
Data Sequences

Class 5

CMPU 100 · Programming with Data

Tomorrow:
Assignment 1 due at 11:59 p.m.

Assignment 2 out 5 p.m.

Where are we?

In Python, we can write code to work with data
represented as:

Integers	 42, -3, 10000

Floating-point numbers	 0.0, -3.6, 4.2

Booleans	 True, False

Text strings	 "Alan Turing", "50%", "$3.50"

Notebook: Where are we?

Strings

A text string is a sequence of characters – letters,
numbers, punctuation.

We can access these characters by their position in
the sequence.

0 1 2 3 4 5

" V a s s a r "

"Vassar"[0]

→ "V"

0 1 2 3 4 5

" V a s s a r "

"Vassar"[0]

→ "V"

"Vassar"[1]

→ "a"

0 1 2 3 4 5

" V a s s a r "

"Vassar"[0]

→ "V"

"Vassar"[1]

→ "a"

"Vassar"[2]

→ "s"

0 1 2 3 4 5

" V a s s a r "

0 1 2 3 4 5

" V a s s a r "
−6 −5 −4 −3 −2 −1

We can use negative numbers to index
from the end of the string.

"Vassar"[-1]

→ "r"

0 1 2 3 4 5

" V a s s a r "
−6 −5 −4 −3 −2 −1

We can use negative numbers to index
from the end of the string.

"Vassar"[-1]

→ "r"

"Vassar"[-2]

→ "a"

0 1 2 3 4 5

" V a s s a r "
−6 −5 −4 −3 −2 −1

We can use negative numbers to index
from the end of the string.

"Vassar"[-1]

→ "r"

"Vassar"[-2]

→ "a"

"Vassar"[-3]

→ "s"

0 1 2 3 4 5

" V a s s a r "
−6 −5 −4 −3 −2 −1

We can use negative numbers to index
from the end of the string.

We can also slice a sequence to access a subsequence.

Instead of a single index, we specify

[start:end]

the position to start
at, including that
character

the position to end
before, excluding that
character

0 1 2 3 4 5

" V a s s a r "

"Vassar"[0:1]

→ "V"

0 1 2 3 4 5

" V a s s a r "

"Vassar"[0:1]

→ "V"

"Vassar"[0:2]

→ "Va"

0 1 2 3 4 5

" V a s s a r "

"Vassar"[0:1]

→ "V"

"Vassar"[0:2]

→ "Va"

"Vassar"[0:3]

→ "Vas"

0 1 2 3 4 5

" V a s s a r "

Notebook: Strings

Lists

While a string is a sequence of characters, a list is a
sequence of any data we want!

To make a list, just enclose the contents in square
brackets, e.g.,

["Frodo", "Sam", "Merry", "Pippin"]

[1, 2, 3]

Lists can hold a mix of different data types, e.g.,

[1.0, -3, True, "Spring"]

and even other lists:

[[1, 2, 3], [4, 5, 6]]

Just like with strings, we can access individual
elements or subsequences, we can ask in questions,
and we can concatenate lists using +.

Notebook: Lists

Processing lists with map and filter

We’ve seen that we can call a function on data, e.g.,
max(10, 12)

but we can also pass one function as an input to
another function to tell it what to do.

These are called higher-order functions, and they’ll let
us work with the individual elements of a list.

map(function, input list)

When you call map, it returns a new list, where
each item in input list has been transformed by
running function on it.

function

input list

map output list

abs

[
 -2,
 -1,
 0,
 1,
 2
]

map output list

abs

[
 -2,
 -1,
 0,
 1,
 2
]

map

[
 abs(-2),
 abs(-1),
 abs(0),
 abs(1),
 abs(2)
]

abs

[
 -2,
 -1,
 0,
 1,
 2
]

map

[
 2,
 1,
 0,
 1,
 2
]

Notebook:
Processing lists with map and filter

Arrays

An array is like a list, but designed for efficient
computations, especially when they contain
numbers.

Specifically, we’ll be using the arrays from the
popular NumPy library, which we load using an
import statement:

import numpy as np

We can make an array out of a list by calling the
np.array function on it:

np.array([1, 2, 3])

→ array([1, 2, 3])

Values in an array must all be of the same data type,
and Python will attempt to convert (cast) them as
appropriate:

np.array([5, -1, 0.3, 5])

→ array([5.0, -1.0, 0.3, 5.0])

np.array([4, -4.5, "not a number"])

→ array(["4", "-4.5", "not a number"])

For strings and lists, + joined two sequences
together, one after another.

For arrays, it’s element-wise addition:

np.array([1, 2, 3]) +
np.array([1, 2, 3])

→ array([2, 4, 6])

np.array([-2, 1, 0]) +
np.array([2, -1, 0])

→ array([0, 0, 0])

We can also easily scale the elements of an array by
multiplying them by a single number:

Or add a single number to each element:

np.array([1, 2, 3]) * 2

→ array([2, 4, 6])

np.array([1, 2, 3]) + 2

→ array([3, 4, 5])

NumPy provides convenient built-in functions, e.g.,

np.mean(np.array([1, 2, 3]))

→ 2.0

Example

We can measure how much the radius of a tree
grows in a given year by measuring the width of tree
ring for that year

Suppose we have the ring widths (in mm) for a tree
for five years:

ring_widths = np.array([3, 2, 1, 1, 3])

What was the total growth?
np.sum(ring_widths)

What was the average growth?
np.mean(ring_widths)

And np.diff produces an array of the differences
between adjacent elements in the input, letting us
see how the ring widths changed rom year to year

ring_widths = np.array([3, 2, 1, 1, 3])

3 2 1 1 3

And np.diff produces an array of the differences
between adjacent elements in the input, letting us
see how the ring widths changed rom year to year

ring_widths = np.array([3, 2, 1, 1, 3])

np.diff(ring_widths)

3 2 1 1 3

-1 -1 0 2

Notebook: Arrays

Next week, we’ll see how we can build on arrays to
work with tables of data!

