
Expressions, Values,
and Names

Class 2

CMPU 100 · Programming with Data

Where are we?

A program instructs a computer to do something.
For the computer to carry out these instructions, they need to be
precise.

But programs also need to be understood by people, so they need to
be readable!

We write a program in a programming language and
we run it in a programming environment.

https://spectrum.ieee.org/top-programming-languages-2025

class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

😟

class HelloWorldApp {
 public static void main(String[] args) {
 System.out.println("Hello, world!");
 }
}

😟

print("Hello, world!") 😌

colab.research.google.com

https://code.pyret.org
http://colab.research.google.com
http://colab.research.google.com

This is a text cell.

This is a code cell.

This is the output of running the code cell.

Jupyter notebooks are quite recent – they’re the hot
format for work in data science – but the idea of
interleaving text with code dates back to Donald
Knuth’s introduction of literate programming in 1984.

For the programming we do in class, I’ll provide a
“starter” notebook, posted on the course website
before class.

This has an outline of what we’ll do and code for some parts,
especially things that would involve a lot of typing.

During class, I’ll fill in this starter notebook, writing
code.

You may find it helpful to follow along, copying what I’m doing in your
own notebook.

You can also write your own code to experiment and write any notes
you want to remember, which you can put in text cells.

Don’t worry if you miss something or can’t type fast
enough!

It’s more important to listen to me and try to understand what’s going
on than it is to write everything I do!

After class, I’ll post a completed notebook that
contains what we did in class and some extra
explanation.

It’s a good idea to review these before starting the next lab or
assignment.

Expressions

To start with, you can think of Python like a
calculator.

Calculators take expressions and compute values.

Calculators take expressions and compute values.

17

Calculators take expressions and compute values.

17 17

Calculators take expressions and compute values.

17 17

-1 + 3.14

Calculators take expressions and compute values.

17 17

-1 + 3.14 2.14

Calculators take expressions and compute values.

17 17

-1 + 3.14 2.14

2 ** 3

Calculators take expressions and compute values.

17 17

-1 + 3.14 2.14

2 ** 3 8

Calculators take expressions and compute values.

17 17

-1 + 3.14 2.14

2 ** 3 8

(17 - 14) / 2

Calculators take expressions and compute values.

17 17

-1 + 3.14 2.14

2 ** 3 8

(17 - 14) / 2 1.5

(3 + 4) * (5 + 1) is an expression – a
computation that produces an answer.

A program just consists of one or more
computations you want to run.

An individual number like 17 is a value (or literal); it
can’t be computed any further.

Mathematical expressions in Python use the same
order of operations that you learned in school
(PEMDAS):

60 / 2 * 3 → 90.0
60 / (2 * 3) → 10.0

Whenever you’re not sure which operator is
evaluated first – or you want to fix a certain order –
use parentheses.

Call expressions

f(42)

f(42)

What function
to call

f(42)

Argument to
the function

What function
to call

f(42)

Argument to
the function

What function
to call

“Call f on 42.”

max(13, 42)

First
argument

What function
to call

Second
argument

max(13, 42)

→ 42

Sometimes the same computation can be done with
an operator or a function, e.g.,

10 ** 2

→ 100

pow(10, 2)

→ 100

Notebook: Expressions

Example: Incidence of tuberculosis

What is incidence?

https://www.cdc.gov/mmwr/volumes/71/wr/mm7112a1.htm

Let’s use Python to validate these values.
We’ll check the 2020 and 2021 incidence
for the US as a whole.

Notebook: Incidence of tuberculosis

Types of values

Numbers

Why is Python displaying the same number two ways?

2 + 3

→ 5

10 / 2

→ 5.0

What we saw were two different data types used
for numbers in Pythons:

Integers

Floating-point numbers

-10

 0

 0.0

 1.0

-10.1

 6.55

 7

What we saw were two different data types used
for numbers in Pythons:

Integers are whole numbers

Floating-point numbers

-10

 0

 0.0

 1.0

-10.1

 6.55

 7

What we saw were two different data types used
for numbers in Pythons:

Integers are whole numbers

Floating-point numbers have a decimal point

-10

 0

 0.0

 1.0

-10.1

 6.55

 7

Adding subtracting, and multiplying integers always
gives you another integer:

3 + (2 ** 9) - 15 * 14 + 1 → 306

But if there’s any floating-point number, the result is
another float – even if the decimal part is zero!

