CMPU 100 - Programming with Data

Tables

Class 6

Where are we?

Here are some data that can be represented with
what we've seen so far:

Here are some data that can be represented with
what we've seen so far:

The population of NYC Integer

Here are some data that can be represented with
what we've seen so far:

The population of NYC Integer

Average body temperature Floating-point number

Here are some data that can be represented with
what we've seen so far:

The population of NYC Integer
Average body temperature Floating-point number

Whether or not | ate breakfast this morning Boolean

Here are some data that can be represented with
what we've seen so far:

The population of NYC Integer
Average body temperature Floating-point number
Whether or not | ate breakfast this morning Boolean

The complete text of Beowulf String

Here are some data that can be represented with
what we've seen so far:

The population of NYC Integer

Average body temperature Floating-point number
Whether or not | ate breakfast this morning Boolean

The complete text of Beowulf String

The average temperature each month List or array

What if we wanted to write a program to look up
the population of any town in New York!

We can consider the last two census years — 2010 and 2020.

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":
vear == 2010:
8175133
vear == 2020:
8804190

Exception("Bad vyear")

municipality == "Poughkeepsie":
vear == 2010:
43341
vear == 2020:
45471

Exception("Bad vyear")

Exception("Bad municipality")

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":
vear == 2010:
8175133
vear == 2020:
8804190

Exception("Bad vear")
municipality == "Poughkeepsie":
vear == 2010:
43347
vear == 2020:
4547

Exception("Bad vyear")

Exception("Bad municipality")

We can nest if expressions!

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":

vear == 2010:

8175133

vear == 2020:

8804190

municipality == "Poughkeepsie":

vear == 2010:
43347

vear == 2020:
4547

Exception("Bad vyear")
Exception("Bad municipality")

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":
vear == 2010:
8175133
vear == 2020:
8804190

Report an error that prevents the

Exception("Bad year") function from returning an answer

municipality == "Poughkeepsie":
vear == 2010:
43341
vear == 2020:
45471

Exception("Bad vyear")
Exception("Bad municipality")

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":
vear == 2010:
8175133
vear == 2020:
8804190

Exception("Bad vyear")

municipality == "Poughkeepsie":
vear == 2010:
43341
vear == 2020:
45471

Exception("Bad vyear")

Exception("Bad municipality")

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":
vear == 2010:
8175133
vear == 2020:
8804190

Exception("Bad vyear")

municipality == "Poughkeepsie":
vear == 2010:
43341
vear == 2020:
45471

Exception("Bad vyear")

Exception("Bad municipality")

This isn’t a great way to do this.
Why not?

deft population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""
1T municipality :
1T year == 2010:
return 8175
elif year =

1
75133
2020:
return 8804190 /

)
/ '
u i) LAK
else: | 3 ¢ ;mm
g &5 - Gl E sra LS
' ° WOACKS SARATOGA

/
/f RO M(SPR INGS

raise Exception("Bad ear") \ IAGARA ocuﬁsu _
=117 municipality ==|"Poughkeepsie'} | v

1T year == 2010: /n ;:[:s

“—Im"-—-—'-r

»

CAVERNS
A MT1S

return 43341 f;f ‘ﬂﬁw,‘ \mmw%m~,§m - G
2117 year == 2020: \/29 =
return 45471 6
else:
raise Exception("Bad vyear') What about the
else: rest of the state?

ralse Exception("Bad municipality")

population(municipality: str, year: int) -> int:
"""Return population of the municipality for the given year"""

municipality == "New York":
vear == 2010:
8175133
vear == 2020:
8804190

Exception("Bad vyear")

municipality == "Poughkeepsie":
vear == 2010:
43341
vear == 2020:
45471

Exception("Bad vyear")

Exception("Bad municipality")

KEY IDEA Separate data from computation.

