
Evaluating Functions  
and Conditionals

25 January 2024

cmpu 101 § 53 · Computer Science I

Assignment 1
Out today, at 5 p.m.

Due on Wednesday by 11:59 p.m.

https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html
https://www.cs.vassar.edu/~cs101/53/resources/coaching.html

Where are we?

We’ve been using Pyret to write expressions using
data, including

numbers like 0, -10, and 0.4;

strings like "", "hi", and "111"; and

images like , a.k.a., circle(2, "solid", "red"),

which we modify or combine using operators like + and * and
functions like string-append and above.

f(42)

f(42)

What
function
to call

f(42)

Argument
to the
function

What
function
to call

f(42)

Argument
to the
function

What
function
to call

“Call f on 42.”

num-max(13, 42)

First
argument

What
function
to call

Second
argument

Distinguishing types of data helps to catch mistakes.

If you try to give

a string to / or

a number to overlay,

we want Pyret to catch the problem right away,
giving a helpful error message.

https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system
https://en.wikipedia.org/wiki/Fail-fast_system

We’ve seen that we can create more complicated
programs by composing function calls, e.g.,

1 + (2 / 3)

or
string-append("hello ",
 string-append("Pyret ", "world!"))

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3 Name Value

total

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

Name Value

total

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

Name Value

total 5

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

 new-total = total + 1

Name Value

total 5

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

 new-total = total + 1

Name Value

total 5

new-total

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

 new-total = total + 1

Name Value

total 5

new-total

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

 new-total = total + 1
→ new-total = 5 + 1

Name Value

total 5

new-total

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

 new-total = total + 1
→ new-total = 5 + 1
→ new-total = 6

Name Value

total 5

new-total

Directory

And we can give a name to the result of an
expression, e.g.,

 total = 2 + 3
→ total = 5

 new-total = total + 1
→ new-total = 5 + 1
→ new-total = 6

Name Value

total 5

new-total 6

Directory

Defining and evaluating functions

Remember functions from middle-school math:

Given f(x) = cos(x) + 2

f(0) = 1 + 2 = 3

The parameter x stands
for varying values

Pyret functions work much the same way:
fun f(x): num-cos(x) + 2 end

 f(0)
 → num-cos(x) + 2
 → num-cos(0) + 2
 → 1 + 2
 → 3

Name Value

x 0

Directory

Note that the parameter names are only defined
inside the function body:

››› fun f(x): num-cos(x) + 2 end
››› f(0)
3
››› x
Error!

Once the function is finished, the names are
removed from the directory.

We say a parameter name has only local scope, while
names defined outside a function have global scope.

Example

Mary Berry needs to know how
many cakes to bake for her cake
shop.

To avoid running out or having too many,
she wants to bake two cakes more than
the number she sold the previous day.

E.g., if Mary sells eight cakes on Monday,
she makes ten cakes on Tuesday.

Let’s write some code to help Mary.

fun cakes-to-make(num-sold):
 num-sold + 2
end

fun cakes-to-make(num-sold):
 num-sold + 2
end

Keyword to define a function

fun cakes-to-make(num-sold):
 num-sold + 2
end

fun cakes-to-make(num-sold):
 num-sold + 2
end

Name of the function

fun cakes-to-make(num-sold):
 num-sold + 2
end

fun cakes-to-make(num-sold):
 num-sold + 2
end

Parameter

fun cakes-to-make(num-sold):
 num-sold + 2
end

fun cakes-to-make(num-sold):
 num-sold + 2
end

How to transform the data

fun cakes-to-make(num-sold):
 num-sold + 2
end

fun cakes-to-make(num-sold):
 num-sold + 2
end

Keyword to signal the end
of the function definition

fun cakes-to-make(num-sold):
 num-sold + 2
end

Functions are abstractions  
over specific computations

Draw a traffic light
above(circle(40, "solid", "red"), 
 above(circle(40, "solid", "yellow"),  
 circle(40, "solid", "green"))

Draw a traffic light
above(circle(40, "solid", "red"), 
 above(circle(40, "solid", "yellow"),  
 circle(40, "solid", "green"))

Draw a traffic light
above(circle(40, "solid", "red"), 
 above(circle(40, "solid", "yellow"),  
 circle(40, "solid", "green"))

Unchanging Varying

Draw a traffic light
above(circle(40, "solid", "red"),  
 above(circle(40, "solid", "yellow"),  
 circle(40, "solid", "green")))

