List Abbreviations and Natural Numbers

8 October 2020
Assignment 1

Example solutions available

Assignment 2

Due on Tuesday

Exam 1

Review tomorrow

Self-scheduled over the next few days
List abbreviations
Writing down large lists

What does the list containing 0 to 10 look like?
Writing down large lists

What does the list containing 0 to 10 look like?

(cons 0
 (cons 1
 (cons 2
 (cons 3
 (cons 4
 (cons 5
 (cons 6
 (cons 7
 (cons 8
 (cons 9
 (cons 10
 '))))))))))}
Writing down large lists

What does the list containing 0 to 10 look like?

(cons 0 (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8 (cons 9 (cons 10 '())))))))))))
Writing down large lists

What does the list containing 0 to 10 look like?

(cons 0 (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8 (cons 9 (cons 10 '()))))))))))

Here’s a shortcut:

> (list 0 1 2 3 4 5 6 7 8 9 10)

The list operator takes any number of arguments and constructs a list.
Writing down large lists

What does the list containing 0 to 10 look like?

(cons 0 (cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8 (cons 9 (cons 10 '())))))))))))

Here’s a shortcut:

> (list 0 1 2 3 4 5 6 7 8 9 10)
(cons 1 (cons 2 (cons 3 (cons 4 (cons 5 (cons 6 (cons 7 (cons 8 (cons 9 (cons 10 '())))))))))))

DrRacket still prints 11 conses as the value. 😞
Printing large lists

If you change DrRacket’s language level to *Beginning Student with List Abbreviations*, then DrRacket prints list values using the same abbreviation:

\[
> \text{(list 0 1 2 3 4 5 6 7 8 9 10)}
\]
\[
\text{(list 0 1 2 3 4 5 6 7 8 9 10)}
\]
Printing large lists

If you change DrRacket’s language level to *Beginning Student with List Abbreviations*, then DrRacket prints list values using the same abbreviation:

> (list 0 1 2 3 4 5 6 7 8 9 10)
 (list 0 1 2 3 4 5 6 7 8 9 10)

> (cons 1 (cons 2 (cons 3 '())))
 (list 1 2 3)
So, why have we been using this cumbersome notation of consing one element at a time?
So, why have we been using this cumbersome notation of \texttt{cons}ing one element at a time?

Lists are self-referential data, which we process by writing recursive functions.
So, why have we been using this cumbersome notation of \texttt{cons}ing one element at a time?

\begin{itemize}
 \item \textit{Lists are self-referential data, which we process by writing recursive functions.}
 \item \textit{Using \texttt{cons} makes this structure clear.}
 \item \textit{Using list abbreviations hides it.}
\end{itemize}
list and cons don’t do the same thing

> (define L1 (list "b" "c"))
> (define L2 (list "d" "e" "f"))

> (cons "a" L1)
(list "a" "b" "c")
list and cons don't do the same thing

> (define L1 (list "b" "c"))
> (define L2 (list "d" "e" "f"))

> (cons "a" L1)
(list "a" "b" "c")

Produce a new list by adding "a" to the front of L1
list and cons don’t do the same thing

> (define L1 (list "b" "c"))
> (define L2 (list "d" "e" "f"))

> (cons "a" L1)
(list "a" "b" "c")

> (list "a" L1)
(list "a" (list "b" "c"))

Produce a new list by adding "a" to the front of L1
list and cons don’t do the same thing

> (define L1 (list "b" "c"))
> (define L2 (list "d" "e" "f"))

> (cons "a" L1)
(list "a" "b" "c")

Produce a new list by adding "a" to the front of L1

> (list "a" L1)
(list "a" (list "b" "c"))

Produce a new list with "a" as the first element and L1 as the second element
To add one element to a list, you still want to use cons, not list.

