CMPU 100 - Programming with Data

Expressions, Values,

and Names

Class 2

Where are we?

A program instructs a computer to do something.

For the computer to carry out these instructions, they need to be
precise.

But programs also need to be understood by people, so they need to
be readable!

Ve write a program in a programming language and
we run it in a programming environment.

The Most Popular Programming Languages

Share of the most popular programming languages in the world”

T ERTAYTAYE
LASGL A

objective-C (N 3.15%
Swift (D 2.56%
4 @D 2.04%

TypeScript (D 1.57%
4

@& 1.53%

* Based on the PYPL-Index, an analysis of Google search trends

@ @ @ for programming language tutorials. .
@StatistaCharts Source: PYPL StﬂtlSta 5

https://www.statista.com/chart/16567/popular-programming-languages/

HelloWorldApp 1

main(String[] args) 1

System.out.println("Hello, world!");

™
-9

python’

HelloWorldApp 1

main(String[] args) 1

System.out.println("Hello, world!");

print("Hello, world!")

™
-9

cO &L scratchpad ¥

File Edit View Insert Runtime Tools Help

E = 22 Share ‘

Q. Commands + Code + Text > Runall ¢ 'E'?::'(—

R

<D

i

{3 Variables [(J Terminal B8 Python3

colab.research.google.com

https://code.pyret.org
http://colab.research.google.com
http://colab.research.google.com

cO & scratchpad % &

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text > Runall

Hello, world!

<>

i

{3} Variables [2) Terminal

E| 3 2, share

RAM
vV'oobisk_ T
N e H 2 M T o
v 11:223AM 2 Python 3

cO & scratchpad ¢ &

File Edit View Insert

Q Commands

+ Code + Text

Runtime Tools Help

> Run all

v

Hello, world!

<>

i

[

{3} Variables

Terminal

This is a text cell.

v 1M:23AM

o
=

Python 3

cO & scratchpad % & E] 2 2, share ‘

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text > Runall « 4 'E’?:(: v
Hello, world!

R NV oo B8R T

s "Hello, world!"

<>
>+ 'Hello, world!'

O,

O

{3} Variables [Terminal v 1M1:223AM B Python 3

cO & scratchpad % & E] 2 2, share ‘

File Edit View Insert Runtime Tools Help

Q. Commands + Code + Text > Runall N4 - A

= This is a code cell.

Hello, world!

s "Hello, world!"
<>

Sv 'Hello, world!'

CZ

[

{3} Variables Terminal v 11:23AM &= Python 3

cO & scratchpad % & E] 2 2, share ‘

File Edit View Insert Runtime Tools Help

Q Commands + Code + Text > Runall = N4 FE:::'(v A
" Hello, world!
[A o B O D@
Y "Hello, world!"
<>
ca
- This is the output of running the code cell

{3} Variables Terminal v 11:23AM &= Python 3

Jupyter notebooks are quite recent — they're the hot
format for work in data science — but the idea of
interleaving text with code dates back to Donald
Knuth’s introduction of literate programming in 1984.

ut'your kidsiar

.

EXPressions

To start with, you can think of Python like a
calculator.

Calculators take expressions and compute values.

Calculators take expressions and compute values.

17

Calculators take expressions and compute values.

17 — 17

Calculators take expressions and compute values.

17 — 17

-1 + 5.14

Calculators take expressions and compute values.

17 — 17

-1 + 5.14 — 2.14

Calculators take expressions and compute values.

17 — 17

-1 + 5.14 — 2.14

2 **% 3

Calculators take expressions and compute values.

17 — 17

-1 + 5.14 — 2.14

2 **% 3 — 8

Calculators take expressions and compute values.

17 — 17
-1 + 5.14 — 2.14
2 **% 3 — 8

(17 - 14) [/ 2

Calculators take expressions and compute values.

17 — 17
-1 + 5.14 — 2.14
2 **% 3 — 8

(17 - 14) / 2 — 1.5

(3 + 4) * (5 + 1) Is an expression — a
computation that produces an answer.

A program just consists of one or more
computations you want to run.

An individual number like 17 is a value — it can’t be
computed any further.

Mathematical expressions in Python use the same

order of operations that you learned in school
(PEMDAS):

60 / 2 * 3 — 90.0
60 / (2 » 3) - 10.0

Whenever you're not sure which operator is
evaluated first — or you want to fix a certain order —
use parentheses.

