CMPU 100 - Programming with Data

Data Sequences

Class g

Tomorrow:

Assignment 1 due at 11:59 p.m.

Assignment 2 out 5§ p.m.

Where are we?

In Python, we can write code to work with data
represented as:

Integers 42, -3, 10000
Floating-point numbers 0.0, -3.6, 4.2
Booleans ,

Text strings "Alan Turing", "50%", "$3.50"

Notebook: Where are we?

Strings

A text string is a sequence of characters — letters,
numbers, punctuation.

Ve can access these characters by their position in
the sequence.

"Vassar"[0]

IIVII

"Vassar"[0]

IIVII

"Vassar"[1]

—_ IIaII

"Vassar"[0]

IIVII

"Vassar"[1]

—_ IIaII

"Vassar"[2]

IISII

We can use negative numbers to index
from the end of the string.

"Vassar"[-1]

IIr-II

We can use negative numbers to index

from the end of the string.

"Vassar"[-1]

IIr-II

"Vassar"[-2]

—_ IIaII

We can use negative numbers to index

from the end of the string.

"Vassar"[-1]

IIr-II

"Vassar"[-2]

—_ IIaII

"Vassar"[-3]

"S"

We can use negative numbers to index

from the end of the string.

We can also slice a sequence to access a subsequence.

Instead of a single index, we specify

/start: end]
the position to start the position to end
at, including that before, excluding that
character character

"Vassar"[0:1]

IIVII

"Vassar"[0:1]

IIVII

"Vassar"[0:2]

—_ IIVaII

"Vassar"[0:1]

IIVII

"Vassar"[0:2]

—_ IIVaII

"Vassar"[0:3]

"VaS"

Notebook: Strings

Lists

While a string is a sequence of characters, a list is a
sequence of any data we want!

To make a list, just enclose the contents in square
brackets, e.g.,

["FI"OdO", "Sam", "MEI"I"\/", "Pippiﬂ"]

[1, 2, 3]

Lists can hold a mix of different data types, e.g,,
[1.0, -3, , "'Spring"]
and even other lists:

[[1, 2, 3], [4, 5, 6]]

Just like with strings, we can access individual
elements or subsequences, we can ask in questions,
and we can concatenate lists using +.

Notebook: Lists

Processing lists with map and filter

We've seen that we can call a function on data, e.g,
max (10, 12)

but we can also pass one function as an input to
another function to tell it what to do.

These are called higher-order functions, and they'll let
us work with the individual elements of a list.

map (function, input list)

When you call map, it returns a new list, where
each item in input list has been transformed by

running function on It.

function

input list

output list

output list

~ ~ ~

AN ™ O «™ (N

Notebook:
Processing lists with map and filter

Arrays

An array is like a list, but designed for efficient
computations, especially when they contain
numbers.

Specifically, we'll be using the arrays from the
popular NumPy library, which we load using an
import statement:

numpy np

Ve can make an array out of a list by calling the
np.array function on it:

np.array([1, 2, 3])

—|array([1, 2, 3])

Values in an array must all be of the same data type,
and Python will attempt to convert (cast) them as
appropriate:

np.array([5, -1, 0.3, 5])

— | array([5.0, -1.0, 0.3, 5.0])

np.array([4, -4.5, "not a number"])

— |array(["4", "-4.5", "not a number"])

For strings and lists, + joined two sequences
together, one after another.

For arrays, it's element-wise addition:

np.array([1, 2, 3]) +
np.array([1, 2, 3])

— |array([2, 4, 6])

np.array([-2, 1, 0]) +
np.array([2, -1, 0])

— |array ([0, 0, 0])

We can also easily scale the elements of an array by
multiplying them by a single number:

np.array([1, 2, 3]) * 2

— |array([2, 4, 6])

Or add a single number to each element:

np.array([1, 2, 3]) + 2

— |array([3, 4, 5])

NumPy provides convenient built-in functions, e.g.,

np.mean(np.array([1, 2, 3]1))

— 2.0

Example

We can measure how much the radius of a tree
grows in a given year by measuring the width of tree
ring for that year

Suppose we have the ring widths (in mm) for a tree
for five years:

ring widths = np.array([3, 2, 1, 1, 3])

What was the total growth?

np.sum(ring_widths)

What was the average growth?

np.mean(ring_widths)

And np.diff produces an array of the differences
between adjacent elements in the input, letting us
see how the ring widths changed rom year to year

ring widths = np.array([3, 2, 1, 1, 3])

And np.diff produces an array of the differences
between adjacent elements in the input, letting us
see how the ring widths changed rom year to year

ring widths = np.array([3, 2, 1, 1, 3])

3 2 1 1 3

S\

np.diff(ring_widths)

Notebook: Arrays

Next week, we'll see how we can build on arrays to
work with tables of datal