To define a fully formed list all at once, you can use list.
When to change language levels

1. You’re not tempted to write examples like this:

 (check-expect (feed-fish (cons 1 (cons 2 '())))
 2 3)
When to change language levels

1. You’re not tempted to write examples like this:

 (check-expect (feed-fish (cons 1 (cons 2 '()))
 2 3)

2. Your eyes hurt when you see

 (cons 1 (cons 2))

 because it isn’t a ListOfNumbers.
When to change language levels

1 You’re not tempted to write examples like this:
 (check-expect (feed-fish (cons 1 (cons 2 '())))
 2 3)

2 Your eyes hurt when you see
 (cons 1 (cons 2))
because it isn’t a ListOfNumbers.

3 When you see
 (list 1 2 3)
 (cons 1 (cons 2 (cons 3 '())))
you recognize instantly that they’re the same.
When to change language levels

1. You’re not tempted to write examples like this:

   ```scheme```
   (check-expect (feed-fish (cons 1 (cons 2 '())))
   2 3)
   ```scheme```

2. Your eyes hurt when you see

   ```scheme```
   (cons 1 (cons 2))
   ```scheme```

 because it isn’t a *ListOfNumbers*.

3. When you see

   ```scheme```
   (list 1 2 3)
   (cons 1 (cons 2 (cons 3 '())))
   ```scheme```

 you recognize instantly that they’re the same.

*Don’t switch until you understand how *ListOf… functions match the shape of the data definition.*
Even shorter

For the brave, there’s an even shorter shortcut!
Even shorter

For the brave, there’s an even shorter shortcut!

'(1 2 3)
is the same as

(list 1 2 3)

We use an apostrophe to quote Racket expressions we don’t want to be evaluated.

You’ve already seen this notation for the empty list, '(()).

When we write an apostrophe before a non-empty list, the apostrophe gets distributed to everything inside.
We can use an apostrophe to quote symbols so Racket doesn’t try to look up a value for them, e.g.,

```racket
> (define p 3)
> p
3
> 'p
p
```

For a list, any symbols inside are quoted when the list is quoted:

```racket
'(apple banana)
```

is the same as

```racket
(list 'apple 'banana)
```

But quoting numbers has no effect since they already evaluate to themselves.

```racket
> 1
1
> '1
1
> '(1 2 3)
(list 1 2 3)
```
Here’s a list of list-of-numbers using the shortcut:

'((1 2 3) (2 4 6 8) (3 9 27))
Here’s a list of list-of-numbers using the shortcut:

```
'((1 2 3) (2 4 6 8) (3 9 27))
```

which is the same as

```
(list (list 1 2 3)
     (list 2 4 6 8)
     (list 3 9 27))
```
Here’s a list of list-of-numbers using the shortcut:

```
'(((1 2 3) (2 4 6 8) (3 9 27))
```

which is the same as

```
(list (list 1 2 3)
     (list 2 4 6 8)
     (list 3 9 27))
```

which is the same as

```
(cons (cons 1
        (cons 2
            (cons 3 '())))
      (cons (cons 2
                (cons 4
                    (cons 6
                        (cons 8 '()))))
            (cons (cons 3
                        (cons 9
                            (cons 27 '())) '()))))
```
Natural numbers
Numbers to generate lists

Implement **countdown**, which takes a non-negative integer \(n \) and produces a list of numbers from \(n \) to 0, inclusive.

\[
;; \text{Number} \rightarrow \text{ListOfNumbers}
\]

(check-expect (countdown 0) (list 0))
(check-expect (countdown 3) (list 3 2 1 0))
Numbers to generate lists

Implement **countdown**, which takes a non-negative integer \(n \) and produces a list of numbers from \(n \) to 0, inclusive.

\[
;;; \text{Number} \rightarrow \text{ListOfNumbers}
\]

(check-expect (countdown 0) (list 0))
(check-expect (countdown 3) (list 3 2 1 0))

The template for **Number** isn’t much help:

(define (number-template n)
 (... n))