Call expressions

f(42)

What function
to call

fI(42)

What function
to call

Argument to
the function

i(42)

What function
to call

Argument to
the function

i(42)

“Call fon 42.”

What function
to call

First

argument

Second

argument

maxl(i3, 2]

max (13, 42)

42

Sometimes the same computation can be done with
an operator or a function, e.g,,

10 *% 2

— | 100

pow(10, 2)

— | 100

Call expression format

Return value

min(argy, arg,, ...)

Minimum value out of two or more

arguments
Maximum value out of two or more
max (argy, argz, ...)
arguments
abs (arg) Absolute value of the provided argument

pow(base, exponent)

Base number raised to the exponent

round (number, precision)

Round the number to the specified
number of decimal places

Demo in notebook

Example: Incidence of tuberculosis

Morbidity and Mortality Weekly Report
% (/\///\//er)y : s

Tuberculosis — United States, 2021

Weekly | March 25, 2022 / 71(12):441-446

Print

Thomas D. Filardo, MD'?; Pei-Jean Feng, MPH?; Robert H. Pratt?; Sandy F. Price?; Julie L. Self, PhD? (VIEW AUTHOR AFFILIATIONS)

View suggested citation

Summary Article Metrics

What is already known about this topic?

Altmetric:
The number of reported U.S. tuberculosis (TB) cases decreased sharply in 2020, possibly related to B News (100)
multiple factors associated with the COVID-19 pandemic. 778 ‘ E'O.gs @
olicy documents

(1)

What is added by this report? X (35)
. Facebook (2)
Reddit (1)

Reported TB incidence (cases per 100,000 persons) increased 9.4%, from 2.2 during 2020 to 2.4 Giinical guidelines
during 2021 but was lower than incidence during 2019 (2.7). Increases occurred among both U.S.- (1)
born and non-U.S.-born persons. B Mendeley (78)

W hat are the implications for public health practice?

Factors contributing to changes in reported TB during 2020-2021 likely include an actual reduction
in TB incidence as well as delayed or missed TB diagnoses. Timely evaluation and treatment of TB >0

and latent tuberculosis infection remain critical to achieving U.S. TB elimination. g9 50 Total citations

https://www.cdc.gov/mmwr/volumes/71/wr/mm7112a1.htm

Morbidity and Mortality Weekly Report
% (/\///\//er)y : s

Tuberculosis — United States, 2021

Weekly | March 25, 2022 / 71(12):441-446

Print

Thomas D. Filardo, MD'?; Pei-Jean Feng, MPH?; Robert H. Pratt?; Sandy F. Price?; Julie L. Self, PhD? (VIEW AUTHOR AFFILIATIONS)

View suggested citation

Summary Article Metrics

ic?

Altmetric:
Wh at IS lnCldence? is (TB) cases decreased sharply in 2020, possibly related to B News (100)

Wh . h ? ID-19 pandemic. 778‘ gflg:?(jlcuments

y usc It here: (1)

X (35)
. Facebook (2)

Reported TB incidence (gases per 100,000 persons) increased 9.4%, from 2.2 during 2020 to 2.4 gﬁ:ﬂ:l(;tide“nes
during 2021 but was lower than incidence during 2019 (2.7). Increases occurred among both U.S.- (1)

born and non-U.S.-born persons. B Mendeley (78)

W hat are the implications for public health practice?

in TB incidence as well as delayed or missed TB diagnoses. Timely evaluation and treatment of TB
and latent tuberculosis infection remain critical to achieving U.S. TB elimination. g9 50 Total citations

Factors contributing to changes in reported TB during 2020-2021 likely include an actual reduction 7->
50

https://www.cdc.gov/mmwr/volumes/71/wr/mm7112a1.htm

TABLE 1. Tuberculosis disease case counts and incidence, by
U.S. state — 50 states and the District of Columbia, 2019-2021

No. of TB cases*

U.S. jurisdiction 2019
Total 8,900
Alabama 87

Let’s use Python to validate these values.

