Tables

31 January 2022
Lab 2
Due Friday

Assignment 2
Due Thursday
Where are we?
Here are some data that can be represented with what we’ve seen so far:
Here are some data that can be represented with what we’ve seen so far:

A picture of a dog
Here are some data that can be represented with what we’ve seen so far:

- A picture of a dog
- The population of Azerbaijan

Image

Number
Here are some data that can be represented with what we’ve seen so far:

- A picture of a dog: *Image*
- The population of Azerbaijan: *Number*
- The complete text of the *Baghavad Gita*: *String*
Here are some data that can be represented with what we’ve seen so far:

- A picture of a dog \textit{Image}
- The population of Azerbaijan \textit{Number}
- The complete text of the \textit{Baghavad Gita} \textit{String}
- Whether or not I ate breakfast this morning \textit{Boolean}
What if we wanted to write a program to look up the population of any town in New York?

We can consider the last two census years – 2010 and 2020.
fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end
fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
end
fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
This is not a great way to do this.

Why not?
fun population (municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

What about the rest of the state?
fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
KEY IDEA Separate data from computations.
Tables
Tables are used for tabular data, like you might find in a spreadsheet.

<table>
<thead>
<tr>
<th>Municipality</th>
<th>Class</th>
<th>2010</th>
<th>2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adams</td>
<td>Town</td>
<td>5,143</td>
<td>4,973</td>
</tr>
<tr>
<td>Adams</td>
<td>Village</td>
<td>1,775</td>
<td>1,633</td>
</tr>
<tr>
<td>Addison</td>
<td>Town</td>
<td>2,595</td>
<td>2,397</td>
</tr>
<tr>
<td>Addison</td>
<td>Village</td>
<td>1,763</td>
<td>1,561</td>
</tr>
<tr>
<td>Afton</td>
<td>Town</td>
<td>2,851</td>
<td>2,769</td>
</tr>
<tr>
<td>Afton</td>
<td>Village</td>
<td>822</td>
<td>794</td>
</tr>
<tr>
<td>Airmont</td>
<td>Village</td>
<td>8,628</td>
<td>10,166</td>
</tr>
<tr>
<td>Akron</td>
<td>Village</td>
<td>2,868</td>
<td>2,888</td>
</tr>
<tr>
<td>Alabama</td>
<td>Town</td>
<td>1,869</td>
<td>1,602</td>
</tr>
<tr>
<td>Albany</td>
<td>City</td>
<td>97,856</td>
<td>99,224</td>
</tr>
<tr>
<td>Albion</td>
<td>Town</td>
<td>8,468</td>
<td>7,639</td>
</tr>
<tr>
<td>Albion</td>
<td>Village</td>
<td>2,073</td>
<td>2,009</td>
</tr>
<tr>
<td>Albion</td>
<td>Village</td>
<td>6,056</td>
<td>5,637</td>
</tr>
<tr>
<td>Alden</td>
<td>Town</td>
<td>10,865</td>
<td>9,706</td>
</tr>
<tr>
<td>Alden</td>
<td>Village</td>
<td>2,605</td>
<td>2,604</td>
</tr>
<tr>
<td>Alexander</td>
<td>Town</td>
<td>2,534</td>
<td>2,491</td>
</tr>
<tr>
<td>Alexander</td>
<td>Village</td>
<td>509</td>
<td>518</td>
</tr>
<tr>
<td>Alexandria</td>
<td>Town</td>
<td>4,061</td>
<td>3,741</td>
</tr>
<tr>
<td>Alexandria Bay</td>
<td>Village</td>
<td>1,078</td>
<td>924</td>
</tr>
<tr>
<td>Alfred</td>
<td>Town</td>
<td>5,237</td>
<td>5,157</td>
</tr>
<tr>
<td>Alfred</td>
<td>Village</td>
<td>4,174</td>
<td>4,026</td>
</tr>
<tr>
<td>Allegany</td>
<td>Town</td>
<td>8,004</td>
<td>7,493</td>
</tr>
<tr>
<td>Allegany</td>
<td>Village</td>
<td>1,816</td>
<td>1,544</td>
</tr>
<tr>
<td>Allen</td>
<td>Town</td>
<td>448</td>
<td>494</td>
</tr>
<tr>
<td>Alma</td>
<td>Town</td>
<td>842</td>
<td>781</td>
</tr>
<tr>
<td>Almond</td>
<td>Town</td>
<td>1,633</td>
<td>1,512</td>
</tr>
<tr>
<td>Almond</td>
<td>Village</td>
<td>466</td>
<td>415</td>
</tr>
<tr>
<td>Altamont</td>
<td>Village</td>
<td>1,720</td>
<td>1,675</td>
</tr>
<tr>
<td>Altona</td>
<td>Town</td>
<td>2,887</td>
<td>2,666</td>
</tr>
<tr>
<td>Amboy</td>
<td>Town</td>
<td>1,263</td>
<td>1,245</td>
</tr>
</tbody>
</table>
To define a table in Pyret, we specify its contents like so:

```pyret
municipalities =
    table: name, kind, pop-2010, pop-2020
    row: "Adams", "Town", 5143, 4973
    row: "Adams", "Village", 1775, 1633
    row: "Addison", "Town", 2595, 2397
    row: "Addison", "Village", 1763, 1561
    row: "Afton", "Town", 2851, 2769
...
To define a table in Pyret, we specify its contents like so:

