
Programming with Data

Spring 2026

CMPU 100

Before we get started…

In class and in lab, I expect you to contribute to an
environment that supports everyone’s learning.

1 Please raise your hands to ask or answer
questions

2 No phones, no headphones; use computers but
only for classwork.

3 No food in class or lab!

Hello, computer

Hello, computer

We use computers every day as electronic black
boxes that do amazing things by

collecting,

storing,

retrieving, and

transforming data.

“Many people think of data as numbers alone, but
data can also consist of words or stories, colors or
sounds, or any type of information that is
systematically collected, organized, and analyzed…”
D’Ignazio & Klein, Data Feminism, 2020

https://data-feminism.mitpress.mit.edu

James Murray compiling
the Oxford English
Dictionary, c. 1928.

Computers only do very basic things.
Numerical calculations:

Add

Subtract

…

Symbolic manipulations

Compare two numbers

Substitute one string of letters and numbers for another

…

But when trillions of these simple operations are
arranged in the right order, amazing computations
can be carried out:

forecasting tomorrow’s weather 🌨

deciding where to drill for oil 🛢

finding which places a person’s most likely to visit 🚗

figuring out who would make a great couple 😘😍

…

https://www.moogmusic.com/products/model-15-modular-synthesizer-app

https://en.wikipedia.org/wiki/Computer_science

The magic of a computer is its ability to become
almost anything you can imagine…

The magic of a computer is its ability to become
almost anything you can imagine…

…as long as you can explain exactly what that is.

When we program a computer to do something,
everything needs to be described precisely.

eblong.com/zarf/zero-bill.html

https://www.eblong.com/zarf/zero-bill.html

When computers behave intelligently, it’s because a
person used their intelligence to design an intelligent
program.

To tell the computer exactly how to behave, we give
it instructions using a programming language.

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

https://github.com/stereobooster/programming-languages-genealogical-tree

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

Grace Hopper

https://github.com/stereobooster/programming-languages-genealogical-tree

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

Grace Hopper

https://github.com/stereobooster/programming-languages-genealogical-tree

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

https://github.com/stereobooster/programming-languages-genealogical-tree

There are many programming languages due to
intended use

history

habit

taste

Ancient history (my childhood)

https://archive.org/details/a2gs_LogoWriter_GS_1989_Logo_Computer_Systems

Ancient history (my childhood)

https://archive.org/details/a2gs_LogoWriter_GS_1989_Logo_Computer_Systems

In this course, we’ll be working in a slightly more
modern programming language.

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

ABC

Python

Smalltalk 80

Squeak

Ruby

AppleScript

F-Script

BETA

Objective-C

Self

Dylan

Io

ZonnonC# 2.0

C# 3.0

UniconCyclone 1.0

Algol 58

JOSS

Algol 60

Fortran II

Fortran IV

BasicPL/I

Fortran 77

Flow-matic

COBOL

Fortran I

Simula I

Simula 67

Snobol

Snobol4 Mumps

CPL

BCPL

Quick Basic

REXX

Pascal

Haskell

Mercury

Haskell 98

Gofer

Fortran 90

Fortran 2003

SML 90

SML 97

zsh

zsh 3.0

Ease C++ (ARM)

Pike

C++ (ISO)

Oak

Visual Basic

VB.NET

B

C

Prolog

Prolog ISO

Lambda Prolog

ErlangLife

CLIPS

Scheme R6RS D 1.0Fortress 1.0betaGroovy 1

Scheme

Algol W

Algol 68

APL

APL 2

COBOL-68

APL 96

J

Eiffel 3bash 2.0

bash 3.0

LimboPizzaOCaml

Scala

OCaml 3.0

Nice

C 99Oz 3 .NET

SML.NETF# J#

C#Mondrian

Boo

SQL-1999

SQL-2003

J++ 6.0 Tcl 8.1Python 1.5.2

Python 2.0

C99ECMAScript rel3

JavaScript 1.5

DelphiOz 1 Java JavaScript

J++

Java 2 (v1.2)

ECMAScript

Groovy

Ruby 1.8

Ada 95 PHP

PHP4

C 95

Cyclone

NewtonScriptKksh93

ksh98

zsh 4.0 XQueryGHC 5.00

GHC 6.0

NetREXX

Scheme R5RS

CAL (Open Quark)

Java 2 (v1.5 beta)

