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Before we get started…



In class and in lab, I expect you to contribute to an 
environment that supports everyone’s learning.



1  Please raise your hands to ask or answer 
questions 

2  No phones, no headphones; use computers but 
only for classwork. 

3  No food in class or lab!



Hello, computer



Hello, computer



We use computers every day as electronic black 
boxes that do amazing things by  

collecting,  

storing,  

retrieving, and  

transforming data.



“Many people think of data as numbers alone, but 
data can also consist of words or stories, colors or 
sounds, or any type of information that is 
systematically collected, organized, and analyzed…” 
D’Ignazio & Klein, Data Feminism, 2020

https://data-feminism.mitpress.mit.edu


James Murray compiling 
the Oxford English 
Dictionary, c. 1928.



Computers only do very basic things. 
Numerical calculations: 

Add 

Subtract 

… 

Symbolic manipulations 

Compare two numbers 

Substitute one string of letters and numbers for another 

…



But when trillions of these simple operations are 
arranged in the right order, amazing computations 
can be carried out: 

forecasting tomorrow’s weather 🌨 

deciding where to drill for oil 🛢 

finding which places a person’s most likely to visit 🚗 

figuring out who would make a great couple 😘😍 

…







https://www.moogmusic.com/products/model-15-modular-synthesizer-app


https://en.wikipedia.org/wiki/Computer_science




The magic of a computer is its ability to become 
almost anything you can imagine…



The magic of a computer is its ability to become 
almost anything you can imagine…

…as long as you can explain exactly what that is.



When we program a computer to do something, 
everything needs to be described precisely.



eblong.com/zarf/zero-bill.html

https://www.eblong.com/zarf/zero-bill.html


When computers behave intelligently, it’s because a 
person used their intelligence to design an intelligent 
program.



To tell the computer exactly how to behave, we give 
it instructions using a programming language.
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https://github.com/stereobooster/programming-languages-genealogical-tree
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There are many programming languages due to 
intended use 

history 

habit 

taste



Ancient history (my childhood)

https://archive.org/details/a2gs_LogoWriter_GS_1989_Logo_Computer_Systems


Ancient history (my childhood)

https://archive.org/details/a2gs_LogoWriter_GS_1989_Logo_Computer_Systems


In this course, we’ll be working in a slightly more 
modern programming language.
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The traditional way of writing code is to use a text 
editor and then run the code in a command-line 
interface. 

Emacs, a popular text editor Command-line interface



While we could do everything in command-line 
interfaces, they aren’t the best suited for data 
science work, which often requires visualizations and 
written reports.



Jupyter notebooks allow us to write and run code in a single 
document, together with accompanying text, tables, and images.



For this class, we’ll use Colab, Google’s version of 
Jupyter notebooks, which let you log in with your 
Vassar account and store the notebooks you write 
in your Google Drive.



Let’s go!



colab.research.google.com

https://colab.research.google.com
http://colab.research.google.com


See notebook for example.

https://colab.research.google.com/drive/1yzIaoaWnBmkqImJNRPnYcAQpMZTqu5Qh


What will we do in this course?



Data design

Programming

Testing

1

2

3

4

Computational 
problem solving

Identify and organize the data needed to solve a 
problem 

Break a problem down into subproblems that can 
be solved with computations 

Express computations over the data 

Test those computations to make sure they’re doing 
what they’re supposed to



0 Society Think about whether it’s a good idea to solve the 
problem – and how your solution might affect the 
world around you.



You will leave this course with applicable skills that 
you can use even if you don’t take any future 
computer science or data science courses.



Course information



forms.gle/Wq4GB2hY8Xh4LVKs6

https://forms.gle/Wq4GB2hY8Xh4LVKs6
https://forms.gle/Wq4GB2hY8Xh4LVKs6


Class

Lab

Monday	 1:30	–	2:45 p.m. 

Wednesday	 1:30	–	2:45 p.m. 

Friday	   1:00	–	3:00 p.m.

Sanders Classroom 006



cs.vassar.edu/~cs100

https://www.cs.vassar.edu/~cs100
https://cs.vassar.edu/~cs100/


https://cs.vassar.edu/~cs100/resources/syllabus.pdf
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gradescope.com

http://www.apple.com
https://www.gradescope.com/auth/saml/vassar
https://www.gradescope.com/auth/saml/vassar


cs.vassar.edu/integrity

https://www.cs.vassar.edu/integrity
https://www.cs.vassar.edu/integrity


Submitting code written by AI is 
a violation of academic integrity.
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“All through our education, we are being taught a kind of 
reverse mindfulness. A kind of Future Studies where – via 
the guise of mathematics, or literature, or history, or 
computer programming, or French – we are being taught 
to think of a time different to the time we are in. Exam 
time. Job time. When-we-are-grown-up time. 

“To see the act of learning as something not for its own 
sake but because of what it will get you reduces the 
wonder of humanity. We are thinking, feeling, art-making, 
knowledge-hungry, marvelous animals, who understand 
ourselves and our world through the act of learning. It is 
an end in itself. It has far more to offer than the things it 
lets us write on application forms. It is a way to love living 
right now.” 
Matt Haig, Notes on a Nervous Planet



We’ve got a big journey ahead of us. I hope you’re 
excited!
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