
Asking Questions

Class 3

CMPU 100 · Programming with Data

Assignment 1
Out: Tomorrow	 5:00 p.m.

Due: Next Thursday	 11:59 p.m.

https://cs.vassar.edu/~cs100/resources/coaching.html

Where are we?

We’ve been using Python to write expressions using
data, including

integers like 0, 4, and -10;

floating-point numbers like 4.0, 0.3, and -12.5; and

strings like "", "hi", and "111",

which we combine or transform using operators like + and * and
functions like max and abs.

We’ve seen that we can create more complicated
programs by composing operations or function calls,
e.g.,

1 + (2 / 3)

or
abs(min(4, 5, -1))

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3 Name Value

total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

Name Value

total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

Name Value

total 5

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1

Name Value

total 5

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1
→	new_total = 5 + 1

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1
→	new_total = 5 + 1
→	new_total = 6

Name Value

total 5

new_total

Directory

And we can give a name to the result of an
expression, e.g.,

	 total = 2 + 3
→	total = 5

	 new_total = total + 1
→	new_total = 5 + 1
→	new_total = 6

Name Value

total 5

new_total 6

Directory

When we’re writing Python, we’ll make mistakes, so
we’ll see error messages.

Syntax error: Code doesn’t follow syntactic requirements

E.g., 9+-

Runtime error: Valid syntax; can’t evaluate for other reasons

E.g., 5 / 0

Bug: Code runs – but not the way you intended!

Python will let you re-assign the value for some of
its built-in names, including functions like min, max,
and pow – even though you probably shouldn’t!

You broke Python. What now?

max = 9
max(2, 3)

TypeError: 'int' object is not callable

If you want to restore names to
their default values, do this:
1. Save your notebook

2. Restart your session

Booleans and comparison expressions

True

False

We can compare values using the operators

==	 equal to
!=	 not equal to
<	 less than
<=	 less than or equal to
>	 greater than
>=	 greater than or equal to

which produce True or False as a result.

Be careful:
x = 2

is assigning the name x to have the value 2 in the
directory.

On the other hand,
x == 2

is asking the question “is x equal to 2?”

Notebook: Booleans and
comparison expressions

Boolean expressions can also be combined using the
operators

and
True if both inputs are True;

False otherwise

or
False if both inputs are False;

True otherwise

(1 < 2) and (2 > 3)

(1 < 2) and (2 > 3)

→ True and (2 > 3)

(1 < 2) and (2 > 3)

→ True and (2 > 3)

→ True and False

(1 < 2) and (2 > 3)

→ True and (2 > 3)

→ True and False

→ False

(1 <= 0) or (1 == 1)

(1 <= 0) or (1 == 1)

→ False or (1 == 1)

(1 <= 0) or (1 == 1)

→ False or (1 == 1)

→ False or True

(1 <= 0) or (1 == 1)

→ False or (1 == 1)

→ False or True

→ True

To change an expression that evaluates to True to
be False – or vice versa – use the not operator:

not True

False

not 1 == 0

True

Notebook: Practice

Conditional statements

if … is a conditional statement.

Conditionals allow us to branch – maybe we
evaluate this expression; maybe we don’t!

if 1 < 2:
 print("All is right in the world")

If the condition
is true, the
code indented
under it is run.

if 1 < 2:
 print("All is right in the world")

→ if True:
 print("All is right in the world")

If the condition
is true, the
code indented
under it is run.

if 1 < 2:
 print("All is right in the world")

→ if True:
 print("All is right in the world")

→ print("All is right in the world")

If the condition
is true, the
code indented
under it is run.

if 1 < 2:
 print("All is right in the world")

→ if True:
 print("All is right in the world")

→ print("All is right in the world")

All is right in the world

If the condition
is true, the
code indented
under it is run.

if 1 > 2:
 print("Watch out for flying pigs") If the condition

is false, the
code indented
under it is
skipped.

if 1 > 2:
 print("Watch out for flying pigs")

→ if False:
 print("Watch out for flying pigs")

If the condition
is false, the
code indented
under it is
skipped.

if 1 > 2:
 print("Watch out for flying pigs")

→ if False:
 print("Watch out for flying pigs")

→

If the condition
is false, the
code indented
under it is
skipped.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")
Even if the
condition is
false, Python
runs the code
after it.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

→

if False:
 print("Watch out for flying pigs")

print("Life goes on")

Even if the
condition is
false, Python
runs the code
after it.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

→

if False:
 print("Watch out for flying pigs")

print("Life goes on")

→ print("Life goes on")

Even if the
condition is
false, Python
runs the code
after it.

if 1 > 2:
 print("Watch out for flying pigs")

print("Life goes on")

→

if False:
 print("Watch out for flying pigs")

print("Life goes on")

→ print("Life goes on")

Life goes on

Even if the
condition is
false, Python
runs the code
after it.

Sometimes, you need a Plan B, so you can pair if
with else.

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if True:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if True:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("All is right in the world")

if 1 < 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if True:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("All is right in the world")

All is right in the world

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if False:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if False:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("Watch out for flying pigs")

if 1 > 2:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→

if False:
 print("All is right in the world")
else:
 print("Watch out for flying pigs")

→ print("Watch out for flying pigs")

Watch out for flying pigs

And if we want to play Twenty Questions, we can
keep going, adding elif (“else if”) to our if–else.

Notebook: Conditional statements

Preview: Defining functions

Recall how you defined functions in middle-school
math:

Given f(x) = |x| + 2

f(−3)	= |−3| + 2

	 = 3 + 2

	 = 5

The parameter x stands
for varying values

Python functions work much the same way:
def f(x): return abs(x) + 2

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	 Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2
	 →	3 + 2

Name Value

x -3

Directory

Python functions work much the same way:
def f(x): return abs(x) + 2

	 	f(-3)
	 →	abs(x) + 2	
	 →	abs(-3) + 2
	 →	3 + 2
	 →	5

Name Value

x -3

Directory

Notebook: Preview: Defining functions

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Katie Keith and Steve Freund, Williams College

Data 6, University of California, Berkeley (CC BY-NC-SA)

Data 8, University of California, Berkeley (CC BY-NC-SA)