Perl 5.005

Perl 5.6.0

REBOL

ksh

bash

ksh88

occamAda 83

Eiffel

IconPascal AFNOR

Lua

Objective Pascal

csh awk C (K&R)

sh

Perl

Modula

CLU

Ada

Standard Mumps

Mumps 1984

SQL

ANSI SQL

Modula-2

Modula-3

Oberon

ML

SMLLazy ML

Hope

Miranda

Eiffel 2

Cecil

Scheme R3RS

Scheme R4RS

ISO SQL

A+

Caml

Lean

Scheme 84

Perl 4

SQL-92

Clean

Concurrent Clean

PHP5 Python 2.4

Python 2.5

Scheme MIT

C (ANSI)

Sather 0.1

CLOS

CLIPS 5.0

ANSI C

SEQUEL

SEQUEL/2

Smalltalk 74

Smalltalk 76

COBOL-74

COBOL-85

Oberon-2

Perl 5Sather 1.0

Python 2.2Perl 5.8.0

Nemerle

COBOL 2002

REXX 3.0

Object REXX

PostScript

PostScript level 2

ISWIM

SASL

QuiltLua 4.0

Lua 5.0

JavaScript 1.7

Lisp

Logo

Common Lisp

KRC

Beta

Smalltalk 78

tcsh

Smalltalk

Smalltalk 72

Forth

C++

Common Lisp (ANSI)

CSP

nawk

FP

FL

Tcl

sed

github.com/stereobooster/programming-languages-genealogical-tree

https://github.com/stereobooster/programming-languages-genealogical-tree

The traditional way of writing code is to use a text
editor and then run the code in a command-line
interface.

Emacs, a popular text editor Command-line interface

While we could do everything in command-line
interfaces, they aren’t the best suited for data
science work, which often requires visualizations and
written reports.

Jupyter notebooks allow us to write and run code in a single
document, together with accompanying text, tables, and images.

For this class, we’ll use Colab, Google’s version of
Jupyter notebooks, which let you log in with your
Vassar account and store the notebooks you write
in your Google Drive.

Let’s go!

colab.research.google.com

https://colab.research.google.com
http://colab.research.google.com

See notebook for example.

https://colab.research.google.com/drive/1yzIaoaWnBmkqImJNRPnYcAQpMZTqu5Qh

What will we do in this course?

Data design

Programming

Testing

1

2

3

4

Computational
problem solving

Identify and organize the data needed to solve a
problem

Break a problem down into subproblems that can
be solved with computations

Express computations over the data

Test those computations to make sure they’re doing
what they’re supposed to

0 Society Think about whether it’s a good idea to solve the
problem – and how your solution might affect the
world around you.

You will leave this course with applicable skills that
you can use even if you don’t take any future
computer science or data science courses.

Course information

forms.gle/Wq4GB2hY8Xh4LVKs6

https://forms.gle/Wq4GB2hY8Xh4LVKs6
https://forms.gle/Wq4GB2hY8Xh4LVKs6

Class

Lab

Monday	 1:30	–	2:45 p.m.

Wednesday	 1:30	–	2:45 p.m.

Friday	 1:00	–	3:00 p.m.

Sanders Classroom 006

cs.vassar.edu/~cs100

https://www.cs.vassar.edu/~cs100
https://cs.vassar.edu/~cs100/

https://cs.vassar.edu/~cs100/resources/syllabus.pdf

0%

5%

10%

15%

20%

25%

30%

Labs

20%

Grading

0%

5%

10%

15%

20%

25%

30%

Labs Assignments

20%20%

Grading

gradescope.com

http://www.apple.com
https://www.gradescope.com/auth/saml/vassar
https://www.gradescope.com/auth/saml/vassar

cs.vassar.edu/integrity

https://www.cs.vassar.edu/integrity
https://www.cs.vassar.edu/integrity

Submitting code written by AI is
a violation of academic integrity.

0%

5%

10%

15%

20%

25%

30%

Attendance & Participation Labs Assignments Lowest exam Middle exam Highest exam

20%20%

15%

20%20%

5%

Grading

“All through our education, we are being taught a kind of
reverse mindfulness. A kind of Future Studies where – via
the guise of mathematics, or literature, or history, or
computer programming, or French – we are being taught
to think of a time different to the time we are in. Exam
time. Job time. When-we-are-grown-up time.

“To see the act of learning as something not for its own
sake but because of what it will get you reduces the
wonder of humanity. We are thinking, feeling, art-making,
knowledge-hungry, marvelous animals, who understand
ourselves and our world through the act of learning. It is
an end in itself. It has far more to offer than the things it
lets us write on application forms. It is a way to love living
right now.”
Matt Haig, Notes on a Nervous Planet

We’ve got a big journey ahead of us. I hope you’re
excited!

Acknowledgments

This class incorporates material from:
Peter J. Denning and Matti Tedre, Computational Thinking

W. Daniel Hillis, The Pattern on the Stone