But **countdown** actually takes a *natural number.*
Natural numbers

;; A Natural is one of:
;; - 0
;; - (add1 Natural)
Natural numbers

;;; A Natural is one of:
;;; – 0 base case
;;; – (add1 Natural)
Natural numbers

;; A Natural is one of:
;; - 0 base case
;; - (add1 Natural)
Natural numbers

;;; A Natural is one of:
;;; – 0 base case
;;; – (add1 Natural)

Examples:

0
(add1 0)
(add1 (add1 0))
(add1 (add1 (add1 0)))
Natural numbers

;; A Natural is one of:
;; - 0
;; - (add1 Natural)

Examples:

0 → 0
(add1 0) → 1
(add1 (add1 0)) → 2
(add1 (add1 (add1 0))) → 3

These examples have shortcuts 0, 1, 2, and 3, but the long forms correspond to the template.
add1

sub1

cons

rest
add1 produces a natural number 1 bigger

cons produces a list 1 item longer

sub1 rest
add1 produces a natural number 1 bigger

sub1 produces a natural number 1 smaller

cons produces a list 1 item longer

rest produces a list 1 item shorter
Now that we have a data definition for natural numbers, we’ll need a template for functions that consume natural numbers.
Recall where the template for a list of numbers comes from:

```plaintext
;; A ListOfNumbers is one of:
;;  - '()
;;  - (cons Number ListOfNumbers)
```
Recall where the template for a list of numbers comes from:

```scheme
;; A ListOfNumbers is one of:
;; - '()  
;; - (cons Number ListOfNumbers)
```

To derive a template, we used a `cond` for the two cases.

We broke up the non-empty list `(cons f r)` using

- the selector `first` to extract `f`
- the selector `rest` to extract `r`, and
- an application of the function on `r`.

Recall where the template for a list of numbers comes from:

```scheme
;;; A ListOfNumbers is one of:
;;; - '()
;;; - (cons Number ListOfNumbers)

(define (lon-template lon)
  (cond [[(empty? lon)
          (...)]
        [(cons? lon)
          (... (first lon)
              ... (lon-template (rest lon)))])
)
```

We also could have written `else` as the test for the second case
Recall where the template for a list of numbers comes from:

```scheme
;; A ListOfNumbers is one of:
;; - '()
;; - (cons Number ListOfNumbers)
```

```scheme
(define (lon-template lon)
  (cond [(empty? lon) (...)]
        [(cons? lon) (... (first lon)
                          (... (lon-template (rest lon)))])])
```

We also could have written `else` as the test for the second case.
Recall where the template for a list of numbers comes from:

```scheme
(define (list-template lon)
  (cond [(empty? lon) (...)]
        [(cons? lon) (... (first lon) ... (list-template (rest lon)))]))
```

We also could have written `else` as the test for the second case.
Similarly, we’ll use the data definition for a natural number:

```scheme
;; A Natural is one of:
;; – 0
;; – (add1 Natural)
```
Similarly, we’ll use the data definition for a natural number:

;;; A Natural is one of:
;;; - 0
;;; - (add1 Natural)

To derive a template for a natural number \(n \), we will use a \texttt{cond} for the two cases.

We will break up the non-zero case \(n = (\text{add1 } k) \) using

the function \texttt{sub1} to extract \(k \) and

an application of the function on \(k \), i.e., on \(\text{sub1 } n \)
Similarly, we’ll use the data definition for a natural number:

```
;; A Natural is one of:
;; - 0
;; - (add1 Natural)
```

```
(define (nat-template n)
  (cond [(zero? n)
          (...)]
        [else
          (... n
            ... (nat-template (sub1 n)))]
)
```
Similarly, we’ll use the data definition for a natural number:

;; A Natural is one of:
;; - 0
;; - (add1 Natural)

(define (nat-template n)
 (cond [(zero? n) (...)]
 [else (... n ...
 ... (nat-template (sub1 n)))]))
Similarly, we’ll use the data definition for a natural number:

`; A Natural is one of:`
`; - 0`
`; - (add1 Natural)`

```
(define (nat-template n)
  (cond
    [(zero? n) (...)]
    [else (... n ...
           ... (nat-template (sub1 n)))]))
```
We haven’t defined \textit{ListOfNaturals} as a data type! Don’t we need to?