Tables

Tables are used for tabular data,
like you might find printed in a
book or in a spreadsheet on a
computer.

o —

s o A e R . e B PP EY

14|| Smus | Tangens | Secans
31 2506616 2589280 10325781
" 32 2509432 2592384 10330559
1l 33 2512248 2595488 10331332
ﬁ 34 2515063 2598593 10332119
$ 35 ﬁ 2517879 2601699 loggz,OtH
36 2520694 2504805 10333683
37 2523508 2607911 10334467
i 38 2526323 2611018 1033525 | .
32 2529137 2614126 10336037
C & 2531952 2617234 10336823
ﬁ41 2534766 | 2620342 10337611
43 2537579 2623451 | 10338399
3 2540393 2626560 10339188
{44 2543206 2629670 10339979
45| 2546019 2632780 10340770
46, 2548832 2635891 10341563
47 2551645 263%002 10342356
48 2554458 2642114 10343151
49 2557270 2645226 103439456
50 2560082 2648339 10344743
_{1 2562894 2§5'452 10345540
52 2565705 2654566 10346338
53 2568517 3657680 210347138
i 54 2571328 2660794 10347938
i My Y
1 55 2574139 2663909 10348740
1 56| 25769;0 2667025 10349542
| Hiz 2579760 2670141 10350346
58 2582570 2673257 10351150
59 2585381 2676374 10351955
60 2588190 2679492 10352762
| | .

Tables are used for tabular data,
like you might find printed in a
book or in a spreadsheet on a
computer.

@ New York population.numbers

] S8

®

Municipality

Adams
Adams
Addison
Addison
Afton
Afton
Airmont
Akron
Alabama
Albany
Albion
Albion
Albion
Alden
Alden
Alexander
Alexander
Alexandria
Alexandria Bay
Alfred

Alfred

e
.A.

Class
Town
Village
Town
Village
Town
Village
Village
Village
Town
City
Town
Town
Village
Town
Village
Town
Village
Town
Village
Town

Village

©

o)

2010
5,143
1,775
2,595
1,763
2,851

822
8,628
2,868
1,869

97,856
8,468
2,073
6,056
10,865
2,605
2,534

509
4,061
1,078
5,237

4,174

P

2020

4,973
1,633
2,397
1,561
2,769
794
10,166
2,888
1,602
99,224
7,639
2,009
5,637
9,706
2,604
2,491
518
3,741
924
5,157

4,026

@

»

It's common to share tabular data as a CSV file:

name, kind, pop2010, pop2020
Adams, Town,5143,4973
Adams,Village,1775,1633
Addison, Town, 2595,2397
Addison,Village,1763,1561
Afton, Town,2851,2769
Afton,Village, 822,794
Airmont,Village,8628,10166
Akron,Village, 2868, 2888
Alabama, Town, 1869, 1602
Albany,City,97856,99224

It's common to share tabular data as a CSV file:

name, kind,pop2010, pop2020
Adams, Town,5143,4973
Adams,Village,1775,1633
Addison, Town,2595,2397
Addison,Village,1763,1561
Afton,Town,2851,2769
Afton,Village, 822,794
Airmont,Village,8628,10166
Akron,Village, 2868,2888
Alabama, Town,1869,1602
Albany,City,97856,99224

name
Adams
Adams
Addison
Addison
Afton
Afton
Airmont
Akron
Alabama
Albany

kind
Town
Village
Town
Village
Town
Village
Village
Village
Town
City

5143
1775
2595
1763
2857
822
8623
2868
1869
97856

It's common to share tabular data as a CSV file:
pop2010 ,

pop2020
4973
1635
2397
1561
2769
/94
10166
28838
1602
9090224

Comma-separated values

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

datasclence *

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work

with:

datasclence

This says, “Let us use every name
defined by the datascience

module”

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

datasclence *

url = "https://www.cs.vassar.edu/~cs100/data/
municipalities.csv"

municipalities = . read_table(url)
Table is a class, which is a way of
grouping related data and functions

In Python, we can use the datascience library to
load a CSV file as a table that we can easily work
with:

datasclence *

url = "https://www.cs.vassar.edu/~cs100/data/
municipalities.csv"

municipalities = |Table.read_table|(url)
This dot notation just means “use the read_table function
from the Table class” rather than one defined anywhere else.

[3]

——
qv
)

municipalities

name kind pop2010

Adams Town 5143
Adams Village 1775
Addison Town 2595
Addison Village 1763
Afton Town 2851
Afton Village 822
Airmont Village 8628
Akron Village 2868
Alabama Town 1869

Albany City 97856

... (1517 rows omitted)

pop2020

4973
1633
2397
1561
2769

794

10166

2888

1602

99224

[3]

——
év
e

municipalities

name kind pop2010
Adams Town 5143
Adams Village 1775
Addison Town 2595
Addison Village 1763
Afton Town 2851
Afton Village 822
Airmont Village 8628
Akron Village 2868
Alabama Town 1869

Albany City 97856

... (1517 rows omitted)