We’ll check the 2020 and 2021 incidence
for the US as a whole. 1

Colorado 06

Connecticut o/

2020

7,173

72

58

136

59

1,706

52

54

2021

7,860

92

58

129

69

150

58

54

TB incidence'

2019

2.71

1.77

791

251

2.12

SHCHS

1.15

1.88

2020

2.16

1.43

7.92

1.89

1.96

4.32

0.90

1.50

F
Return)

2021
2.37
1.83
7.92
1.77
2.28
4.46
1.00

1.50

TABLE 1. Tuberculosis disease case counts and incidence, by
U.S. state — 50 states and the District of Columbia, 2019-2021

No. of TB cases*

TB inciden

F
Return)

U.S. jurisdiction 2019 2020 2021 2019 2020 021

Total 8900 7,173 7,860 2.71 2.16
Alabama 87 /2 92 1.77 1.43 1.83
58 58 791 7.92 7.92
Let’s use Python to validate these values. | & .,
We’ll check the 2020 and 2021 incidence 50 69 212 196 228
for the US as a whole. 1 1706 1750 535 432 446
Cotorads % 52 58 115 090 100

Connecticut

1.88

1.50

, persons using midyear population estimates from the U.S. Census Bureau. 2019 population
estimates are based on the 2010 U.S. Census. 2020 and 2021 population estimates are based on the 2020 U.S.
Census. https://www.census.gov/programs-surveys/popest/data/tables.html [/

Demo in notebook

Types of values

Numbers

2 + 35

10 / 2

Why is Python displaying the same number two ways?

What we saw were two different data types used
for numbers in Pythons:

Integers

Floating-point numbers

-10.

-10

What we saw were two different data types used
for numbers in Pythons:

Integers are whole numbers

-10.1

What we saw were two different data types used
for numbers in Pythons:

Floating-point numbers have a decimal point

-10.1

-10

0.0

©
©

T

6.55

Adding subtracting, and multiplying integers always
gives you another integer.

But if there’s any floating-point number, the result is
another float — even if the decimal part is zero!

3 4+ (2 *»* 9) - 15 * 14 + 1 — 306
34+ (2 **9) - 15 % 14 + 1.0 —» 306.0

Division (/) always results in a float since the result
isn't guaranteed to be a whole number:

15 / 3 —- 5.0

When performing calculations with floating-point
numbers, you'll sometimes see a small amount of
error in the result:

0.1 + 0.1

— 0.2

0.1 + 0.2 + 0.5

— [0.6000000000000001

If you're curious about
This is a consequence of how Python internally the details of that

represents floats. There’'s nothing for you to do representation, you can
about it except be awarel

https://docs.python.org/3/tutorial/floatingpoint.html

String values

Text strings are values consisting of a sequence of
characters (letters, numbers, punctuation, emoji,
etc.):

"Poughkeepsie”
'New York'

Strings can be written between either single or
double quotes.

You can concatenate (combine) strings using the +
operator:

"HE].].O," + I I + Ilworld!ll

— | "Hello, world!"

And you can use the 1len function to ask for the
length of a string — how many characters are in it:

len("Hello")

— | 5

Working with different types of values

Operations may only work on

certain types of datal : xconfused
\OJV\U\‘l' S beep boopsx*

||h—i|| / Hbyel!

The same operator or function may work differently
when it's given different types of data as input

5 + 4

||3|| + II[I_II

The same operator or function may work differently
when it's given different types of data as input

5 + 4

||3|| + II[I_II

The same operator or function may work differently
when it's given different types of data as input

5 + 4

||3|| + "4"

The same operator or function may work differently
when it's given different types of data as input

||3|| * 4

The same operator or function may work differently
when it's given different types of data as input

||3|| * 4

The same operator or function may work differently
when it's given different types of data as input

||3|| * 4

— | "3353"

The same operator or function may work differently
when it's given different types of data as input

max (3, 4)

max("three", "four'")

The same operator or function may work differently
when it's given different types of data as input

max (3, 4)

— | &

max("three", "four'")

The same operator or function may work differently
when it's given different types of data as input

max (3, 4)

— | &

max("three", "four")

— | "three"

Prest-o change-o .
int(3.92)

When it makes sense, we can N

tybecast — convert values

between data types.