3 + (2 ** 9) - 15 * 14 + 1.0 → 306.0

Division (/) always results in a float since the result
isn’t guaranteed to be a whole number:

15 / 3 → 5.0

When you use floating-point numbers, you’ll
sometimes see a small amount of error in the result:

This is a consequence of how Python internally
represents floats. There’s nothing for you to do
about it except be aware!

If you’re curious about
the details of that
representation, you can
read more about it.

0.1 + 0.1

→ 0.2

0.1 + 0.2 + 0.3

→ 0.6000000000000001

https://docs.python.org/3/tutorial/floatingpoint.html

String values

Text strings are values consisting of a sequence of
characters (letters, numbers, punctuation, emoji,
etc.):

"Poughkeepsie"
'New York'

Strings can be written between either single or
double quotes.

You can concatenate (combine) strings using the +
operator:

"Hello," + " " + "world!"

→ "Hello, world!"

And you can use the len function to ask for the
length of a string – how many characters are in it:

len("Hello")

→ 5

Working with different types of values

Operations may only work on
certain types of data!

The same operator or function may work differently
when it’s given different types of data as input

3 + 4

"3" + "4"	

The same operator or function may work differently
when it’s given different types of data as input

3 + 4

→ 7

"3" + "4"	

The same operator or function may work differently
when it’s given different types of data as input

3 + 4

→ 7

"3" + "4"	

→ "34"

The same operator or function may work differently
when it’s given different types of data as input

3 * 4

"3" * 4

The same operator or function may work differently
when it’s given different types of data as input

3 * 4

→ 12

"3" * 4

The same operator or function may work differently
when it’s given different types of data as input

3 * 4

→ 12

"3" * 4

→ "3333"

The same operator or function may work differently
when it’s given different types of data as input

max(3, 4)

max("three", "four")

The same operator or function may work differently
when it’s given different types of data as input

max(3, 4)

→ 4

max("three", "four")

The same operator or function may work differently
when it’s given different types of data as input

max(3, 4)

→ 4

max("three", "four")

→ "three"

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

int(3.92)

→ 3

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

int(3.92)

→ 3

int("-5")

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

int(3.92)

→ 3

int("-5")

→ -5

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

int(3.92)

→ 3

int("-5")

→ -5

int("4.1")

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

int(3.92)

→ 3

int("-5")

→ -5

int("4.1")

→ Error!

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

float(3)

→ 3.0

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

float(3)

→ 3.0

float("3.14")

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

float(3)

→ 3.0

float("3.14")

→ 3.14

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

str(13 + 14 + 15/2)

Prest-o change-o

When it makes sense, we can
typecast – convert values
between data types.

str(13 + 14 + 15/2)

→ "34.5"

Evaluation

How does something like (4 + 2) / 3 work?
What is the operator / dividing?

Shouldn’t / expect two numbers?

Even though (4 + 2) isn’t a number, it’s an
expression that evaluates to a number.

This works for all data types, not just numbers!

+

4

6

2

When we write complex expressions, Python
evaluates them from the inside out:

7 + (6 / (1 + 1))

When we write complex expressions, Python
evaluates them from the inside out:

7 + (6 / (1 + 1))

→ 7 + (6 / 2)

When we write complex expressions, Python
evaluates them from the inside out:

7 + (6 / (1 + 1))

→ 7 + (6 / 2)

→ 7 + 3

When we write complex expressions, Python
evaluates them from the inside out:

7 + (6 / (1 + 1))

→ 7 + (6 / 2)

→ 7 + 3

→ 10

When we write complex expressions, Python
evaluates them from the inside out:

max(4, min(1, 9))

When we write complex expressions, Python
evaluates them from the inside out:

max(4, min(1, 9))

This isn’t a value, so we need to
evaluate this function call before
we can evaluate the call to max.

