CMPU 100 - Programming with Data

Asking Questions

Class 3

Assignment 1

Out: Tomorrow 5:00 p.m.

Due: Next Thursday 11:59 p.m.

000 (<

0

cs.vassar.edu/~cs100/resources/coaching.html ¢

cMPU 100 / Resources / Coaching H LABS [l ASSIGNMENTS [l RESOURCES Jll GRADESCOPE

| will make every effort to give each of you the attention and feedback you need to be successful in this
course — but there’s only one of me! Therefore, | rely on the coaches to help me help answer your

questions.

In addition to working during our labs each week, each coach will be available to help you in the Agile
Lab (sc 006) at scheduled times.

Important: The coaches are prohibited from giving you the solutions to labs and assighments, but they
are able to guide you as you work to solve your programming tasks. When this works well, they will

help you answer your own questions!

January 2026 H

SUN MON TUE WED THU FRI SAT

25 26 28 29 30 31

1 Aivi

https://cs.vassar.edu/~cs100/resources/coaching.html

Autograder Results Results | Code

Public Tests

Exercise 1: within five results: All test cases passed!
Exercise 2: hobby relates results: All test cases passed!
Exercise 3: in range results:

Exercise 3: in range - 1 result:

Test case passed

Exercise 3: in range - 2 result:
Test case passed

Exercise 3: in range - 3 result:
)(Test case failed
Trying:
in _range("", True)
Expecting:
False

R E R EE RS EE S EEE RS
Line 2, in Exercise 3: in range 2
Failed example:
in range("", True)
Expected:
False
Got:

True

Where are we?

We've been using Python to write expressions using

data, including
integers like @, 4, and -10;
floating-point numbers like 4.0, 0.3, and -12.5; and
strings like "", "hi", and "111",

which we combine or transform using operators like + and * and
functions like max and abs.

VWe've seen that we can create more complicated
programs by composing operations or function calls,

e.g.,
1T+ (2 / 3)

or
abs(min(4, 5, -1))

And we can give a hame to the result of an
expression, e.g.,

total = 2 + 3

And we can give a hame to the result of an
expression, e.g., Directory

total = 2 + 3

Name Value

total

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total =5

total

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total =5

total 5

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total = 5
total 5

new total = total + 1

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total = 5
total 5

new total = total + 1 new total

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total = 5

‘/,,—————““_“"total 5

new total = total + 1 new total

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total = 5
total 5
new_total = total + 1 new total

— new total =5 + 1

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total = 5
total 5
new_total = total + 1 new total

— new total =5 + 1
— new total =

|
)

And we can give a hame to the result of an

expression, e.g., Directory
total = 2 + 3 Name Value
— total = 5
total 5
new_total = total + 1 new total 6

— new total =5 + 1
— new total =

|
)

When we're writing Python, we'll make mistakes, so
we'll see error messages.

Syntax error. Code doesn't follow syntactic requirements
E.g., 9+-

Runtime error: Valid syntax; can't evaluate for other reasons
Ee,5 / 0O

Bug: Code runs — but not the way you intended!

Python will let you re-assign the value for some of
its built-in names, including functions like min, max,
and pow — even though you probably shouldn't!

max = 9
max(2, 3)

TypeError: 'int' object 1s not callable

You broke Python. What now?

Runtime Tools Help

Run all 36 /Ctrl+F9
Run before 36/Ctrl+F8
Run the focused cell 38 /Ctrl+Enter
Run selection 38 /Ctrl+Shift+Enter
f you want to restore names to qun afte /CUl+FT0
thelr default ValueS, dO th'S Interrupt execution 38 /Ctrl+M |
Restart session 36 /Ctrl+M .
1. Save your Nnote bOOk Restart session and run all

Disconnect and delete runtime

2. Restart your session

Change runtime type

Manage sessions
View resources

View runtime logs

Booleans and comparison expressions

True

False

We can compare values using the operators

== equal to

= not equal to

< less than

<= less than or equal to

> greater than

>= greater than or equal to

which produce or as a result.

Be careful:

X = 2

is assigning the name x to have the value 2 in the
directory.

