
Working with Tabular Data

Class 7

CMPU 100 · Programming with Data



Loading tabular data





Step 0:	 Get data





basketball-reference.com

http://basketball-reference.com
https://www.basketball-reference.com






https://www.basketball-reference.com/wnba/years/2025_totals.html


https://www.basketball-reference.com/wnba/years/2025_totals.html




This data is in a format called 
comma-separated values (CSV) 
which is used for sharing tabular 
data between programs.

Often you download CSV files, 
though in this case we can just 
copy-and-paste it.



Step 0:	 Get data 

Step 1:	 Make a spreadsheet











At this point, it’s a good idea to give 
meaningful names to both the 
spreadsheet and the individual 
sheet.



Step 0:	 Get data 

Step 1:	 Make a spreadsheet 

Step 2:	 Load the spreadsheet as a table





from datascience import * 

url = "https://docs.google.com/spreadsheets/d/
1Zmd79B0wOz6Uuovl7j0hsmA-nmY2PNatxuWTe1QsSSk/export?
format=csv" 

stats = Table.read_table(url) We replaced the edit... part of 
the URL with export?format=csv



This is a lot 
of columns!



Step 0:	 Get data 

Step 1:	 Make a spreadsheet 

Step 2:	 Load the spreadsheet as a table 

Step 3:	 Rethink that table 





stats = stats.select( 
    "Player", "Team", "Pos", "G", "PTS" 
) 

stats 



stats = stats.relabeled("G", "Games")
stats = stats.relabeled("PTS", "Pts")



stats = stats.relabeled("G", "Games")
stats = stats.relabeled("PTS", "Pts")

stats



Where are we?



Rows!



How do I get just this 
row from stats?

stats =



How do I get just this 
row from stats?

n

0 

1 

2 

3 

4 

5 

6 

7 

8 

9

stats =



How do I get just this 
row from stats?

n

0 

1 

2 

3 

4 

5 

6 

7 

8 

9

stats.rows[3]

stats =



How do I get just 
the rows for players 
who are guards?

stats =



How do I get just 
the rows for players 
who are guards?

stats.where("Pos", are.containing("G"))

stats =



http://www.data8.org/datascience/reference-nb/datascience-reference.html#Table.where-Predicates


def is_guard(pos: str) -> bool: 
    """Return True if the player is any kind of guard, 
    e.g., "G" (guard) or "C-G" (center guard). 
    """ 
    return "G" in pos 

assert is_guard("G") == True 
assert is_guard("C-G") == True 
assert is_guard("F") == False 

stats.where("Pos", is_guard)





What about columns?



How do I get just the 
points column?

stats =

stats["Pts"]



stats["Pts"]

→ array([228, 133,  17, 532, ...])



stats["Pts"]

→ array([228, 133,  17, 532, ...])

The data type isn’t Column; it’s an array!



Exercise: Who scores the most  
points per game?



See notebook for example.



Changing a column



So, we’ve seen that we can build a new column 
based on the values in each row, but what if we just 
want to change an existing column?



A fake WNBA fan like me 
can’t remember what these 
team abbreviations stand 
for.

Let’s fill in the actual team 
names.



What are the team names?



CHI

CON

DAL

LVA

ATL

PHO

SEA

WAS

MIN

IND

NYL

LAS

GSV



def team_name(abbr: str) -> str: 
    """Return the name of the team with the given  
    abbreviation 
    """ 
    ... 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...



def team_name(abbr: str) -> str: 
    """Return the name of the team with the given  
    abbreviation 
    """ 
    if abbr == "DAL": return "Dallas Wings" 
    elif abbr == "LVA": return "Las Vegas Aces" 
    ... 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...



def team_name(abbr: str) -> str: 
    """Return the name of the team with the given  
    abbreviation 
    """ 
    if abbr == "DAL": return "Dallas Wings" 
    elif abbr == "LVA": return "Las Vegas Aces" 
    ... 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...

This will work, but remember what we 
said when we introduced tables for 
looking up population: We want to 
separate data from computation.



teams = Table().with_columns( 
    "Abbr",  
    ["DAL", "GSV", ...], 
    "Name",  
    ["Dallas Wings", "Golden State Valkyries", ...] 
)

Advantage: This makes it easy to add new teams or 
more information about these teams, in a central place.



teams = ... 

def team_name(abbr: str) -> str: 
    """Return the name of the team with the given abbreviation""" 

    # 1. Get the row with abbreviation `abbr` 
    # 2. Return the value in the `name` column 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...



teams = ... 

def team_name(abbr: str) -> str: 
    """Return the name of the team with the given abbreviation""" 

    matches = teams.where("Abbr", abbr) 
    team = matches.rows[0] 
    # 2. Return the value in the `name` column 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...



teams = ... 

def team_name(abbr: str) -> str: 
    """Return the name of the team with the given abbreviation""" 

    matches = teams.where("Abbr", abbr) 
    team = matches.rows[0] 
    return team.name 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...





teams = ... 

def team_name(abbr: str) -> str: 
    """Return the name of the team with the given abbreviation""" 

    matches = teams.where("Abbr", abbr) 
    team = matches.rows[0] 
    return team.name 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
...

0 is too big? That means 
there were no matching 
rows! An abbreviation not in 
our table – what is it?



teams = ... 

def team_name(abbr: str) -> str: 
    """Return the name of the team with the given abbreviation""" 

    if abbr == "TOT": 
        return "Total" 

    matches = teams.where("Abbr", abbr) 
    team = matches.rows[0] 
    return team.name 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
... 



teams = ... 

def team_name(abbr: str) -> str: 
    """Return the name of the team with the given abbreviation""" 

    if abbr == "TOT": 
        return "Total" 

    matches = teams.where("Abbr", abbr) 
    team = matches.rows[0] 
    return team.name 

assert team_name("NYL") == "New York Liberty" 
assert team_name("CHI") == "Chicago Sky" 
... 

stats = stats.with_columns( 
    "Team", 
    stats.apply(team_name, "Team") 
)



https://www.youtube.com/watch?v=wapXxkTzMFM


https://www.youtube.com/watch?v=wapXxkTzMFM


Acknowledgments

This class incorporates material from: 
Greg Daniels & Michael Schur, Parks and Recreation 

Kathi Fisler and colleagues, Brown University 

Data 6, University of California, Berkeley (CC BY-NC-SA) 

basketball-reference.com 

Back to the Future Part II