Draw a traffic light
above(circle(40, "solid", "red"),  
 above(circle(40, "solid", "yellow"),  
 circle(40, "solid", "green")))

Can be changed to
fun bulb(color): 
 circle(40, "solid", color)
end

above(bulb("red"), 
 above(bulb("yellow"),  
 bulb("green")))

  
  

fun bulb(color): 
 circle(40, "solid", color)
end

above(bulb("red"), 
 above(bulb("yellow"),  
 bulb("green")))

fun bulb(color): 
 circle(40, "solid", color)
end

fun traffic-light():
 above(bulb("red"),  
 above(bulb("yellow"),  
 bulb("green")))
end

Remember: Each function has one job!

Example

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients: $10

Prep. time: 20 min.

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients: $10

Prep. time: 20 min.
choc-cake-price = (2 * 10) + (1/4 * 20)

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients: $10

Prep. time: 20 min.

Cheesecake
Ingredients: $15

Prep. time: 36 min.

choc-cake-price = (2 * 10) + (1/4 * 20)

For Mary’s cake shop, we want to determine the
price of each cake based on the cost of the
ingredients and the time to prepare it.

As the price, she uses twice the cost of the ingredients plus ¼ of the
preparation time in minutes.

Chocolate cake
Ingredients: $10

Prep. time: 20 min.

Cheesecake
Ingredients: $15

Prep. time: 36 min.

choc-cake-price = (2 * 10) + (1/4 * 20)

cheesecake-price = (2 * 15) + (1/4 * 36)

choc-cake-price = (2 * 10) + (1/4 * 20)

cheesecake-price = (2 * 15) + (1/4 * 36)

We use functions to
avoid repetitive code
when we need to
perform the same
operations on different
values.

choc-cake-price = (2 * 10) + (1/4 * 20)

cheesecake-price = (2 * 15) + (1/4 * 36)

We use functions to
avoid repetitive code
when we need to
perform the same
operations on different
values.

choc-cake-price = (2 * 10) + (1/4 * 20)

cheesecake-price = (2 * 15) + (1/4 * 36)

We use functions to
avoid repetitive code
when we need to
perform the same
operations on different
values.

(2 * ingredients-cost) + (1/4 * prep-time)

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (1/4 * prep-time)
end

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (1/4 * prep-time)
end

Parameters

The parameters are the values passed into the function
that it needs to know for each operation.

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (1/4 * prep-time)
end

Expression repeated each time the function is called

fun cake-price(ingredients-cost, prep-time):
 (2 * ingredients-cost) + (1/4 * prep-time)
end

To calculate the price of chocolate cake or
cheesecake, you just call your function and
pass in the relevant values!

Price of chocolate cake
cake-price(10, 20)

Price of cheesecake
cake-price(15, 36)

Improving our function definitions

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number):
 (2 * ingredients-cost) + (1/4 * prep-time)
end

We specify the type of each parameter so that Pyret will check that we pass in the
right kind of values, just like for built-in operations like + and above.

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number) -> Number:
 (2 * ingredients-cost) + (1/4 * prep-time)
end

And we can specify the type of value the function returns.

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number) -> Number:
 doc: "Calculate price of cake based on
ingredient cost and preparation time"
 (2 * ingredients-cost) + (1/4 * prep-time)
end

Additionally, a docstring explains what the function does.

fun cake-price(ingredients-cost :: Number,
 prep-time :: Number) -> Number:
 doc: "Calculate price of cake based on
ingredient cost and preparation time"
 (2 * ingredients-cost) + (1/4 * prep-time)
where:
 # Price of chocolate cake
 cake-price(10, 20) is (2 * 10) + (1/4 * 20)
 # Price of cheesecake
 cake-price(15, 36) is (2 * 15) + (1/4 * 36)
end

fun rectangle-area(r):
 image-height(r) * image-width(r)
end

fun rectangle-area(r :: Image) -> Number:
 doc: "Return the rectangular area of the image"
 image-height(r) * image-width(r)
where:
 rectangle-area(rectangle(0, 0, "solid", "black"))
 is 0
 rectangle-area(rectangle(2, 3, "outline", "blue"))
 is 6
end

fun rectangle-area(r :: Image) -> Number:
 doc: "Return the rectangular area of the image"
 image-height(r) * image-width(r)
where:
 tiny = rectangle(0, 0, "solid", "black")
 rectangle-area(tiny) is 0

 blue = rectangle(2, 3, "outline", "blue")
 rectangle-area(blue) is 6
end

Booleans and if expressions

true

false

We can compare values using these operators

< less than 
<= less than or equal to 
> greater than 
>= greater than or equal to 
== equal to 
<> not equal to

which produce true or false as a result.