```pyret
municipalities =
 table: name :: String, kind :: String,
 pop-2010 :: Number, pop-2020 :: Number
 row: "Adams", "Town", 5143, 4973
 row: "Adams", "Village", 1775, 1633
 row: "Addison", "Town", 2595, 2397
 row: "Addison", "Village", 1763, 1561
 row: "Afton", "Town", 2851, 2769
...
end
```

As with functions, we can specify the types for parts of a table.
### municipalities

<table>
<thead>
<tr>
<th>name</th>
<th>kind</th>
<th>pop-2010</th>
<th>pop-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Adams&quot;</td>
<td>&quot;Town&quot;</td>
<td>5143</td>
<td>4973</td>
</tr>
<tr>
<td>&quot;Adams&quot;</td>
<td>&quot;Village&quot;</td>
<td>1775</td>
<td>1633</td>
</tr>
<tr>
<td>&quot;Addison&quot;</td>
<td>&quot;Town&quot;</td>
<td>2595</td>
<td>2397</td>
</tr>
<tr>
<td>&quot;Addison&quot;</td>
<td>&quot;Village&quot;</td>
<td>1763</td>
<td>1561</td>
</tr>
<tr>
<td>&quot;Afton&quot;</td>
<td>&quot;Town&quot;</td>
<td>2851</td>
<td>2769</td>
</tr>
</tbody>
</table>
A bit later, we’ll see how we can load tabular data from outside Pyret so we don’t need to enter it all into our program.

I’ve already made a Pyret file that has the full municipality data, which we can load:

```pyret
include shared-gdrive("municipalities", "1I0z6TyLKINcKBUUDfeqN1dGrPyN9PL8I")
```
<table>
<thead>
<tr>
<th>name</th>
<th>kind</th>
<th>pop-2010</th>
<th>pop-2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;Adams&quot;</td>
<td>&quot;Town&quot;</td>
<td>5143</td>
<td>4973</td>
</tr>
<tr>
<td>&quot;Adams&quot;</td>
<td>&quot;Village&quot;</td>
<td>1775</td>
<td>1633</td>
</tr>
<tr>
<td>&quot;Addison&quot;</td>
<td>&quot;Town&quot;</td>
<td>2595</td>
<td>2397</td>
</tr>
<tr>
<td>&quot;Addison&quot;</td>
<td>&quot;Village&quot;</td>
<td>1763</td>
<td>1561</td>
</tr>
<tr>
<td>&quot;Afton&quot;</td>
<td>&quot;Town&quot;</td>
<td>2851</td>
<td>2769</td>
</tr>
<tr>
<td>&quot;Afton&quot;</td>
<td>&quot;Village&quot;</td>
<td>822</td>
<td>794</td>
</tr>
<tr>
<td>&quot;Airmont&quot;</td>
<td>&quot;Village&quot;</td>
<td>8628</td>
<td>10166</td>
</tr>
<tr>
<td>&quot;Akron&quot;</td>
<td>&quot;Village&quot;</td>
<td>2868</td>
<td>2888</td>
</tr>
<tr>
<td>&quot;Alabama&quot;</td>
<td>&quot;Town&quot;</td>
<td>1869</td>
<td>1682</td>
</tr>
<tr>
<td>&quot;Albany&quot;</td>
<td>&quot;City&quot;</td>
<td>97856</td>
<td>99224</td>
</tr>
</tbody>
</table>

Click to show the remaining 1517 rows...
Now that we have the data in Pyret, we can write programs to answer questions.
To get a row out of a table, specify its number, beginning with 0:

```python
>>> municipalities.row-n(0)
```

| "name" | "Adams" | "kind" | "Town" | "pop-2010" | 5143 | "pop-2020" | 4973 |
The data type returned by `.row-n` is a `Row`.

We can access a value in the row by specifying the name of a column:

```python
>>> municipalities.row-n(0)['name']
"Adams"
```
We can write a function that takes a row as input:

```plaintext
fun population_decreased(r :: Row) -> Boolean:
 doc: "Return true if the municipality's population went down between 2010 and 2020"
 r["pop-2020"] < r["pop-2010"]
end
```
Filtering and ordering tables
To work with tables, we’ll use a library that goes with the textbook.

We need to tell Pyret to load it:

```python
include shared-gdrive("dcic-2021",
"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")
```
One thing we might want to do is to get a version of the table that only has cities where the population has decreased.
fun filter_population_decreased(t :: Table) -> Table:
    if population_decreased(t.row_n(0)):
        ...
        # Keep row 0
    if population_decreased(t.row_n(1)):
        ...
        # Keep row 1
    else:
        ...
        # Don't keep row 1
    end
    else:
        ...
        # Don't keep row 0
    end
end
We can use `filter-with` to return a new table of just the rows where `population-decreased` evaluates to `true`:

```plaintext
filter-with(municipalities, population-decreased)
```
We can also use `filter-with` to get just the towns:

```python
fun is-town(r :: Row) -> Boolean:
 doc: "Check if a row is for a town"
 r["kind"] == "Town"
end

filter-with(municipalities, is-town)
```
We can also order the data by the values in one column:

```
order-by(municipalities, "pop-2020", false)
```
We can also order the data by the values in one column:

order-by(municipalities, "pop-2020", false)

This means sort descending; true means ascending.
And we can combine all of these operations.

How would we get the town with the smallest population?
order-by(
    filter-with(municipalities, is-town),
    "pop-2020",
    true).row-n(0)
Example: Population change
PROBLEM: Figure out what the fastest-growing towns are in New York.
Subtasks:

- Filtering out the cities
- Calculating percentage change in population
- Building a column for percentage change
- Sorting on that column in *descending* order
fun percent-change(r :: Row) -> Number:
  doc: "Compute the percentage change for the population of the given municipality between 2010 and 2020"
  (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

towns = filter-with(municipalities, is-town)

towns-with-percent-change = build-column(towns, "percent-change", percent-change)

fastest-growing-towns =
  order-by(towns-with-percent-change, "percent-change", false)

fastest-growing-towns
Acknowledgments

This lecture incorporates material from:

Kathi Fisler, Brown University
Doug Woos, Brown University