Column

[3]

——
qv
e

municipalities

name

Adams Town

Adams Village

Addison Town

Addison Village

Afton Town

Afton Village

Airmont Village
Akron Village

Alabama Town

Albany City

... (1517 rows omitted)

5143
1775
2595
1763
2851

822
8628
2868
1869

97856

kind pop2010 pop2020

4973
1633
2397
1561
2769
794
10166
2888
1602

99224

Row

[3]

——
qv
)

municipalities

name kind pop2010 | pop2020

Adams Town 5143
Adams Village 1775
Addison Town 2595
Addison Village 1763
Afton Town 2851
Afton Village 822
Airmont Village 8628
Akron Village 2868
Alabama Town 1869

Albany City 97856

... (1517 rows omitted)

4973
1633
2397
1561
2769

794

10166

2888

1602

99224

Label

[3]

——
qv
)

municipalities

name
Adams
Adams
Addison
Addison
Afton
Afton
Airmont
Akron
Alabama

Albany

... (1517 rows omitted)

kind pop2010 pop2020

Town
Village
Town
Village
Town
Village
Village
Village
Town

City

5143 4973

1775
2595
1763
2851
822
8628
2868
1869
97856

1633
2397
1561
2769
794
10166
2888
1602

99224

Value

Variable

[3] municipalities

(4]

name | kind | pop2010 pop2020

Adams 5143 4973
Adams |Village 1775 1633
Addison 2595 2397
Addison |Village 1763 1561

Afton |Village 822 794

Airmont | Village 8628 10166
Akron |Village 2868 2888
Alabama 1869 1602

Albany 97856 99224

... (1517 rows omitted)

Now that we have the data in Python, we can write
programs to answer questions.

Filtering and ordering tables

Oftentimes, we will have a table and want to access
only the rows where some condition is true.

For example, we might want to get a version of the
table that only has cities where the population has

decreased.

filter_population_decreased(t: Table) -> Table:
"""Filter the table to only keep rows where the
population decreased between 2010 and 2020.
population_decreased(t.row(0)):
Keep row 0
population_decreased(t.row(1)):
Keep row 1

Don't keep row 17

Don't keep row 0

Remember how we used filter last week:

list(filter(is odd, [1, 2, 3, 4, 5]1))

—| [1, 3, 5]

't would be nice if we had something like this for tables!

Instead, we can filter a Table by asking for a new
Table with only the rows where something is true
about the value in a column, e.g,,

municipalities.where("kind", are.equal_to("Town"))

Instead, we can filter a Table by asking for a new
Table with only the rows where something is true
about the value in a column, e.g,,

municipalities.where("kind", |are.equal_to("Town")|)

What’s this?

The datascience library gives us a convenient way
to create a simple predicate functions. These begin
with the prefix are.

S0, we can write

is town = are.equal_to("Town")

And now is town is a function that we can call:

is town("Town") —
is town("Aardvark") —

There's nothing special about using are to make
functions for filtering tables.

We could just define the function ourselves:

is town(s: str) -> bool:
s == "Town"

and pass that to where():

municipalities.where("kind", is_town)

But we'll use are to make our predicates because
it's quicker to write. Here are some of the predicate
functions we can make with are:

Predicate Behavior
are.equal_to(z) s the value from the column equal to z!
are.above(x) s the value from the column above z?
are.below(x) s the value from the column below z?
are.between(x, y) s the value from the column between x (inclusive) and y (exclusive)?
are.containing(s) Does the value from the column contain the string s?
are.contained_in(s) s the value from the column inside the string/array s?

Add not_ to any of the above to negate the predicate, e.g., are.not_equal_to(z)

Where we get a real benefit from are is if we want

to filter the table based on the values in multiple
columns.

For example, if we want rows where the population
decreased between 2020 and 2010, we can do that:

municipalities.where(
"pop2020",
are.below,
"pop2010"

We can also order the data by the values in one
column:

municipalities.sort("pop2020",)

We can also order the data by the values in one
column:

municipalities.sort("pop2020",)

\

This means we want to sort in descending

order; False means ascending.

And we can combine all of these operations.

How would we get the village with the smallest
population?

Example: Population change

PROBLEM Figure out what towns in New York are
grew the most.

Acknowledgments

This class incorporates material from:

Kathi Fisler and Doug Woos, Brown University
Data 6, University of California, Berkeley (CC BY-NC-SA)