Well, \textit{ListOfNaturals} is the \textit{produced} type (as opposed to the \textit{consumed} type), so we won’t need a template for it.

You also know what the data definition would look like!

All of our \textit{ListOf*} data definitions follow the same pattern. Starting next week, we'll introduce the \textit{[List-of …]} abstraction to capture this commonality.
;;; countdown : Natural -> ListOfNaturals
;;; Produces a decreasing list of Naturals starting at n and
;;; ending with 0
(define (countdown n) '())

(check-expect (countdown 0) (list 0))
(check-expect (countdown 3) (list 3 2 1 0))
;; countdown : Natural -> ListOfNaturals
;; Produces a decreasing list of Naturals starting at n and
;; ending with 0
(define (countdown n)
 (cond [(zero? n)
 (...)]
 [else
 (... n
 (... (countdown (sub1 n)))]))

(check-expect (countdown 0) (list 0))
(check-expect (countdown 3) (list 3 2 1 0))
(define (countdown n)
 (cond [(zero? n)
 (list 0)]
 [else
 (cons n (countdown (sub1 n)))]))

(check-expect (countdown 0) (list 0))
(check-expect (countdown 3) (list 3 2 1 0))
Condensed trace of countdown

(countdown 2)
→ (cons 2 (countdown 1))
→ (cons 2 (cons 1 (countdown 0)))
→ (cons 2 (cons 1 (cons 0 '())))
If the function `countdown` is applied to a negative argument, it won’t terminate.

We said its behavior is only defined when it’s given a natural number, but it’s easy to let the function handle negative arguments gracefully:

```scheme
(define (countdown n)
  (cond [(<= n 0) ; Was (zero? n)
         (list 0)]
        [else
         (cons n (countdown (sub1 n)))]))
```
Beware

Some people use “natural number” to mean the non-negative integers 0, 1, 2, 3, …

Others use it to mean the positive integers 1, 2, 3, …

There’s no right or wrong answer; it’s just a difference in terminology. If you’re not sure what someone means, ask.
In a world without numbers...
Imagine Racket was created by someone with *numerophobia* – a fear of numbers.

It would still be a cool programming language, but you’d have a hard time writing a lot of programs.
Ask yourself: What would MacGyver do?
“No problem”, MacGyver says, “My mind is the ultimate weapon.”

“I remember the self-referential data definition for Natural. I’ve heard that add1 is kind of like cons and sub1 is kind of like rest. With some fishing line and a AA battery, I think I can make this work…”
Let’s define a new data type:

```
;; A NaTuRaL is one of:
;;   - '()
;;   - (cons "!" NaTuRaL)
;; Interp.: a natural number; the number of "!" in the list is the number
```

```
(define N0 '())           ; 0
(define N1 (cons "!" N0)) ; 1
(define N2 (cons "!" N1)) ; 2
(define N3 (cons "!" N2)) ; ...
(define N4 (cons "!" N3))
(define N5 (cons "!" N4))
(define N6 (cons "!" N5))
(define N7 (cons "!" N6))
(define N8 (cons "!" N7))
(define N9 (cons "!" N8))
```
These are the primitives that operate on \texttt{NaTuRaL} numbers:

\begin{verbatim}
;; \texttt{Any} \rightarrow \texttt{Boolean}
(define (ZeRo? n) (empty? n))

;; \texttt{NaTuRaL} \rightarrow \texttt{NaTuRaL}
(define (AdD1 n) (cons "!" n))

;; \texttt{NaTuRaL}[>0] \rightarrow \texttt{NaTuRaL}
(define (SuB1 n) (rest n))
\end{verbatim}
With these primitives, the template for a function that takes a \textit{NaTuRaL} number looks familiar:

\begin{verbatim}
(define (fn-for-nat n)
 (cond [(zero? n) (...)]
 [else (... n
 ... (fn-for-nat (sub1 n)))]))