On the other hand,

X == 2

is asking the question “is x equal to 27"

Notebook: Booleans and
comparison expressions

Boolean expressions can also be combined using the
operators

and
if both inputs are ;

otherwise

or
if both inputs are ;

otherwise

(1 < 2)

(2 > 3)

(1 < 2)

(2 > 3)

(2 > 3)

(1 < 2)

(2 > 3)

(2 > 3)

(1 < 2)

(2 > 3)

(2 > 3)

To change an expression that evaluates to to
be — Oor vice versa — use the not operator:

Notebook: Practice

Conditional statements

. iS a conditional statement.

Conditionals allow us to branch — maybe we
evaluate this expression; maybe we don't!

1T < 2:
print("All is right in the world")

If the condition
is true, the
code indented

under it is run.

1T < 2:
print("All is right in the world")

If the condition
print("All is right in the world") is true, the

code indented

under it is run.

1 < 2:
print("All is right in the world")

print("All is right in the world")

print("All is right in the world")

If the condition
is true, the
code indented

under it is run.

1 < 2:
print("All is right in the world")

print("All is right in the world")

print("All is right in the world")

If the condition
is true, the
code indented

under it is run.

All 1s right in the world

1 > 2:
print("Watch out for flying pigs")

If the condition
is false, the
code indented
under it is
skipped.

1 > 2

print("Watch out for flying pigs") If the condition

is false, the
code indented

print("Watch out for flying pigs")

under it is

skipped.

1 > 2

print("Watch out for flying pigs") If the condition

is false, the

' code indented
print("Watch out for flying pigs")

under it is

skipped.

1T > 2:
print("Watch out for flying pigs")

print("Life goes on'")

Even if the
condition is
false, Python
runs the code
dfter it.

1T > 2:
print("Watch

print("Life goes

out for flying pigs")

On")

print("Watch

print("Life goes

out for flying pigs")

Oﬂ")

Even if the
condition is
false, Python
runs the code
dfter it.

1T > 2:
print("Watch

print("Life goes

out for flying pigs")

On")

print("Watch

print("Life goes

out for flying pigs")

Oﬂ")

print("Life goes

On")

Even if the
condition is
false, Python
runs the code
dfter it.

1T > 2:
print("Watch

print("Life goes

out for flying pigs")

On")

print("Watch

print("Life goes

out for flying pigs")

Oﬂ")

print("Life goes

On")

Even if the
condition is
false, Python
runs the code
dfter it.

Life goes on

Sometimes, you need a Plan B, so you can pair if
with else.

1 < 2:
print("All is right in the world")

print("Watch out for flying pigs")

1 < 2:
print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

print("Watch out for flying pigs")

1 < 2:
print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

1 < 2:
print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

All is right in the world

1 > 2:
print("All is right in the world")

print("Watch out for flying pigs")

1 > 2:
print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

print("Watch out for flying pigs")

1 > 2:
print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

print("Watch out for flying pigs")

print("Watch out for flying pigs")

1 > 2:
print("All is right in the world")

print("Watch out for flying pigs")

print("All is right in the world")

print("Watch out for flying pigs")

print("Watch out for flying pigs")

Watch out for flying pigs

And if we want to play Twenty Questions, we can
keep going, adding elif (“else if”) to our if—else.

Notebook: Conditional statements

Preview: Defining functions

Recall how you defined functions in middle-school
math:

Given f(X) — ‘ X‘ + 5 The parameter x stands
% Y~ for varying values
f(=3) =13 + 2

=5

Python functions work much the same way:
f(x): abs(x) + 2

Python functions work much the same way:
f(x): abs(x) + 2

f(-3)

Python functions work much the same way:
f(x): abs(x) + 2

f(-3) Directory

Name Value

X -5

Python functions work much the same way:
f(x): abs(x) + 2

f(-3) Directory

— abs(x) + 2 Name Value

X -5

Python functions work much the same way:
f(x): abs(x) + 2

f(-3) Directory

— abs(x) + 2 Name Value

— abs(-3) + 2
X -5

Python functions work much the same way:
f(x): abs(x) + 2

f(-3) Directory

— abs(x) + 2 Name Value

— abs(-3) + 2
— 3 + 2 X -5

Python functions work much the same way:

f(x): abs(x) + 2
F(-3) Directory
— abs(x) + 2 Name Value
— abs(-3) + 2
— 3 + 2 X -5
— 5

Notebook: Preview: Defining functions

Acknowledgments

This class incorporates material from:

Kathi Fisler, Brown University

Katie Keith and Steve Freund, Williams College

Data 6, University of California, Berkeley (CC BY-NC-SA)
Data 8, University of California, Berkeley (CC BY-NC-SA)