Be careful:

x = 2

is assigning the name x to have the value 2 in the
directory.

x == 2

is asking the question “is x equal to 2?”

Boolean expressions can also be combined using the
operators

and
true if both inputs are true;

false otherwise

or
false if both inputs are false;

true otherwise

››› true and false 
false
››› true or false 
true
››› (1 < 2) and (2 > 3)  
false
››› (1 <= 0) or (1 == 1)  
true

To change an expression that evaluates to true to
be false – or vice versa – use the not function:

››› not(true) 
false
››› not(1 == 0) 
true

i1 = rectangle(10, 20, "solid", "red")
i2 = rectangle(20, 10, "solid", "blue")

image-width(i1) < image-width(i2)

rect = rectangle(10, 20, "solid", "red")

if image-width(rect) < image-height(rect):  
 "portrait"
else: 
 "landscape"
end

if … else … end is a conditional expression.

Conditionals allow us to branch – maybe we
evaluate this expression, or maybe this other
expression instead!

To form an if expression:
if ⟨expression⟩: 
 ⟨expression⟩ 
else:
 ⟨expression⟩
end

True–false question

True (“then”) answer

False (“else”) answer

How an if expression is evaluated
if 1 < 2:
 "All is right in the world"
else:
 "Watch out for flying pigs"
end

1 If the question expression is not a value, evaluate
it, and replace with the resulting value.

How an if expression is evaluated
if true:
 "All is right in the world"
else:
 "Watch out for flying pigs"
end

1 If the question expression is not a value, evaluate
it, and replace with the resulting value.

How an if expression is evaluated
if true:
 "All is right in the world"
else:
 "Watch out for flying pigs"
end

2 If the question is true, replace the entire if
expression with the true (“then”) answer
expression.

How an if expression is evaluated

 "All is right in the world"

2 If the question is true, replace the entire if
expression with the true (“then”) answer
expression.

How an if expression is evaluated
if false:
 "All is right in the world"
else:
 "Watch out for flying pigs"
end

3 If the question is false, replace the entire if
expression with the false (“else”) answer
expression.

How an if expression is evaluated

 "Watch out for flying pigs"

3 If the question is false, replace the entire if
expression with the false (“else”) answer
expression.

How an if expression is evaluated
if 42:
 "All is right in the world"
else:
 "Watch out for flying pigs"
end

4 Otherwise, the question must be a value other
than true or false, so produce an error.

How an if expression is evaluated
if 42:
 "All is right in the world"
else:
 "Watch out for flying pigs"
end

4 Otherwise, the question must be a value other
than true or false, so produce an error.

rect = rectangle(10, 20, "solid", "red")

if image-width(rect) < image-height(rect): 
 "portrait"
else: 
 "landscape"
end

What’s wrong with this code?

rect = rectangle(10, 20, "solid", "red")

if image-width(rect) < image-height(rect): 
 "portrait"
else if image-width(rect) == image-height(rect): 
 "square"
else:
 "landscape"
end

rect = rectangle(10, 20, "solid", "red")

fun image-type(img :: Image) -> String:
 doc: "Classify an image as portrait, square, or landscape"
 if image-width(img) < image-height(img): 
 "portrait"
 else if image-width(img) == image-height(img): 
 "square"
 else:
 "landscape"
 end
where:
 image-type(rect) is "portrait"
end

rect = rectangle(10, 20, "solid", "red")

fun image-type(img :: Image) -> String:
 doc: "Classify an image as portrait, square, or landscape"
 if image-width(img) < image-height(img): 
 "portrait"
 else if image-width(img) == image-height(img): 
 "square"
 else:
 "landscape"
 end
where:
 image-type(rect) is "portrait"
 image-type(rectangle(10, 10, "solid", "blue")) is "square"
 image-type(rectangle(20, 10, "solid", "blue")) is "landscape"
end

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Gregor Kiczales, University of British Columbia

Peter Lemieszewski, Vassar College