Prest-o change-o int(3.92)

When it makes sense, we can
tybecast — convert values

— | 5

between data types. int("-5")

Prest-o change-o

When it makes sense, we can
tybecast — convert values
between data types.

int(3.92)
35
in.t(u_Su)

Prest-o change-o int(3.99)
When it makes sense, we can N
tybecast — convert values
between data types. int("-5")
— | =5
int("4.1")

Prest-o change-o int(3.99)
When it makes sense, we can N
tybecast — convert values
between data types. int("-5")
— | -3
int("4.1")
— |Error!

Prest-o change-o

When it makes sense, we can
tybecast — convert values
between data types.

float(3)

5.0

Prest-o Change'O float (3)

When it makes sense, we can
tybecast — convert values

— 5.0

between data types. float("3.14")

Prest-o change-o

float(3)
When it makes sense, we can
— 5.0
tybecast — convert values
between data types. float("3.14")
— | 5.174

Prest-o change-o

When it makes sense, we can
tybecast — convert values
between data types.

str(13 + 14 + 15/2)

Prest-o change-o

When it makes sense, we can
tybecast — convert values
between data types.

str(13 + 14 + 15/2)

"34.5"

Evaluation

How does something like (4 + 2) / 3 work!?

What is the operator / dividing?

Shouldn’t / expect two numbers!?

Even though (4 + 2) isn't a number, it's an
expression that evaluates to a number.

This works for all data types, not just numbers!

When we write complex expressions, Python
evaluates them from the inside out:

7+ (6 /7 (1 +1))

When we write complex expressions, Python
evaluates them from the inside out:

7+ (6 /7 (1 +1))

—|7 + (6 / 2)

When we write complex expressions, Python
evaluates them from the inside out:

7+ (6 /7 (1 +1))

—|7 + (6 / 2)

— |/ + 5

When we write complex expressions, Python
evaluates them from the inside out:

7+ (6 /7 (1 +1))

—|7 + (6 / 2)

— |/ + 5

— [10

When we write complex expressions, Python
evaluates them from the inside out:

max (4, min(1, 9))

When we write complex expressions, Python

evaluates them from the inside out: .
This isn’t a value, so we need to

evaluate this function call before

we can evaluate the call to max.

max (4, [min(1, 9))

When we write complex expressions, Python
evaluates them from the inside out:

max (4, min(1, 9))

— [max (4, 1)

When we write complex expressions, Python
evaluates them from the inside out:

max (4, min(1, 9))

— [max (4, 1)

— | &

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), |Imax(5, 100)|)

We can nest as many function calls as we want!

min(abs(max (-1,

-2,

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, min(4,

-2))), 100)

We can nest as many function calls as we want!

min(abs(max (-1,

-2,

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), |Imax(5, 100)|)
— |min(abs(max(-1, -2, -3, Imin(4, -2))), 100)
— [min(abs(max(-1, -2, -3, -2)), 100)

We can nest as many function calls as we want!

min(abs(max (-1,

_2’

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

min(abs(max(-1, -2, -3, -2)), 100)

We can nest as many function calls as we want!

min(abs(max (-1,

_2’

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

min(abs(max(-1, -2, -3, -2)), 100)

min(abs(-1), 100)

We can nest as many function calls as we want!

min(abs(max (-1,

_2’

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

min(abs(max(-1, -2, -3, -2)), 100)

min(aﬁanlii, 100)

We can nest as many function calls as we want!

min(abs(max (-1,

_2’

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

min(abs(max(-1, -2, -3, -2)), 100)

min(aﬁanlii, 100)

— |min(1, 100)

We can nest as many function calls as we want!

min(abs(max (-1,

_2’

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

min(abs(max(-1, -2, -3, -2)), 100)

min(aﬁanlii, 100)

— |Imin(1, 100)

We can nest as many function calls as we want!

min(abs(max (-1,

_2’

-3, min(4,

-2))), |max (5, 100)))

— |min(abs(max (-1,

_2’

-3, Imin (4,

-2))), 100)

min(abs(max(-1, -2, -3, -2)), 100)

min(aﬁanlii, 100)

— |Imin(1, 100)

— | 1

NETER

Defining names

Name

Name Value

The name x is bound to the

value 5, like putting a

baggage tag on a suitcase.

y=1+2*3_8/2

First Python evaluates the

right-hand expression...

o
— —
+ +
o N
%
N
| |
00 o0
~N NN
NN

First Python evaluates the

right-hand expression...

1
N
|

First Python evaluates the

right-hand expression...

