer S%ystems Inc. 1989
All »ights reserved.

Uersion 2.8

Press -4

https://archive.org/details/a2gs_LogoWriter_GS_1989_Logo_Computer_Systems

Ancient history (my childhood)

Kolcle

57.//////|

An Educational Product from LCS5I]

) Logo Computer S%ystems Inc. 1989
All »ights reserved.

Uersion 2.8

Press -4

https://archive.org/details/a2gs_LogoWriter_GS_1989_Logo_Computer_Systems

In this course, we'll be working in a slightly more
modern programming language.

1957 Flow-matic Fortran [

1958 Algol 58 Fortran IT

1959 Lisp

1960 APL COBOL Algol 60

1961 CPL

1962 Fortran IV

1963 Simula I Snobol JOSS
1964 PL/1 Basic

1965

1966 @ Algol W
1967 Logo Simula 67 Snobol4 @@
1968 COBOL-68 Algol 68

1969 @ BCPL @

1970 Prolog &

/

1971 @ Pascal C

19&72 @

Modula

?@@ SEQUEL/2
ML Fortran 77 Modula-2 @d@ SQL

™
CSP / awk C (K&R)
Ada Ged) REXX

REXX 3.0 @@

BETA Ada 83 @@ Pascal AFNOR Teon

Lazy ML SML Mumps 1984
Lean Objective Pascal Q@ C++

Objective-C

Clean Caml Perl

[
1988 ksh88 Life A+ Scheme R4RS I Oberon Tcl) < Object REXX

1989 bash Lambda Prolog CLOS Eiffel 2 Concurrent Clean Modula-3 C (ANSI) @

§

1990 29 Haskell SML 90 Ease) (__C++ (ARM) Fortran 90
L — |
1991 CLIPS 5.0 Sather 0.1 Gofer | Oak — Perl 4 Oberon-2 Python
/
1992 Cecil Dylan SQL-92
| L
1993 @1@ K NewtonScript AppleScript Mercury |
l —
a—

1994

Common Lisp (ANSI) Sather 1.0 [—T | — Lua Perl 5 @

| [
ITS 0z1 Prolog ISO Ruby @ Java y | PHP @ C95 JavaScript
1996 @@ APL 96 Squeak Eiffel 3 OCaml pike) (Pizza @.

1997 o 2sh 3.0 o SML97 D (J++ NetREXX ECMAScript
|
1998 @ F-Script @@ REBOL Haskell 98 Java 2 (v1.2) C++ (ISO) Perl 5.005
1999 023 J++ 60D (NET ECMAScript rel3 Tel 8.1 D) @@
2000 OCaml 3.0 Mondrian C# Lua4.0 Perl 5.6.0 PHP4 JavaScript 1.5 Quilt

2001 25h 4.0 GHC 5.00 VB.NET (XQuery >
2002 COBOL 2002 F# SMLNET > (1# Perl 5.0 @@ Cyclone

2003 To Ruby 1.8 Nice GHC 6.0 merle Boo Fortran 2003 Lua5.0 SQL-2003

l

2004 @ Groovy Java 2 (VIT Scala PHP5 thon 2.4
|

2005 0 [Zonnon C (\ ne 1.0 @
l e Eh

2006 CAL (Open Quark) CPython 25> @

20107 @ Groovy 1 Fortress 1.0beta C#3.0 ——

github.com/stereobooster/programming-languages-genealogical-tree

https://github.com/stereobooster/programming-languages-genealogical-tree

The traditional way of writing code is to use a text
editor and then run the code in a command-line

_e emacs: ~[test.py @ @ jgordon@jgordon: ~ [main]
is_prime(n): ; python3 test.py
i range(2, n): True
nY%i==0: False
; |

print(is_prime(5))
print(is_prime(104))

All (10,0) (Python Fly/-- ElDoc)

Emacs, a popular text editor Command-line interface

While we could do everything in command-line
interfaces, they aren't the best suited for data
science work, which often requires visualizations and
written reports.

000 [+ < €O colab.research.google.com/drive/19Gsnq91zvEkZtZVt1kNxaNTwYblUad0: & ﬁ] +

cO & Example.ipynb Y& & = @ 2 share
File Edit View Insert Runtime Tools Help
Q Commands + Code + Text > Runall « v ﬁ‘:ﬁ: - A
~ ¥ 111 def is_prime(n):
Q for i in range(2, n):
if n % i == 0:
<> return False
return True
Ca
v [2]1 is_prime(5)
O —_
2v True
TNV oo B 272 WO
Here’s one of Emile-Antoine Bayard’s illustrations from Jules Verne’s Around the Moon (1870), just because we can:
{2} Variables Terminal v 10:25AM B Python 3

Jupyter notebooks allow us to write and run code in a single
document, together with accompanying text, tables, and images.

