
Tables

30 January 2024

cmpu 101 § 53 · Computer Science I

Assignment 1

Assignment 2

Lab 2 

Due Wednesday

Out on Thursday

Due Friday

Where are we?

Here are some data that can be represented with
what we’ve seen so far:

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog Image

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog Image

The population of NYC Number

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog Image

The population of NYC Number

The complete text of Beowulf String

Here are some data that can be represented with
what we’ve seen so far:

A picture of a dog Image

The population of NYC Number

The complete text of Beowulf String

Whether or not I ate breakfast this morning Boolean

What if we wanted to write a program to look up
the population of any town in New York?

We can consider the last two census years – 2010 and 2020.

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

We can nest if expressions!

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

Report an error that prevents the
function from returning an answer

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

This isn’t a great way to do this.
Why not?

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

What about the
rest of the state?

fun population(municipality :: String, year :: Number) -> Number:
 doc: "Return population of the municipality for the given year"
 if municipality == "New York":
 if year == 2010:
 8175133
 else if year == 2020:
 8804190
 else:
 raise("Bad year")
 end
 else if municipality == "Poughkeepsie":
 if year == 2010:
 43341
 else if year == 2020:
 45471
 else:
 raise("Bad year")
 end
 else:
 raise("Bad municipality")
 end
end

KEY IDEA Separate data from computation.

Tables

Tables are used for tabular data,
like you might find printed in a
book or in a spreadsheet on a
computer.

Tables are used for tabular data,
like you might find printed in a
book or in a spreadsheet on a
computer.

To define a table in Pyret, we specify its contents
like so:

municipalities =
 table: name, kind, pop-2010, pop-2020
 row: "Adams", "Town", 5143, 4973
 row: "Adams", "Village", 1775, 1633
 row: "Addison", "Town", 2595, 2397
 row: "Addison", "Village", 1763, 1561
 row: "Afton", "Town", 2851, 2769
 ...
 end

››› municipalities

Next class, we’ll see how we can load tabular data
from outside Pyret so we don’t need to enter it all
into our program.

For today, I’ve made a Pyret file that has the full NY
municipality data, which we can load:

include shared-gdrive("municipalities",
 "1RfjMqyebrBnmdhS8H846flCzwz5gknyE")

Now that we have the data in Pyret, we can write
programs to answer questions.

To get a row out of a table, specify its number,
beginning at zero:

››› municipalities.row-n(0)

The data type returned by .row-n is a Row.

We can access a value in the Row by specifying the
name of a column:

››› municipalities.row-n(0)["name"]
"Adams"

We can write a function that takes a row as input:
fun population-decreased(r :: Row) -> Boolean:
 doc: "Return true if the municipality's
population went down between 2010 and 2020"
 r["pop-2020"] < r["pop-2010"]
end

fun population-decreased(r :: Row) -> Boolean:
 doc: "Return true if the municipality's
population went down between 2010 and 2020"
 if r["pop-2020"] < r["pop-2010"]:
 true
 else:
 false
 end
end

Why don’t we write it like this?

fun population-decreased(r :: Row) -> Boolean:
 doc: "Return true if the municipality's
population went down between 2010 and 2020"
 if r["pop-2020"] < r["pop-2010"]:
 true
 else:
 false
 end
end

Consider calling it on a particular input.

 if r["pop-2020"] < r["pop-2010"]:
 true
 else:
 false
 end

r =

Consider calling it on a particular input.

 if 4973 < r["pop-2010"]:
 true
 else:
 false
 end

r =

Consider calling it on a particular input.

 if 4973 < 5143:
 true
 else:
 false
 end

r =

Consider calling it on a particular input.

 if true:
 true
 else:
 false
 end

 if true:
 true
 else:
 false
 end

xkcd.com/703

https://xkcd.com/703
https://xkcd.com/703
https://xkcd.com/703/

 if true:
 true
 else:
 false
 end

This is equivalent to just writing true

 if 4973 < 5143:
 true
 else:
 false
 end

This is equivalent to just writing 4973 < 5143

 if r["pop-2020"] < r["pop-2010"]:
 true
 else:
 false
 end

This is equivalent to just writing  
r["pop-2020"] < r["pop-2010"]

r =

fun population-decreased(r :: Row) -> Boolean:
 doc: "Return true if the municipality's
population went down between 2010 and 2020"
 r["pop-2020"] < r["pop-2010"]
end

Illustration by
Gemma Correll

fun population-decreased(r :: Row) -> Boolean:
 doc: "Return true if the municipality's
population went down between 2010 and 2020"
 if r["pop-2020"] < r["pop-2010"]:
 true
 else:
 false
 end
end

Illustration by
Gemma Correll

Filtering and ordering tables

To work with tables, we’ll use a library that goes
with the textbook.

We need to tell Pyret to load it:
include shared-gdrive("dcic-2021",
 "1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

One thing we might want to do is to get a version
of the table that only has cities where the
population has decreased.

fun filter-population-decreased(t :: Table) -> Table:
 if population-decreased(t.row-n(0)):
 ... # Keep row 0
 if population-decreased(t.row-n(1)):
 ... # Keep row 1
 else:
 ... # Don't keep row 1
 end
 else:
 ... # Don't keep row 0
 end
end

We can use filter-with to return a new table of
just the rows where population-decreased
evaluates to true:

filter-with(municipalities, population-decreased)

We can also use filter-with to get just the towns:
fun is-town(r :: Row) -> Boolean:
 doc: "Check if a row is for a town"
 r["kind"] == "Town"
end

filter-with(municipalities, is-town)

We can also order the data by the values in one
column:

order-by(municipalities, "pop-2020", false)

We can also order the data by the values in one
column:

order-by(municipalities, "pop-2020", false)

This means we want to sort in descending
order; true means ascending.

And we can combine all of these operations.

How would we get the town with the smallest
population?

order-by(
 filter-with(municipalities, is-town),
 "pop-2020",
 true
).row-n(0)

Example: Population change

PROBLEM Figure out what the fastest-growing towns
are in New York.

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"
 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

We can write a function that takes a row as
input and returns any kind of value, not just a
Boolean.

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"
 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

towns-with-percent-change =
 build-column(towns, "percent-change",
 percent-change)

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"
 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

towns-with-percent-change =
 build-column(towns, "percent-change",
 percent-change) Name of the new column

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"
 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

towns-with-percent-change =
 build-column(towns, "percent-change",
 percent-change) Name of the new column

Name of the function to use

Subtasks:

Filtering to just towns

Calculating percentage change in population

Building a column for percentage change

Sorting on that column in descending order

towns = filter-with(municipalities, is-town)

fun percent-change(r :: Row) -> Number:
 doc: "Compute the percentage change for the
population of a municipality between 2010 and 2020"
 (r["pop-2020"] - r["pop-2010"]) / r["pop-2010"]
end

towns-with-percent-change =
 build-column(towns, "percent-change",
 percent-change)

fastest-growing-towns =
 order-by(towns-with-percent-change,
 "percent-change", false)

fastest-growing-towns

Pyret code from class:
tinyurl.com/101-2024-01-30

http://tinyurl.com/101-2024-01-30
http://tinyurl.com/101-2024-01-30

Acknowledgments

This class incorporates material from:
Kathi Fisler, Brown University

Doug Woos, Brown University

