
Functions

Class 4

CMPU 100 · Programming with Data

Where are we?

See notebook.

Defining and evaluating functions

Recall how you used functions in middle-school
math:

Given f(x) = |x| + 2

f(−3)	= |−3| + 2

	 = 3 + 2

	 = 5

The parameter x stands
for varying values

Python functions work much the same way:
def f(x): return abs(x) + 2

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	 Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2
	 →	3 + 2

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2
	 →	3 + 2
	 →	5

Name Value

x -3

Directory

Example

Mary Berry needs to know how
many cakes to bake for her cake
shop.

To avoid running out or having too many,
she wants to bake two cakes more than
the number she sold the previous day.

E.g., if Mary sells eight cakes on Monday,
she makes ten cakes on Tuesday.

Let’s write some code to help Mary!

def cakes_to_make(num_sold):
 return num_sold + 2

def cakes_to_make(num_sold):
 return num_sold + 2

Keyword to define a function

def cakes_to_make(num_sold):
 return num_sold + 2

def cakes_to_make(num_sold):
 return num_sold + 2

Function name

def cakes_to_make(num_sold):
 return num_sold + 2

def cakes_to_make(num_sold):
 return num_sold + 2

Parameter names

def cakes_to_make(num_sold):
 return num_sold + 2

def cakes_to_make(num_sold):
 return num_sold + 2

Body

def cakes_to_make(num_sold):
 return num_sold + 2

Note that the parameter names are only defined
inside the function body:

Once the function is
finished, the names
are removed from the
directory.

cakes_to_make(10)

→ 12

def cakes_to_make(num_sold):
 return num_sold + 2

num_sold

→ Error!

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

already_made 5

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

already_made 5

to_make

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

already_made 5

to_make

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(10)
 - already_made
)

Name Value

yesterday 10

already_made 5

to_make

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

already_made 2

to_make 7

Directory

def cakes_to_make(num_sold):
 return num_sold + 2 Name Value

num_sold 10

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

already_made 2

to_make 7

Directory

def cakes_to_make(num_sold):
 return 10 + 2 Name Value

num_sold 10

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 cakes_to_make(yesterday)
 - already_made
)

Name Value

yesterday 10

already_made 2

to_make 7

Directory

def cakes_to_make(num_sold):
 return 12 Name Value

num_sold 10

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 12
 - already_made
)

Name Value

yesterday 10

already_made 5

to_make

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = (
 12
 - 5
)

Name Value

yesterday 10

already_made 5

to_make

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = 7

Name Value

yesterday 10

already_made 5

to_make

Directory

Calling a function

yesterday = 10
already_made = 5

to_make = 7

Name Value

yesterday 10

already_made 5

to_make 7

Directory

We say a parameter name has only local scope, while
names defined outside a function have global scope.

Formatting matters! A line of code is only part of
the body of a function if it’s indented:

def cakes_to_make(num_sold):
 tomorrow = num_sold + 2
return tomorrow Error!

Formatting matters! A line of code is only part of
the body of a function if it’s indented:

def cakes_to_make(num_sold):
 tomorrow = num_sold + 2
 return tomorrow Now this line is part of function,

so tomorrow is defined!

Functions are abstractions over specific
computations

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients:	 $10

Prep. time:	 20 min.

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients:	 $10

Prep. time:	 20 min.
choc_cake_price = (2 * 10) + (1/4 * 20)

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients:	 $10

Prep. time:	 20 min.

Cheesecake
Ingredients:	 $15

Prep. time:	 36 min.

choc_cake_price = (2 * 10) + (1/4 * 20)

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients:	 $10

Prep. time:	 20 min.

Cheesecake
Ingredients:	 $15

Prep. time:	 36 min.

choc_cake_price = (2 * 10) + (1/4 * 20)

cheesecake_price = (2 * 15) + (1/4 * 36)

choc_cake_price = (2 * 10) + (1/4 * 20)

cheesecake_price = (2 * 15) + (1/4 * 36)

We use functions to avoid
repetitive code when we
need to perform the same
operations on different
values.

choc_cake_price = (2 * 10) + (1/4 * 20)

cheesecake_price = (2 * 15) + (1/4 * 36)

We use functions to avoid
repetitive code when we
need to perform the same
operations on different
values.