For this class, we'll use Colab, Google’s version of
Jupyter notebooks, which let you log in with your
Vassar account and store the notebooks you write
in your Google Drive.

Let's go!

o
G
+
O

e [J] - €O colab.research.google.com

Open notebook

Examples
Search notebooks

Recent
Last opened First opened

Google Drive

GitHub No results

Upload

4+ New notebook Cancel

colab.research.google.com

https://colab.research.google.com
http://colab.research.google.com

See notebook for example.

https://drive.google.com/file/d/1X4w_iLtPnT8RdD2Tss1TkNqcWWhwRGTM/view?usp=sharing

What will we do in this course?

Data design

Computational

problem solving

Programming

lesting

|dentify and organize the data needed to solve a
problem

Break a problem down into subproblems that can
be solved with computations

Express computations over the data

Test those computations to make sure they're doing
what they're supposed to

0 Society Think about whether it's a good idea to solve the
problem — and how your solution might affect the
world around you.

You will leave this course with applicable skills that
you can use even if you don’t take any future
computer science or data science courses.

Course information

o0 [J] v

E docs.google.com/forms/d/e/1IFAIpQLSfCWAtPVOWxHd7cWIcBWbVUnk6Lg &

CMPU 100 §1 student information

Please fill out this short form to help me better prepare for the start of the semester.

jgordon@vassar.edu Switch account @)

* Indicates required question

Email *

Record jgordon@vassar.edu as the email to be included with my response

What name would you like me to call you? *

Your answer

Are you trying to add this class, currently enrolled, or planning to drop? *

O | would like to add this class.

0

|

forms.gle/NYVWENnh7Ub86hU8BJ6

https://forms.gle/NYvWEnh7Ub86hU8J6
https://forms.gle/NYvWEnh7Ub86hU8J6

Monday 10:30—11:45 a.m.
Class

Wednesday 10:30—11:45 a.m.

Lab | Thursday 1:00— Z:00 p.m.

Sanders Classroom o006

0
B
+

000 ([v (< www.cs.vassar.edu/~cs100/

CMPU 100 H LABS | ASSIGNMENTS | RESOURCES @ GRADESCOPE

Programming with Data

Fall 2025 - §1

Monday 10:30—11:45 a.m.
Wednesday 10:30—11:45 a.m.
Thursday 1:00— 3:00 p.m.

Sanders Classroom 006

Professor Gordon

Part 1: Foundations Monday Wednesday Thursday
Introduction Sep. 3 Sep. 4
— Read Syllabus Class 1 Lab o

cs.vassar.edu/~cs100

https://www.cs.vassar.edu/~cs100
https://www.cs.vassar.edu/~cs100

+ O

0
By

eoeeoe ([- W% www.cs.vassar.edu/~cs100/resources/syllabus.pdf

CMPU 100 §1

Programming with Data

Fall 2025

Monday 10:30-11:45 a.m.
Wednesday 10:30-11:45 a.m.
Thursday 1:00— 3:00 p.m.

Sanders Classroom 006
Professor Gordon

csvassar.edu/~CSI00

Overview

Introduces fundamentals of computer programming and data anal-
ysis. Students learn to write programs to collect, clean, transform,
and visualize data from a variety of domains. Working on real-world
problems and data sets, students also consider social issues sur-
rounding data collection and analysis. This course is designed for

https://www.cs.vassar.edu/~cs100/resources/syllabus.pdf

30%

25%

20%

15%

10%

5%

0%

Grading

20%

Labs

30%

25%

20%

15%

10%

5%

0%

Grading

20%

20%

Labs

Assignments

e0e0® ([J - <

dllgradescope <=

by Turnitin

CMPU 100 §1

Programming with Data

= Dashboard

C' Regrade Requests

Instructor

J. Gordon

Course Actions

@ Unenroll From Course

Account A

0

4l www.gradescope.com/courses/1113756

CMPU 100 §1 rall 2025

Course ID: 1113756

Name

Status Released

Your instructor hasn't released any assignments yet.

gradescope.com

h +

Due (EDT)

http://www.apple.com
https://www.gradescope.com/auth/saml/vassar
https://www.gradescope.com/auth/saml/vassar

o0 [J] v

0

§'A www.cs.vassar.edu/integrity

{ COMPUTER SCIENCE | VASSAR COLLEGE

CS Wiki Home
Courses

Add policy

Dep Graph

First Course

Study Abroad
People

Office Hours
Students

FAQs

Research
Integrity Guide
History

Adams Prize
Resources

Linux Tutorial

Firewall Overview

Sitemap

Vassar CS Student Integrity Guide

This guide is designed to clarify & Vassar College’s academic integrity policy as it applies to the
Computer Science Department. Furthermore, it provides advice on how to best navigate integrity
issues in the context of the field, where source code authorship is a central issue.

