
Asking Questions

Class 3

CMPU 100 · Programming with Data

Assignment 1
Out: Today	 5:00 p.m.

Due: Tuesday	 11:59 p.m.

https://cs.vassar.edu/~cs100/resources/coaching.html

Where are we?

We’ve been using Python to write expressions using
data, including

integers like 0, 4, and -10;

floating-point numbers like 4.0, 0.3, and -12.5; and

strings like "", "hi", and "111",

which we combine or transform using operators like + and * and
functions like max and abs.

We’ve seen that we can create more complicated
programs by composing operations or function calls,
e.g.,

1 + (2 / 3)

or
abs(min(4, 5, -1))

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3 Name Value

total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

Name Value

total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

Name Value

total 5

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1

Name Value

total 5

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1
→	new_total = 5 + 1

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1
→	new_total = 5 + 1
→	new_total = 6

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1
→	new_total = 5 + 1
→	new_total = 6

Name Value

total 5

new_total 6

Directory

When we’re writing Python, we’ll make mistakes, so
we’ll see error messages.

Syntax error: Code doesn’t follow syntactic requirements

E.g., 9+-

Runtime error: Valid syntax; can’t evaluate for other reasons

E.g., 5/0

Bug: Code runs – but not the way you intended!

Python will let you re-assign the value for some of
its built-in names, including functions like min, max,
and pow – even though you probably shouldn’t!

You broke Python. What now?

max = 9
max(2, 3)

TypeError: 'int' object is not callable

If you want to restore names to
their default values, do this:
1. Save your notebook

2. Restart your session

Names and readability Including material from
the end of last class

There are a lot of factors for writing good code:

your code runs

your code runs quickly (efficiency)

your code is concise (fewer lines is usually better)

your code can easily be read by other people
who know Python.

The last point is called readability.

“Programs must be written for people to read, and
only incidentally for machines to execute.”
Hal Abelson & Gerald Sussman with Julie Sussman, Structure and
Interpretation of Computer Programs, 1979

Choosing good names

This is silly, but legal:

Names are arbitrary

five = 6
five

6

six = 5
six

5

Several constants may have the same value:

seven = 7
seven

7

septem = 7
septem

7

Names in Python are case-sensitive.

So,
Cat
CAT
cat
cAT

are all distinct names, which can have different
associated values – but doing this is a bad idea
because it’s confusing!

They look similar – but they’re
all distinct!

Python is pretty flexible about what names can look
like:
👍 how_are_you

👍 my_AGE_is_22

👍 NETFLIXPASSWORD

But it doesn’t allow hyphens or other punctuation –
only underscores are allowed:
👎 this-is-bad

👎 worse!

👎 no&*way

While names can include a number, like
👍 pi_r_2

They can’t start with a number:
👎 2_pi_r

Prefer names that are concise:

population_of_north_carolina_in_2025 = 10975000

nc_pop_2025 = 10975000

Too long!

Much better!

But make sure the names are descriptive of what you’re trying to
store in them.

x = 7173

tb_cases_2023 = 7173

No idea what this is.

Much better!

Every programming language also has its own
conventions for names.

In standard Python, names are usually lowercase
with words joined by underscores, e.g.,

this_is_a_good_name

thisMakesPythonCRY

Names are important!

Can you guess what this code does?
y = (x + 459.67) * 5/9

Names are important!

Can you guess what this code does?
y = (x + 459.67) * 5/9

temp_kelvin = (temp_celsius + 459.67) * 5/9

Booleans and comparison expressions

True

False

We can compare values using the operators

==	 equal to
!=	 not equal to
<	 less than
<=	 less than or equal to
>	 greater than
>=	 greater than or equal to

which produce True or False as a result.

Be careful:
x = 2

is assigning the name x to have the value 2 in the
directory.

On the other hand,
x == 2

is asking the question “is x equal to 2?”

Boolean expressions can also be combined using the
operators

and
True if both inputs are True;

False otherwise

or
False if both inputs are False;

True otherwise

(1 < 2) and (2 > 3)

(1 < 2) and (2 > 3)

→ True and (2 > 3)

(1 < 2) and (2 > 3)

→ True and (2 > 3)

→ True and False

(1 < 2) and (2 > 3)

→ True and (2 > 3)

→ True and False

→ False

(1 <= 0) or (1 == 1)

(1 <= 0) or (1 == 1)

→ False or (1 == 1)

(1 <= 0) or (1 == 1)

→ False or (1 == 1)

→ False or True

(1 <= 0) or (1 == 1)

→ False or (1 == 1)

→ False or True

→ True

To change an expression that evaluates to True to
be False – or vice versa – use the not operator:

not True

False

not 1 == 0

True

Conditional statements

if … is a conditional statement.

Conditionals allow us to branch – maybe we
evaluate this expression; maybe we don’t!

if 1 < 2:
 print("All is right in the world")

If the condition
is true, the
code indented
under it is run.

if 1 < 2:
 print("All is right in the world")

→ if True:
 print("All is right in the world")

If the condition
is true, the
code indented
under it is run.

if 1 < 2:
 print("All is right in the world")

→ if True:
 print("All is right in the world")

→ print("All is right in the world")

If the condition
is true, the
code indented
under it is run.

if 1 < 2:
 print("All is right in the world")

→ if True:
 print("All is right in the world")

→ print("All is right in the world")

All is right in the world

If the condition
is true, the
code indented
under it is run.

if 1 > 2:
 print("Watch out for flying pigs")

If the condition
is false, the
code indented
under it is
skipped.

if 1 > 2:
 print("Watch out for flying pigs")

→ if False:
 print("Watch out for flying pigs")

If the condition
is false, the
code indented
under it is
skipped.

if 1 > 2:
 print("Watch out for flying pigs")

→ if False:
 print("Watch out for flying pigs")

→

If the condition
is false, the
code indented
under it is
skipped.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

Even if the
condition is
false, Python
runs the code
after it.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

→

if False:
 print("Watch out for flying pigs")

print("Life goes on")

Even if the
condition is
false, Python
runs the code
after it.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

→

if False:
 print("Watch out for flying pigs")

print("Life goes on")

→ print("Life goes on")

Even if the
condition is
false, Python
runs the code
after it.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

→

if False:
 print("Watch out for flying pigs")

print("Life goes on")

→ print("Life goes on")

Life goes on

Even if the
condition is
false, Python
runs the code
after it.

Sometimes, you need a Plan B, so you can pair if
with else.

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if True:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if True:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("All is right in the world")

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if True:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("All is right in the world")

All is right in the world

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if False:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if False:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("Watch out for flying pigs")

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if False:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("Watch out for flying pigs")

Watch out for flying pigs

And if we want to play Twenty Questions, we can
keep going, adding elif (“else if”) to our if–else.

Preview: Defining functions

Recall how you defined functions in middle-school
math:

Given f(x) = |x| + 2

f(−3)	= |−3| + 2

	 = 3 + 2

	 = 5

The parameter x stands
for varying values

Python functions work much the same way:
def f(x): return abs(x) + 2

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	 Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2
	 →	3 + 2

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2
	 →	3 + 2
	 →	5

Name Value

x -3

Directory

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Katie Keith and Steve Freund, Williams College

Data 6, University of California, Berkeley (CC BY-NC-SA)

Data 8, University of California, Berkeley (CC BY-NC-SA)

