
Tables

Class 6

cmpu 100 · Programming with Data

Where are we?

Here are some data that can be represented with
what we’ve seen so far:

Here are some data that can be represented with
what we’ve seen so far:

The population of NYC Integer

Here are some data that can be represented with
what we’ve seen so far:

The population of NYC Integer

Average body temperature Floating-point number

Here are some data that can be represented with
what we’ve seen so far:

The population of NYC Integer

Average body temperature Floating-point number

Whether or not I ate breakfast this morning Boolean

Here are some data that can be represented with
what we’ve seen so far:

The population of NYC Integer

Average body temperature Floating-point number

Whether or not I ate breakfast this morning Boolean

The complete text of Beowulf String

Here are some data that can be represented with
what we’ve seen so far:

The population of NYC Integer

Average body temperature Floating-point number

Whether or not I ate breakfast this morning Boolean

The complete text of Beowulf String

The average temperature each month List or array

What if we wanted to write a program to look up
the population of any town in New York?

We can consider the last two census years – 2010 and 2020.

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

We can nest if expressions!

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

Report an error that prevents the
function from returning an answer

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

This isn’t a great way to do this.
Why not?

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

What about the
rest of the state?

def population(municipality: str, year: int) -> int:
 """Return population of the municipality for the given year"""
 if municipality == "New York":
 if year == 2010:
 return 8175133
 elif year == 2020:
 return 8804190
 else:
 raise Exception("Bad year")
 elif municipality == "Poughkeepsie":
 if year == 2010:
 return 43341
 elif year == 2020:
 return 45471
 else:
 raise Exception("Bad year")
 else:
 raise Exception("Bad municipality")

KEY IDEA Separate data from computation.

Tables

Tables are used for tabular data,
like you might find printed in a
book or in a spreadsheet on a
computer.

Tables are used for tabular data,
like you might find printed in a
book or in a spreadsheet on a
computer.

It’s common to share tabular data as a CSV file:
name,kind,pop2010,pop2020
Adams,Town,5143,4973
Adams,Village,1775,1633
Addison,Town,2595,2397
Addison,Village,1763,1561
Afton,Town,2851,2769
Afton,Village,822,794
Airmont,Village,8628,10166
Akron,Village,2868,2888
Alabama,Town,1869,1602
Albany,City,97856,99224
...

It’s common to share tabular data as a CSV file:
name,kind,pop2010,pop2020
Adams,Town,5143,4973
Adams,Village,1775,1633
Addison,Town,2595,2397
Addison,Village,1763,1561
Afton,Town,2851,2769
Afton,Village,822,794
Airmont,Village,8628,10166
Akron,Village,2868,2888
Alabama,Town,1869,1602
Albany,City,97856,99224
...

It’s common to share tabular data as a CSV file:
name , kind , pop2010 , pop2020
Adams , Town , 5143 , 4973
Adams , Village , 1775 , 1633
Addison , Town , 2595 , 2397
Addison , Village , 1763 , 1561
Afton , Town , 2851 , 2769
Afton , Village , 822 , 794
Airmont , Village , 8628 , 10166
Akron , Village , 2868 , 2888
Alabama , Town , 1869 , 1602
Albany , City , 97856 , 99224
...

Comma-separated values

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

from datascience import *

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

from datascience import *

This says, “Let us use every name
defined by the datascience
module”

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

from datascience import *

url = "https://www.cs.vassar.edu/~cs100/data/
municipalities.csv"

municipalities = Table.read_table(url)

Table is a class, which is a way of
grouping related data and functions

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

from datascience import *

url = "https://www.cs.vassar.edu/~cs100/data/
municipalities.csv"

municipalities = Table.read_table(url)

This dot notation just means “use the read_table function
from the Table class” rather than one defined anywhere else.

Column

Row

Label

Value

Observation

Variable

Now that we have the data in Python, we can write
programs to answer questions.

Filtering and ordering tables

Oftentimes, we will have a table and want to access
only the rows where some condition is true.

For example, we might want to get a version of the
table that only has cities where the population has
decreased.

def filter_population_decreased(t: Table) -> Table:
 """Filter the table to only keep rows where the
 population decreased between 2010 and 2020.
 """
 if population_decreased(t.row(0)):
 ... # Keep row 0
 if population_decreased(t.row(1)):
 ... # Keep row 1
 else:
 ... # Don't keep row 1
 else:
 ... # Don't keep row 0

Remember how we used filter last week:

It would be nice if we had something like this for tables!

list(filter(is_odd, [1, 2, 3, 4, 5]))

→ [1, 3, 5]

Instead, we can filter a Table by asking for a new
Table with only the rows where something is true
about the value in a column, e.g.,

municipalities.where("kind", are.equal_to("Town"))

Instead, we can filter a Table by asking for a new
Table with only the rows where something is true
about the value in a column, e.g.,

municipalities.where("kind", are.equal_to("Town"))

What’s this?

The datascience library gives us a convenient way
to create a simple predicate functions. These begin
with the prefix are.

So, we can write
is_town = are.equal_to("Town")

And now is_town is a function that we can call:
is_town("Town") → True
is_town("Aardvark") → False

There’s nothing special about using are to make
functions for filtering tables.

We could just define the function ourselves:
def is_town(s: str) -> bool:
 return s == "Town"

and pass that to where():
municipalities.where("kind", is_town)

But we’ll use are to make our predicates because
it’s quicker to write. Here are some of the predicate
functions we can make with are:

Predicate Behavior

are.equal_to(z) Is the value from the column equal to z?

are.above(x) Is the value from the column above z?

are.below(x) Is the value from the column below z?

are.between(x, y) Is the value from the column between x (inclusive) and y (exclusive)?

are.containing(s) Does the value from the column contain the string s?

are.contained_in(s) Is the value from the column inside the string/array s?

Add not_ to any of the above to negate the predicate, e.g., are.not_equal_to(z)

Where we get a real benefit from are is if we want
to filter the table based on the values in multiple
columns.

For example, if we want rows where the population
decreased between 2020 and 2010, we can do that:

municipalities.where(
 "pop2020",
 are.below,
 "pop2010"
)

We can also order the data by the values in one
column:

municipalities.sort("pop2020", True)

We can also order the data by the values in one
column:

municipalities.sort("pop2020", True)

This means we want to sort in descending
order; False means ascending.

And we can combine all of these operations.

How would we get the village with the smallest
population?

Example: Population change

PROBLEM Figure out what towns in New York are
grew the most.

Acknowledgments

This class incorporates material from:
Kathi Fisler and Doug Woos, Brown University

Data 6, University of California, Berkeley (CC BY-NC-SA)