1
N
|

= 5

First Python evaluates the

right-hand expression...

[l 1
W N
|

First Python evaluates the

right-hand expression...

...then it binds the name y

to the resulting value.

Several names may have the same value:

seven = 7/
seven

/

/

septem
septem

Assignment statements are not mathematical
equations.

f you write

5 = X

Python gives a syntax error because it thinks you're
trying to redefine what "7 means.

Name examples

There’s no output from assigning a name to

a value.

There’s no output from assigning a name to

a value.

Directory

Name Value

X 5

It has the side effect of associating the name
with the value in the program directory.

Directory

Name

Value

5

Directory

Name Value

5

[
Ul
M

When you use the name

later, Python looks it up in

the directory and substitutes
the value it finds.

Directory

Name Value

5

[
Ul
M

When you use the name
later, Python looks it up in

the directory and substitutes
the value it finds.

fname

"Grace"

Directory

Name

Value

fname = "Grace"

Directory

Name Value

fname "Grace"

"Grace"

fname

Directory

Iname "Hopper"

Name Value

fname "Grace"

fname = "Grace"

Iname = "Hopper’ Directory
Name Value
fname "Grace"

Iname "Hopper"

fname = "Grace"
)) Directory
Iname = "Hopper
Name Value
fname + " " + 1lname fname "Grace"

Iname "Hopper"

fname = "Grace"

Iname = "Hopper"
fname + " " 4+ 1lname
"Grace" + " " 4+ 1lname

Directory
Name Value
fname "Grace"
Iname "Hopper"

fname = "Grace"
. . Directory
Iname = "Hopper
Name Value
fname + " " 4+ 1lname fname "Grace"
" "
"Grace" + " " 4+ lname lname Hopper

"Grace " + lname

fname = "Grace"
. . Directory
Iname = "Hopper
Name Value
fname + " " 4+ 1lname fname "Grace"
" "
"Grace" + " " 4+ lname lname Hopper

"Grace " + lname

"Grace " + "Hopper"

fname = "Grace"
Director
Iname = "Hopper" /
Name Value
fname + " " 4+ 1lname fname "Grace"
" "
"Grace" + " " 4+ lname lname Hopper

"Grace " + lname

"Grace " + "Hopper"

"Grace Hopper"

VWVorking with names

A name can only be bound to a single value at one
time.

..........

A name can only be bound to a single value at one
time.

X = 2

..........

A name can only be bound to a single value at one
time.

X = 2

A name can only be bound to a single value at one
time.

|
N

X =

X X + 1

A name can only be bound to a single value at one
time.

|
N

X =

X X + 1

,\‘:\ W
| r " ._,
‘lu LlLEL 1 J}JJJJJ J : I ,ll l
oepadl]

Names must be given a value before being used.

new name

NameError

Traceback (most recent call last)
<ipython-input-1-9d86db7a2999> in <cell line: 1>()
----> 17 new_name

NameError: name 'new name' 1s not defined

Jupyter memory model

Pretend your notebook has a brain.

Jupyter memory model

Pretend your notebook has a brain.

Every time you run a cell with an assignment statement, it remembers i
that name—value binding.

Jupyter memory model

Pretend your noteboo

k has a brain.

Every time you run a cell with an assignment statement, it remembers

that name—value binding.

It will remember all name—va
session Is running, no matter

ue mappings as long as the current

now many cells you create.

Jupyter memory model

Pretend your notebook has a brain.

Every time you run a cell with an assignment statement, it remembers

that name—value binding.

It will remember all name—va
session Is running, no matter

ue map

N1OW Mad

bings as long as the current

ny cells you create.

However, when you open a notebook for the first
time in a few hours, your previous session will likely
have ended, and Jupyter's brain won't remember

anything.

Jupyter memory model

Pretend your notebook has a brain.

Every time you run a cell with an assignment statement, it remembers

that name—value binding.

It will remember all name—va
session Is running, no matter

ue map

N1OW Mad

bings as long as the current

ny cells you create.

However, when you open a notebook for the first
time in a few hours, your previous session will likely
have ended, and Jupyter's brain won't remember

anything.

You’ll need to re-run all of your cells.

Don'’t delete cells defining names you want to use.

Don't use names above the cell with the assighment
definition.