(define (fn-for-NaTuRaL n)
 (cond [(ZeRo? n) (...)]
 [else (... n
 ... (fn-for-NaTuRaL (SuB1 n)))]))
\end{verbatim}
Now that we have the template, we can define some functions for our ersatz natural numbers. We have **AdD1**, but not plain old addition of two numbers.
;; $\text{NaTuRaL NaTuRaL} \rightarrow \text{NaTuRaL}$

;; Produce $a + b$

(check-expect (AdD N2 N0) N2)
(check-expect (AdD N0 N3) N3)
(check-expect (AdD N3 N4) N7)

(define (AdD a b) ...)

;; $\text{NaTuRaL NaTuRaL} \rightarrow \text{NaTuRaL}$
;; NaTuRaL NaTuRaL -> NaTuRaL
;; Produce a + b
(check-expect (AdD N2 N0) N2)
(check-expect (AdD N0 N3) N3)
(check-expect (AdD N3 N4) N7)

(define (AdD a b)
 (cond [(ZeRo? b) (...)]
 [else (... b
 (... (AdD a (SuB1 b))))]))

Note: We need to include a in the recursive call because AdD takes two arguments.
;; Produce a + b

(define (AdD a b)
 (cond [(ZeRo? b)
 ;; Adding 0 to number 'a' gives us 'a'
 a]
 [else
 (... b
 ... (AdD a (SuB1 n)))]))
For the recursive case, imagine addition as moving pebbles from one pile to the other:

\[a = 3 \quad b = 2 \]
For the recursive case, imagine addition as moving pebbles from one pile to the other:

\[a = 4 \quad b = 1 \]
For the recursive case, imagine addition as moving pebbles from one pile to the other:

\[a = 5 \quad b = 0 \]
;;; Natural Natural --> Natural
;;; Produce a + b
(check-expect (AdD N2 N0) N2)
(check-expect (AdD N0 N3) N3)
(check-expect (AdD N3 N4) N7)

(define (AdD a b)
 (cond [(ZeRo? b)
 ;; Adding 0 to number 'a' gives us 'a'
 a]
 [else
 (AdD (AdD1 a) (SuB1 b))])))
How do we **SuBtrAcT** one **NaTuRaL** from another?
;;; Natural Natural -> Natural
;;; Produce a - b
(check-expect (Subtract N2 N0) N2)
(check-expect (Subtract N6 N2) N4)

(define (Subtract a b)
 (cond [(Zero? b) a]
 [else
 (Subtract (Sub1 a) (Sub1 b))])))
We can do arithmetic with natural numbers, without using any numbers:

\[
\begin{align*}
&> \ (\text{AdD} \ N2 \ N3) \\
&\quad (\text{list } "!" "!" "!" "!" "!" "!") ; = N5 \\
&> \ (\text{SubtRact} \ N7 \ (\text{AdD} \ N2 \ N3)) \\
&\quad (\text{list } "!" "!" "!" "!" "!" "!") ; = N2
\end{align*}
\]

MacGyvered!
Here ends the first part of the course:

How to Design Programs, Parts I & II
Exam 1

Here begins the second part of the course:

How to Design Programs, Parts III & IV
Exam 2
Here ends the first part of the course:

How to Design Programs, Parts I & II

Exam 1

Here begins the second part of the course:

How to Design Programs, Parts III & IV

Exam 2

Well, approximately.

Exam 1 will emphasize earlier material.

Because earlier concepts support the later ones, the exams are unavoidably cumulative.

We’ll review for Exam 1 next class.
Acknowledgments

This lecture incorporates material from:

Matthias Felleisen
Robert Bruce Findler
Matthew Flatt
Gregor Kiczales
Shriram Krishnamurthi
Marc Smith