The goal of our computer science courses is to promote understanding of the field, not competition
among students. As such, students are encouraged to discuss class material, ideas, sample exercises,
etc., with other students.

However, when it comes to graded work (e.g., programming assignments, programming labs, take-
home exams), it is important to know when to collaborate and when to work individually. Taking
shortcuts, while seemingly beneficial in the short term, will inevitably backfire later on. Conversely,
the challenges of working through a problem will pay off greatly in future courses and postgraduate
life, as they will enable students to be more independent in their work.

1. Policy

1.1. Guidelines for individual work

h + ©

Search n

<NV H

i= Table of Contents ~

Vassar CS Student Integrity
Guide

1. Policy

1.1. Guidelines for individual
work

1.2. Guidelines for
partnered/group work

2. Frequently Asked Questions
(FAQ)

3. Cautionary tales

3.1. Past examples of
academic integrity violations

3.2. Statistics

4. Other helpful resources

The goal of individual work is to assess the learning of each person in isolation. The guidelines are the following:

1. The work submitted should be solely authored by the person submitting it.

2. Help is to be provided, as needed, by the course’s staff (i.e., the instructor, coaches, or, in some cases, the department’s academic

intern).

3. Unless explicitly authorized by the course instructor, source code should not be shared with other people in any way. Note that
showing code on screen, paper, whiteboard, or any other medium, counts as sharing, as does publishing code on public websites or

cs.vassar.edu/integrity

https://www.cs.vassar.edu/integrity
https://www.cs.vassar.edu/integrity

h + ©

0

000 ([{] - < CO colab.research.google.com/#

Y scratchpad €33 GD Share § Gemini ‘
File Edit View Insert Runtime Tools Help

Q Commands + Code + Text > Runall = Copy to Drive Connect A

Start coding or generate with AI.

[]

Submitting code written by Al is
a violation of academic integrity.

{3} Variables Terminal <>

e00® ([{] - < €O colab.research.google.com/# M +

o

| €O scratchpad ORI
] File Edit View Insert Runtime Tools Help

Q Commands ‘ + Code + Text > Runall Copy to Drive Connect ~ ‘ A

@

<>

[1 Start coding or generate with AI.

{3} Variables (3 Terminal <>

o000 ([] - (< €O colab.research.google.com/#

0
By
+

Settings

Site

Theme
adaptive

Editor

Show desktop notifications for completed executions
Al Assistance >

New notebooks use private outputs (omit outputs when saving)

Colab Pro

Default page layout
GitHub horizontal

Miscellaneous >
Custom snippet notebook URL

Use a temporary scratch notebook as the default landing page.

Cancel Save

e ({J] -

<

Settings

Site

Editor

Al Assistance

Colab Pro

GitHub

Miscellaneous

110

€O colab.research.google.com/#

Show Al-powered inline completions

Consented to use generative Al features

Hide generative Al features

Gemini can make mistakes so double-check responses and use code with

caution.

Grading

30%

25%

20% 20% 20% 20%

20%
15%
10%

5%

0%
Labs Assignments Exam 1 Exam 2

Grading

30%

25%

20% 20% 20% 20% 20%

20%
15%
10%

5%

0%
Labs Assignments Exam 1 Exam 2 Exam 3

30%

25%

20%

15%

10%

5%

0%

Grading

20%

20%

15%

20%

25%

Labs

Assignments

Lowest exam

Middle exam

Highest exam

|

Tl nevec undecstand

how some people ace
S0 fa‘ench...
m A m7s+er7...

“All through our education, we are being taught a kind of
reverse mindfulness. A kind of Future Studies where — via
the guise of mathematics, or literature, or history, or
computer programming, or French — we are being taught
to think of a time different to the time we are in. Exam
time. Job time. When-we-are-grown-up time.

“To see the act of learning as something not for its own
sake but because of what it will get you reduces the
wonder of humanity. We are thinking, feeling, art-making,
knowledge-hungry, marvelous animals, who understand
ourselves and our world through the act of learning. It is
an end in itself. It has far more to offer than the things it
lets us write on application forms. It is a way to love living
right now.”

Matt Haig, Notes on a Nervous Planet

We've got a big journey ahead of us. | hope you're
excited!

Acknowledgments

This class incorporates material from:

Peter |. Denning and Matti Tedre, Computational Thinking
WV. Daniel Hillis, The Pattern on the Stone

