Generating Fractals

4 October 2023
Exam 1 review *tonight*, 7–8:30 pm

Taylor 203
Our Personalized Web

The Role – and Consequences – of Recommendation Algorithms for News

Jenna Lemonias
Executive Director, Data Science
The Atlantic

4 pm, Friday October 6
New England 206
Where are we?
data **List**:
 | empty
 | link(first :: Any, rest :: List)
end
data List:
 | empty
 | link(first :: Any, rest :: List)
end

fun list-fun(lst :: List) -> ...
cases (List) lst:
 | empty => ...
 | link(f, r) =>
 ... f ...
 ... list-fun(r) ...
end
end
The same idea holds for lists, binary trees, trinary trees, n-ary trees, and all kinds of other recursive data types: *The structure of the function follows the structure of the data.*
The recursive functions we’ve written have used *structural* (or *natural*) *recursion*.

In structural recursion, each recursive call takes some sub-piece of the data.

Going through a list, we keep taking the **rest** of the list.

Going through a tree, we keep looking at the sub-trees.
Generative recursion
In *generative recursion*, the recursive cases are generated based on the problem to be solved.

Generative recursion can be harder because neither the base nor recursive cases follow from a data definition.
Template for generative recursion

fun problem-solver(d) -> ...:
 if is-trivial(d):
 # Base case: The computation is in some way trivial.
 ... d ...
 else:
 # Recursive case: Transform the data d to generate new problems.
 combiner(
 ...d...,
 problem-solver(transform(d)),
 ...
)
end
end
When you write a function with generative recursion you need to be careful about termination – how do you know you’ll ever reach the base case?
Fractals
“A fractal is a way of seeing infinity.”

Benoit Mandelbrot
Let’s design a function that consumes a number and produces a *Sierpiński triangle* of that size:

Start with an equilateral triangle with side length s:

```
    /
   /\n  /  \n```

Inside that triangle are three more Sierpiński triangles:

```
 /
 /\n / \n```

And inside of each of those ... and so on.

Producing something that looks like this:
How small a shape can get before we stop drawing smaller ones

CUTOFF = 10

fun s-tri(s :: Number) -> Image:
 doc: "Produce a Sierpiński triangle of the given size by generating one for s/2 and placing one copy above two copies"
 if s <= CUTOFF:
 triangle(size, "outline", "red")
 else:
 sub = s-tri(s / 2)
 above(sub, beside(sub, sub))
 end
end
How do we know that this function won’t run forever?

Three-part termination argument:

- **Base case**: $s \leq \text{CUTOFF}$
- **Reduction step**: $s / 2$

Argument that repeated application of reduction step will eventually reach the base case:

As long as the cutoff is > 0 and s starts ≥ 0, repeated division by 2 will eventually be less than the cutoff.
Exercise

Design a function s-carpet to produce a Sierpiński carpet of size s:

![Sierpiński carpet diagram]
Exercise

Design a function \texttt{s-carpet} to produce a Sierpiński carpet of size s:

There are \texttt{eight} copies of the recursive call positioned around a blank square.
fun s-carpet(s :: Number) -> Image:
 doc: "Draw a Sierpiński carpet of size s-by-s by generating an s/3 carpet and positioning it on every side of an empty s/3 square"
 if s <= CUTOFF:
 square(s, "outline", "red")
 else:
 sub = s-carpet(s / 3)
 blk = square(s / 3, "solid", "white")
 above3(
 beside3(sub, sub, sub),
 beside3(sub, blk, sub),
 beside3(sub, sub, sub))
end
How do we know that this function won’t run forever?

Three-part termination argument:

- **Base case**: \(s \leq \text{CUTOFF} \)
- **Reduction step**: \(s / 3 \)
- **Argument that repeated application of reduction step will eventually reach the base case**:

 As long as the cutoff is \(> 0 \) and \(s \) starts \(\geq 0 \), repeated division by 3 will eventually be less than the cutoff.
Animation
What if we want to see the progression of the fractal becoming more complex?
```python
>>> map(s-tri, [list: 10, 20, 40, 80])

[ list: △, △, △△, △△△ ]
```

Exciting! Dynamic!
It might be more fun to see this change over time rather than flattened into a list.
Pyret has a mechanism for supporting interactive visual programs, called a reactor.

To use it, first write

```
include reactors
```
reactor:
 init: initial-state,
 to-draw: draw-function,
 event-type: event-function,
end
Class code:
tinyurl.com/101-2023-10-04
Acknowledgments

This lecture incorporates material from:

Gregor Kiczales, University of British Columbia
Marc Smith, Vassar College