Notebooks should be a paper trail. Each cell is a
record of what you've done so far.

What’s in a2 hame?

f you're ever unsure of the value bound to a name,
you can simply create a new cell, type the name, ana
run the cell.

Python has built-in names, including functions like
min, max, and pow.

Python will let you re-assign some of these built-in
names, even though you probably shouldn't!

max = 9
max(2, 3)

TypeError: 'int' object 1s not callable

You broke Python. What now?

Runtime Tools Help

Run all 36 /Ctrl+F9
Run before 36/Ctrl+F8
Run the focused cell 38 /Ctrl+Enter
Run selection 38 /Ctrl+Shift+Enter
f you want to restore names to qun afte /CUl+FT0
thelr default ValueS, dO th'S Interrupt execution 38 /Ctrl+M |
Restart session 36 /Ctrl+M .
1. Save your Nnote bOOk Restart session and run all

Disconnect and delete runtime

2. Restart your session

Change runtime type

Manage sessions
View resources

View runtime logs

There are also some reserved names, e.g.,

import
None
True
False

These are so important to Python that reassigning
them would be a big problem, so it won't let you do

It.

Concept check

We can define the names

width = 400
height = 600

Now if we write

width * height

it gets evaluated:

— | 400 * height

— | 400 * 600

— | 240000

What if we use another name?

width = 400
height = 600
area = width * height

Does Python associate the name area with the
expression width * height or with the number
240000/

Writing code for people to read

“Programs must be written for people to read, and
only incidentally for machines to execute.”

Hal Abelson & Gerald Sussman with Julie Sussman, Structure and
Interpretation of Computer Programs, 1979

Choosing good names

Names are arbitrary

This is silly, but legal:

five = 6
five

6

Six = 5
S1X

Names in Python are case-sensitive.

So,
Cat -
CAT M
Rt W L - . A
cat . ,
CAT They look similar — but they're

all distinct!
are all distinct names, which can have different

associated values — but doing this is a bad idea
because it's confusing!

Python is pretty flexible about what names can look
like:

.= how_are_you

= my_AGE_is_22

= NETFLIXPASSWORD

But it doesn't allow hyphens or other punctuation —
only underscores are allowed:

v this-is-bad

v worse!

" no&*way

While names can include a number, like

~E pi_r_2

They can't start with a number:

v 2_pi_r

Every programming language also has its own
conventions for names.

In standard Python, names are usually lowercase
with words joined by underscores, e.g.,

this _1s _a good _name

thisMakesPythonCRY 0

Names are important!

Can you guess what this code does!?
y = (x + 459.67) * 5/9

Names are important!

Can you guess what this code does!?
—={x—+459 67} 5/0

temp_kelvin = (temp_celsius + 459.67) * 5/9

Choose names that are concise but descriptive.

Good:

seconds _per_hour = 60 * 60
hours_per_year = 24 * 365
seconds_per_year = seconds_per_hour * hours_per_year

Not so good:
1 love chocolate = 60 * 60 * 24 * 365

Comments

Comments are used to explain what code does.

Good programmers write code that is self-evident
and use comments only where necessary.

7173 / (331501080 / 100000)

7173 / (331501080 / 100000)

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

7171 + (100,000 groups in 331,501,080 population)
7173 / (331501080 / 100000)

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

7171 + (100,000 groups in 331,501,080 population)
7173 / (331501080 / 100000)

- Girl on the Net
-/, @girlonthenet@mastodon.social

Fun fact: the code which took Apollo 11 to the moon is available on
github github.com/chrislgarry/Apollo-...

And if you look through it you'll see that - joyfully - it also includes
original comments.

My absolute favourite thing about the Moon Code is that it includes
comments like this: "TEMPORARY - | HOPE HOPE HOPE"

@ TS WCHPHASE

. TC BANKCALL # TEMPORARY, I HOPE HOPE HOPE
180 CADR STOPRATE # TEMPORARY, I HOPE HOPE HOPE
181 TC DOWNFLAG # PERMIT X-AXIS OVERRIDE

ALT ADRES XOVINFLG

- - . .. ——

Aug 30, 2024, 07:24 AM - ® - Web

https://mastodon.social/@girlonthenet/113050717291589706

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University
Jason Waterman, Vassar College

Data 6, University of California, Berkeley (CC BY-NC-SA)