When we write complex expressions, Python
evaluates them from the inside out:

max(4, min(1, 9))

→ max(4, 1)

When we write complex expressions, Python
evaluates them from the inside out:

max(4, min(1, 9))

→ max(4, 1)

→ 4

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

→ min(abs(-1), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

→ min(abs(-1), 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

→ min(abs(-1), 100)

→ min(1, 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

→ min(abs(-1), 100)

→ min(1, 100)

We can nest as many function calls as we want!

min(abs(max(-1, -2, -3, min(4, -2))), max(5, 100))

→ min(abs(max(-1, -2, -3, min(4, -2))), 100)

→ min(abs(max(-1, -2, -3, -2)), 100)

→ min(abs(-1), 100)

→ min(1, 100)

→ 1

Names

Defining names

x = 5

x = 5

Name

x = 5

Name Value

x = 5

The name x is bound to the
value 5, like putting a
baggage tag on a suitcase.

5
x

x = 5

5
x

First Python evaluates the
right-hand expression…

y = 1 + 2 * 3 - 8 / 2

x = 5

5
x

First Python evaluates the
right-hand expression…

y = 1 + 2 * 3 - 8 / 2
→ y = 1 + 6 - 8 / 2

x = 5

5
x

First Python evaluates the
right-hand expression…

y = 1 + 2 * 3 - 8 / 2
→ y = 1 + 6 - 8 / 2

→ y = 7 - 4

x = 5

5
x

First Python evaluates the
right-hand expression…

y = 1 + 2 * 3 - 8 / 2
→ y = 1 + 6 - 8 / 2

→ y = 7 - 4

→ y = 3

x = 5

3
y

…then it binds the name y
to the resulting value.

5
x

First Python evaluates the
right-hand expression…

y = 1 + 2 * 3 - 8 / 2
→ y = 1 + 6 - 8 / 2

→ y = 7 - 4

→ y = 3

Several names may have the same value:

seven = 7
seven

7

septem = 7
septem

7

Assignment statements are not mathematical
equations.

If you write
3 = x

Python gives a syntax error because it thinks you’re
trying to redefine what “3” means.

Name examples

x = 5

There’s no output from assigning a name to
a value.

x = 5

Name Value

x 5

Directory

There’s no output from assigning a name to
a value.

It has the side effect of associating the name
with the value in the program directory.

x = 5

Name Value

x 5

Directory

x

x = 5

Name Value

x 5

Directory

x
When you use the name
later, Python looks it up in
the directory and substitutes
the value it finds.

x = 5

Name Value

x 5

Directory

x

→ 5

When you use the name
later, Python looks it up in
the directory and substitutes
the value it finds.

x = 5

Directory

Name Value

fname = "Grace"

Directory

Name Value

fname "Grace"

fname = "Grace"

Directory

Name Value

fname "Grace"

fname = "Grace"

lname = "Hopper"

Directory

Name Value

fname "Grace"

lname "Hopper"

fname = "Grace"

lname = "Hopper"

Directory

Name Value

fname "Grace"

lname "Hopper"

fname + " " + lname

fname = "Grace"

lname = "Hopper"

Directory

Name Value

fname "Grace"

lname "Hopper"

fname + " " + lname

→ "Grace" + " " + lname

fname = "Grace"

lname = "Hopper"

Directory

Name Value

fname "Grace"

lname "Hopper"

fname + " " + lname

→ "Grace" + " " + lname

→ "Grace " + lname

fname = "Grace"

lname = "Hopper"

Directory

Name Value

fname "Grace"

lname "Hopper"

fname + " " + lname

→ "Grace" + " " + lname

→ "Grace " + lname

→ "Grace " + "Hopper"

fname = "Grace"

lname = "Hopper"

Directory

Name Value

fname "Grace"

lname "Hopper"

fname + " " + lname

→ "Grace" + " " + lname

→ "Grace " + lname

→ "Grace " + "Hopper"

→ "Grace Hopper"

fname = "Grace"

lname = "Hopper"

Working with names

A name can only be bound to a single value at one
time.

3
2

A name can only be bound to a single value at one
time.

x = 2

3
2

A name can only be bound to a single value at one
time.

x = 2

3
2x

A name can only be bound to a single value at one
time.

x = 2
x = x + 1

3
2x

A name can only be bound to a single value at one
time.

x = 2
x = x + 1

3
2

x

Names must be given a value before being used.

new_name

NameError
Traceback (most recent call last)
<ipython-input-1-9d86db7a2999> in <cell line: 1>()
----> 1 new_name

NameError: name 'new_name' is not defined

Jupyter memory model

Pretend your notebook has a brain.

Jupyter memory model

Pretend your notebook has a brain.
Every time you run a cell with an assignment statement, it remembers
that name–value binding.