 (2 * ingredients_cost) + (1/4 * prep_time)

choc_cake_price = (2 * 10) + (1/4 * 20)

cheesecake_price = (2 * 15) + (1/4 * 36)

We use functions to avoid
repetitive code when we
need to perform the same
operations on different
values.

def cake_price(ingredients_cost, prep_time):
 return (2 * ingredients_cost) + (1/4 * prep_time)

def cake_price(ingredients_cost, prep_time):
 return (2 * ingredients_cost) + (1/4 * prep_time)

Parameters

The parameters are the values passed into the function
that it needs to know for each operation.

def cake_price(ingredients_cost, prep_time):
 return (2 * ingredients_cost) + (1/4 * prep_time)

Statement computed each time the function is called

def cake_price(ingredients_cost, prep_time):
 return (2 * ingredients_cost) + (1/4 * prep_time)

To calculate the price of chocolate cake or
cheesecake, you just call your function and
pass in the relevant values!

Price of chocolate cake
cake_price(10, 20)

Price of cheesecake
cake_price(15, 36)

Improving our function definitions

def c(x, y):
 return (2 * x) + (1/4 * y)

If you’re looking at someone else’s notebook and you see this function, you’d have
no idea why they wrote it. What is this function used for? What are x and y?

def cake_price(ingredients_cost, prep_time):
 return (2 * ingredients_cost) + (1/4 * prep_time)

Just using good names goes a long way!

We specify the type of each parameter so that other people – or our future selves –
know what kind of values the function expects.

cake_price("expensive", "slow")

cake_price(10.70, 2.5)

def cake_price(
 ingredients_cost: float,
 prep_time: float
):
 return (2 * ingredients_cost) + (1/4 * prep_time)

And we can specify the type of value the function returns.

def cake_price(
 ingredients_cost: float,
 prep_time: float
) -> float:
 return (2 * ingredients_cost) + (1/4 * prep_time)

Colab is warning us
that we’re using the
function wrong!

Additionally, a docstring explains what the function does.

def cake_price(
 ingredients_cost: float,
 prep_time: float
) -> float:
 """Calculate price of cake based on ingredient
 cost and preparation time.
 """
 return (2 * ingredients_cost) + (1/4 * prep_time)

Practice

How can we improve this?

def triangle_area(b, h):
 return 1/2 * b * h

def triangle_area(base: float, height: float) -> float:
 """Return the area of the given triangle."""
 return 1/2 * base * height

Testing

def cake_price(
 ingredients_cost: float,
 prep_time: float
) -> float:
 """Calculate price of cake based on ingredient
 cost and preparation time.
 """
 return (2 * ingredients_cost) + (1/4 * prep_time)

Our function looks good, but does it work correctly? We should test it!

def cake_price(
 ingredients_cost: float,
 prep_time: float
) -> float:
 """Calculate price of cake based on ingredient
 cost and preparation time.
 """
 return (2 * ingredients_cost) + (1/4 * prep_time)

Price of chocolate cake
assert cake_price(10, 20) == (2 * 10) + (1/4 * 20)
Price of cheesecake
assert cake_price(15, 36) == (2 * 15) + (1/4 * 36)

Our function looks good, but does it work correctly? We should test it!

All good!

Uh oh.

Practice

def triangle_area(base: float, height: float) -> float:
 """Return the area of the given triangle."""
 return 1/2 * base * height

What tests should we add?

def triangle_area(base: float, height: float) -> float:
 """Return the area of the given triangle."""
 return 1/2 * base * height

assert triangle_area(10, 10) == 50
assert triangle_area(1, 5) == 2.5

Functions with comparisons and
conditional statements

See notebook.

Exercise

Write a handful of assert statements to test the
following function:

def letter_grade(score: int | float) -> str:
 """Given a score between 0 and 100, returns
 the letter grade of:
 - "A" if the score is 90 or greater,
 - "B" if the score is in the 80s,
 - "C" if the score is lower than 80.
 """
 ...

Which versions pass all of the tests?

def letter_grade(score):
 if score >= 80:
 return "B"
 elif score >= 90:
 return "A"
 else:
 return "C"

def letter_grade(score):
 if score > 90:
 return "A"
 elif score > 80:
 return "B"
 else:
 return "C"

def letter_grade(score):
 if score >= 90:
 return "A"
 elif score >= 80:
 return "B"
 else:
 return "C"

Exercise

A year is a leap year if:
The year is divisible by 4 but not divisible by 100, or

The year is divisible by 400.

Complete the following function:

def is_leap_year(year):
 """Return True if year is a leap year."""
 ...

You can use the % operator to check if year
is divisible by 4: year % 4 == 0

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Katie Keith and Steve Freund, Williams College

Data 6, University of California, Berkeley (CC BY-NC-SA)

Data 8, University of California, Berkeley (CC BY-NC-SA)