Jupyter memory model

Pretend your notebook has a brain.
Every time you run a cell with an assignment statement, it remembers
that name–value binding.

It will remember all name–value mappings as long as the current
session is running, no matter how many cells you create.

Jupyter memory model

Pretend your notebook has a brain.
Every time you run a cell with an assignment statement, it remembers
that name–value binding.

It will remember all name–value mappings as long as the current
session is running, no matter how many cells you create.

However, when you open a notebook for the first
time in a few hours, your previous session will likely
have ended, and Jupyter’s brain won’t remember
anything.

Jupyter memory model

Pretend your notebook has a brain.
Every time you run a cell with an assignment statement, it remembers
that name–value binding.

It will remember all name–value mappings as long as the current
session is running, no matter how many cells you create.

However, when you open a notebook for the first
time in a few hours, your previous session will likely
have ended, and Jupyter’s brain won’t remember
anything.

You’ll need to re-run all of your cells.

Don’t delete cells defining names you want to use.

Don’t use names above the cell with the assignment
definition.

Notebooks should be a paper trail. Each cell is a
record of what you’ve done so far.

What’s in a name?

If you’re ever unsure of the value bound to a name,
you can simply create a new cell, type the name, and
run the cell.

Python has built-in names, including functions like
min, max, and pow.

Python will let you re-assign some of these built-in
names, even though you probably shouldn’t!

You broke Python. What now?

max = 9
max(2, 3)

TypeError: 'int' object is not callable

If you want to restore names to
their default values, do this:
1. Save your notebook

2. Restart your session

There are also some reserved names, e.g.,
import
None
True
False

These are so important to Python that reassigning
them would be a big problem, so it won’t let you do
it.

Concept check

We can define the names

Now if we write

it gets evaluated:

width = 400
height = 600

width * height

→ 400 * height

→ 400 * 600

→ 240000

What if we use another name?

Does Python associate the name area with the
expression width * height or with the number
240000?

width = 400
height = 600
area = width * height

Writing code for people to read

“Programs must be written for people to read, and
only incidentally for machines to execute.”
Hal Abelson & Gerald Sussman with Julie Sussman, Structure and
Interpretation of Computer Programs, 1979

Choosing good names

This is silly, but legal:

Names are arbitrary

five = 6
five

6

six = 5
six

5

Names in Python are case-sensitive.

So,
Cat
CAT
cat
cAT

are all distinct names, which can have different
associated values – but doing this is a bad idea
because it’s confusing!

They look similar – but they’re
all distinct!

Python is pretty flexible about what names can look
like:
👍 how_are_you

👍 my_AGE_is_22

👍 NETFLIXPASSWORD

But it doesn’t allow hyphens or other punctuation –
only underscores are allowed:
👎 this-is-bad

👎 worse!

👎 no&*way

While names can include a number, like
👍 pi_r_2

They can’t start with a number:
👎 2_pi_r

Every programming language also has its own
conventions for names.

In standard Python, names are usually lowercase
with words joined by underscores, e.g.,

this_is_a_good_name

thisMakesPythonCRY

Names are important!

Can you guess what this code does?
y = (x + 459.67) * 5/9

Names are important!

Can you guess what this code does?
y = (x + 459.67) * 5/9

temp_kelvin = (temp_celsius + 459.67) * 5/9

Choose names that are concise but descriptive.
Good:

seconds_per_hour = 60 * 60
hours_per_year = 24 * 365
seconds_per_year = seconds_per_hour * hours_per_year

Not so good:
i_love_chocolate = 60 * 60 * 24 * 365

Comments

Comments are used to explain what code does.

Good programmers write code that is self-evident
and use comments only where necessary.

7173 / (331501080 / 100000)

7173 / (331501080 / 100000) 🤔

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

🤔

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

🤔

😀

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

7171 ÷ (100,000 groups in 331,501,080 population)
7173 / (331501080 / 100000)

🤔

😀

7173 / (331501080 / 100000)

2020 US TB incidence
7173 / (331501080 / 100000)

7171 ÷ (100,000 groups in 331,501,080 population)
7173 / (331501080 / 100000)

🤔

😀

🙄

https://mastodon.social/@girlonthenet/113050717291589706

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Jason Waterman, Vassar College

Data 6, University of California, Berkeley (CC BY-NC-SA)

